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ABSTRACT 
This paper concems M Ix] / M / 1 queue. The number of customers in each arriving unit is a 
random variable. There is two control threshold values K and N, K is smaller than N. Service rate 
is switched from u to tu whenever the system size increases to N. The tu rate is switched to u 
when the system size drops to the value K. We derive the steady-state probabilities of  the number 
of  customers in system and the expected number of customers in system. A cost model is 
introduced for the service cost, queuing cost, and switching cost. © 1999 Elsevier Science Ltd. 
All rights reserved. 
Keywords: Queue, Bulk arrival, Service control. 

INTRODUCTION 
Hysteretic service rate control policy has studied extensively in the literature. The control policy 
has been studied by number of authors (Gebhard, 1967; Crabill, Gross and Magazine, 1977; Lu 
and Serfozo, 1984; Teghem, 1986; Gray et al., 1992; Lee et al., 1998; Lin and Kumar, 1984; 
Wang, 1993). In this paper, we consider M tx] / M / 1 queuing system with unlimit size. The 
arrival stream forms a Poisson process in which the number of  customers in each arriving unit is 
a random variable X, with probability density Cx. There is two control threshold values K and N, 
K is smaller than N. Service rate is switched from u to tu whenever the system size increases to 
N. The tu rate is switched to u when the system size drops to the value K. We derive the steady- 
state probabilities of  the number of customers in system and the expected number of customers in 
system. A cost model is introduced for the service cost, queuing cost, and switching cost. 

THE MAIN RESULTS 

This model may be analyzed by continuous time parameter Markov chain. We divide the state of 
the system into two classes. F 1 = {(n,1);n = 0,K,  N} be the state in which n customers in system 

and the service rate is u. F 2 = {(n,2); n = K + 1,K } be the state in which n customers in system and 

the service rate is tu. Let n(n,1) denotes the steady-state probability of the state (n, 1), 

n(n,  2)denotes the steady-state probability of the state (n, 2). n0, rr(0,1) denotes the probability 
of empty state (0,1) 
The steady-state equations are given as follows: 
0 = -Z•(0, 1) + uzr(1, 1), (1) 

0= - (X+u) r c (n ,  1)+~-~)Lci~z(n-i  , 1)+urr (n+l ,  1 ) , l < n < N ,  n ; ~ K ,  (2) 
i=1 
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K 

0 = - ( , ~ + u ) 1 r ( K ,  1)+~-~2~cizr(K-i , 1 ) + t u z r ( K + l ,  2 ) + u l r ( K + l ,  1), (3) 
i=1 

N 

0 = -(7~ + ulrc(N,  1) + ~ )~c, l r (N  - i, 11, (4/ 
i = l  

0 = -(~. + tu)zr(K + 1, 2) + tu lr (K + 2, 2), (5) 

n - K - 1  

0 = -(;~ + tu)lr(n, 2) + ~ ~CiT"C(t'l - -  i, 2) + tuTr(n + 1, 2), n = K + 2, K ,  N,  (6) 
i=1 

n - K - I  

O = - ( Z + t u ) l r ( n ,  2 )+  ~.c i l r (n- i ,  1)+ Z ~ , c i r c ( n - i ,  2 ) + t u l r ( n + l ,  2), n = N + I ,  K ,  (7) 
i=1 i=1 

Multiply equations (1)~(7) with appropriate z",  and take summation. 
~ N 0o 

Let C ( z ) = ~ _ c . z " ,  ~ , ( z )  = }-" ~(i, 1)z i and ~2(z )  = ~ . ,~( i ,  2)z  i . We obtain, 
n=l i=0 i=K+I  

nt (z)[u - (9~ + u)z  + )~zC(z)] + z~ z (z)[tu - (Z + tu)z  + 2zC(z)] = U~ro(1 - z) (8) 

Le t~(n ,  1 ) = ~ . ~ o , l < n < N ,  and let ~(n, 2 ) = ~ . ~ o , n _ > K + l .  Let ~'. (O<_n<_N) be the 

coefficient of  the probability of  the empty state in typical M txl / M / 1 queue with service rate u. 
Proper ty  1 
~r '., n _> 0,  that satisfy the following relation 

tr' o = l ,  lr[ = $  , where q~ = )~/u 

i 

7r +, = [(1 + 
j=l 

Proper ty  2 

ft .  = r c ' . , O < n < K ,  

zr K÷ i = z~'x÷ i + h i v  x+ i, i = 1, K , N - K ,  

Where 
i - 2  

h i = - t ,  h i = (1 + ~)hi_ I - ~ Z  cjhi-j  -1, i = 2 , K ,  N - K ,  
j = l  

N 
~b ~ cix~q_ i - (1 + ¢ )n  n 

i=l 
~gK+l = N - K - 1  

(1 + d~)hN_ K - d~ ~ C i h N _ K _  i 
i=l 

zr,(1) + zr2 (1) = 1, 

(9a) 

(9b) 

(10a) 

(10b) 

(11) 

that is, rrt(1)+rr2(1 ) = 7r0[~j(1)+~2(1)] 

(12) 

Define ~ i ( z )  = T~i(z)  / 7~o, i = 1, 2, 

By the boundary condition, since 

Therefore, 
lr o = 1 / [n3, (1) + ~2 (1)] 

Furthermore, 
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i=O i=O i=K+l 

Divide above equation by ~ o, we obtain, 
N N N N-K 

7~,(Z) = EI[;Z  i +lllK+ , E h i _ x z  i = E~'cfzi " 4 " ~ K + I  E h i  ZK+i ,  

i=0 i=K+I i=0 i=1 

Let S = ~1 (1), we obtain, 
N N-K  

s= Z,,; Zh,, 
i=0 i=1 

Take the first derivative of  equation (13) with respect to z 
d N N-K  

~ I ( Z )  = EiT[~Z i-! + I//K+ I Z ( K  +i)hi zK+i-1 , 
i=l i=l 

Let T = d g q  dz ~(1), we obtain, 

N N-K  

T= ~'~ilr; +u/x+l ~'~(K +i)hi, 
i=l i=l 

Divide equation (8) by g0,  we obtain, 

~, (z)[u - (Z + u)z + 2zC(z)] + ~z (z)[tu - (~. + tu)z + 2zC(z)] = u(1 - z) 

(13) 

(14) 

(15)  

(16) 

Take first derivative o f  (16) with respect to z and evaluate at z = 1, we obtain, 

aq, (1)[-u + ;LE(x)] + ~2 (1)[-tu + 2&:(x)] = - u  

Let U =  aq2(1 ) , pl = c~E(X), the first traffic intensity. P2 = c~E(X)/t, the second traffic intensity. 

Assume P2 < 1. We get 

U = - u .  aq, (1)[-u + EE(X)]  _ P2 [-1 + S(1 - p, ) 
- (17)  

Pl (P~ - 1) - t u  +  LE(X) 

From (12)-(17), we obtain, 
1 1 

rr° = ~ (1 )+~2(1  ) S + U  
- P ' ( 1 - P 2 )  (18) 

P2 + S(Pl - P2) 

Take second derivative o f  equation (16) with respect to z, and evaluate at z = 1, we obtain, 

~z ~2 ( l ) [ - tu  + LE(X)]  = - 2  ~z  ~3, (1)[-u + 3.E(X)] - {2AJ~(X) + 3 .E[ X( X  - 1)]} [~1 (1) + ~3 2 (1)] 2 

Let V= d dz 2 (1), then, 

V = 2T(p, - P2) + P2 {2p, + ~ E [ X ( X  - 1)]}(S + U) 
2p,(1 - P2) (19) 

From (12)-(19), we can obtain the expected number o f  customers in system L, 

L= T ( p , - p ; )  p2{2p, +gpE[X(X-1)]} 
+ (20) 

P2 + S(1 - P2) 2p~(1 - P2) 
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SPECIAL CASES 

It is interesting that for various combination of (N, K) the model generalize several models. 
(a) K=N=0, Pr(X=I)=I. The model is reduced to typical M / M / 1 queuing model with service 

rate tu. 
(b)K=N¢ 0, Pr(X=I)=I. The model reduce to M / M / 1 queuing model with state dependent 
(c) K=N=0. The model reduce to regular M tx] / M / 1 queuing model with service rate tu 

(d)K=N¢ 0. The model is reduced to Mtx} / M / 1 queuing model with state dependent. 
(e)Pr(X=l)=l. The model reduce to M~ M / 1  with bilevel hysteretic service rate control 

(Gebhard, 1967) 
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