
VLSl design for high-speed LZ-based data compression

J.-M.Chen and C.-H.Wei

Abstract: A simple real-time parallel architecture for CMOS VLSI implementation of a Ziv-hmpel
data compression system is presented. This encoding system employs a linear systolic array to find
concurrently the matches between each input data character and its corresponding dictionary, and
can easily achieve ideal compression ratio by cascading the chips of the encoding cell. A new encoding
architecture is proposed to improve the encoding speed and reduce hardware complexity for the
encoding cells. In addition, the number of memory accesses is reduced to save power consumption for
high-speed applications. The encoder codes one character (more than eight bits) per encoding cycle.
The clock rate by Verilog simulator can be constrained below lSns using the Compass standard cell
library for the 0 . 6 ~ CMOS process.

1 Introduction

In recent years the need to develop efficient data compres-
sion methods has increased considerably owing to the
iucreasing applications of data compression in various
areas. The most widely used classes of lossless data com-
pression algorithms are those developed by Ziv and Lempel
in 1977 and 1978, labelled as LZ77 and LZ78, respectively
[l, 21. In the LZ77 algorithm, pointers are used to denote
phrases in a fixed-size window that precedes the coding
position, There is a maximum length for substrings that
may be replaced by a pointer, given by the parameter F
(typically 24-25). These restrictions allow LZ77 to be imple-
mented using a 'sliding window' of N characters. In this
scheme the first N - F characteis have already been
encoded and the last F characters constitute a lookahead
buffer. The window is illustrated in example 1 (see Fig. 1).

step 1 k- sliding window of N characters -4
I

l g l o l o i d l - 1 b l o l o l k l b l o l o l k l ; I IlTls
already encoded- look ahead buffer

Fcharacters 4
codeword=(3,4,:) for 'book

p-siiding window of N characters ,,
g l o l o l d l -) b l o l o l k) b l o l o l k / ; I i I T l i l s l g l o l o l d

already encoded 2 L F c h a m c t e r s A lookahahead buffer

cadeword=(0.0.1) for r'
Fig. 1 Imphemxion ofLZ77 dgorirhm urhg sl idff l~ ~'iwfoiv of N &mac

To encode a character, the frst N - F characters of the
window are searched to find the longest match with
lookahead buffer. The match may overlap with the buffer
but obviously cannot be the buffer itself. The longest match
is then encoded into a triple codeword (0, l, U) where o is

IerS

0 IEE, 1999
IEE Proceedfflgs o&e no. 19990535
DOL 10.1049/ipcds:19990535
Paper fust r e c e i v e d 16th January 1998 and in re<& fonn 26th March 1999
The authors are with the Lkpamnent of Electronics En&eering, National
Chiao Tung University, m c h u , Taiwan, Republic of China

268

the offset of the longest match from the lookahead buffer, 1
is the longest length of match, and a is the first character
that did not match the substring in the window. The win-
dow is then shifted right I + 1 characters, ready for the next
encoding step. Attaching the explicit character to each
pointer ensures that coding can proceed even if no match is
found for the first character of the lookahead buffer.

In the LZ77 algorithm, whenever there is no match or if
there is a match of length one, each symbol that r e s p
tively constitutes the matched substrings would be substi-
tuted by a codeword of three bytes long. This may result in
expansion rather than compression in the encoding process.
If many such unfavourable codewords occurred in a file,
the compression achieved would be low. The LZSS algo-
rithm [3], one of the variants of the LZ77 algorithm, adopts
a free mixture of pointer and characters to replace the triple
codeword in LZ77 [l] to overcome the expansion problem.
A character itself will be used only when a pointer takes
more space than the characters it encodes. An extra bit,
known asflug, is added to each pointer or character to dis-
tinguish between them. The output is packed so that there
are no unused bits. Many designers have incorporated this
technique in the software implementation which signifi-
cantly improves the compression ratio. However, the speed
of data compression by software is usually not satisfactory
for a real-time system.

Several LZ hardware architectures have been presented
in the literature [H I . The most computationally expensive
step in the hardware is to search for the maximum match-
ing strings in the sliding dictionary. However, the LZ-based
algorithm must be executed at a very high throughput rate
for real-time transmission and storage. The content
addressable memory (CAM) approach [7] can provide con-
stant time to search the matching strings for each symbol,
but it must consume static DC current for many of the
CAM cells during the match action cycle. If the size of the
sliding window is increased the power consumption prob-
lem will dominate the chip performance.

We present the design of a systolic array processor for
efficient implementation of the LZSS compression tech-
nique by using wrap architecture [9]. This new approach
can fmd a maximum match length for each clock cycle.
The new hardware structure can execute the data compres-
sion task on-thefly in the real-time communication system.

IEE Proc.-Circuirs Devices Sysr.. VoL 146, No. 5, October I999

Fig.2 Bcock&grm ofencoder
CODEIN: initial iength value for codeword (default: 0)
OFFIN initial ofiset value for codeword (defalt: 0)
INDEX. cell number for l a ? stage of ending cell (default: 0)
SOW: output character of cell 0 (the last stage of ~ystolic amy)
A 0 active signal output of cell 0
Lo: length oulpul of cell 0
OFF0 ojj..er output of cell 0

Fig. 3 A m y dalafrow of w o p architecture for mmditg systm

To implement the encoder with VLSI ASIC dsign tech-
nology, the system is divided into several modules and
facilitated by the systolic architecture. As shown in Fig. 2,
the encoding system contains several blocks: VLtell, moni-
tor, packet, sender, and in-buf. The VLcell block is com-
posed of a segment of the systolic array illustratec in Fig. 3
to find a series of optimal matches. The in_l,uf block
includes input pads, registers, and buffers to nxeive the
input signals and convert them to internal CMOS signals.
DIN is the input of encoded character string for the d ie
tioniuy registers; SIN and SINC are the input uncoded
character string under normal mode and cascade mode,
respectively. When the ACT1 signal goes to high the
encoder begins to compress the uncoded input character
string. The size of the dictionary is configurabb: up to a
suitable window size by adjusting the MODE value of
encoder. If the MODE value is set to 0, the encoder can
cascade several encoders in a pipeline and the bulyer size of

IEE Proc.-Circuits Device.? Syst.. Voi. 146, No. 5, October 1999

a sliding window embedded in VLcell can he expanded to a
suitable width. Typical width of the window is 2-8 K of
dictionary, which has 0.25-1 K cells. The bit number n for
the offset is 11-13. The primary advantages of our system
are high speed and simple hardware structure with expand-
able dictionary size to increase the compression ratio easily.
We also adopt an effcient output buffer to control the out-
put rate and convert the output packets to and from words
of fmed width, e.g. 16 bits for compatibility with typical
computer hardware. Since power consumption is an impor-
tant consideration for high throughput-rate application, we
use a parallel process technique to reduce the number of
register access times and reduce power dissipation.

2 Wrap architecture for encoding and decoding

In the systolic array described in [IO], data pass from one
processor to the neighbouring ones in a regular, rhythrmc
pattern. As described in [ll], the array data flow of the

269

wrap architecture for encoding is given in Fig. 3. Each
encoding cell, consisting of four dictionary registers DO, -
D3, and four storage registers SO, - S3,, is capable of
recording four characters. Data flows from left to right
along the bottom through the storage registers SO, - S3,
and then wraps back, flowing from right to left along the
top through the dictionary registers DO. - D3.. Notice that
the order direction of stage number is opposite to that of
the cell number. Each cell selects one of the four register's
contents (SO, - S3,) to compare with the contents of its
dictionary registers DO, - D3, and those of the four
dictionary registers obtained from its preceding stage,
respectively. Thus, the symbols l0 - l7 represent the corre-
sponding match length values for encoding cell k, and the
symbol lk represents the optimal length selected from one
of four registers LO,, LI,, L2,, and L3,. The symbol
represents the length received from the preceding stage
(encoding cell k + 1). The decoder system has the same reg-
ister structure and data flow but a different decoding unit
cell.

The encoding cell k selects the maximal length among
nine length values (lo - l7 and lk), and send the largest
length L, with its appending offset 0, value to the encod-
ing cell of next stage, cell k - 1. The 0, value is determined
by the path of largest length Lk. The offset Ok of cell k is
equal to that of 8k + i for Lk being equivalent to I, (where I,
is one valus of lo - 17). Otherwise, 0, is copied from the of-
set O,,, value of the preceding stage (cell k + 1) when the
largest length Lk is equal to lk Each stage utilises switch S
to select the largest h @ h Lk and its appending o f e t value
0,. Nine length values (lo - l7 and lk) in each encoding cell
k are initially set to zero when the encoding cell k begins to
process the input string. Assuming that lo first becomes
unity in the first stage (cell N), the position of switch S is
switched to node No. Thus, only lo and its appending offsef
value 0, (X A 9 can be sent to the second stage. In the next
cycle lo will continue to add one for the consecutive match
between the next input character and the content of same

task (assume that I, IS neqiiaibla)

storage register. The value of lo is still larger than the values
of the others (I , - I7 and I,), even though I , - l7 and l, are
ready to increment by one. Hence, the switch position is
still located at node No, and this encoding cell still sends lo
and its offsef value 0, (SN) to the next stage. From now
on, if lo continues to increase during the following encoding
cycles. switch S will stay at node No until lo stops increas-
ing. Thus, we ignore the values of 1, - 1, and lk during these
encoding cycles until lo is reset to zero. From this descrip-
tion, it can be seen that the length value is not unique in
determining the position of switch S.

In our design we utilise only the group code and compar-
ison results instead of the real length value to control the
position of switch S. Hence, each encoding cell just sends
(code, offsef) pairs instead of (length, offset) pair to the next
stage. Finally, these pairs are sent to 'monitor' to extract a
sequence of matches that exactly include the corresponding
input stream. Thus our system doesn't use any counter or
magnitude comparator in the series of encoding cells to
achieve optimal compression ratio. Hence, these modifica-
tions reduce the complexity in hardware implementation.

3 VLSl implementation of encoding scheme

As described in Fig. 3, the encoding cell selects the optimal
length based on the match length which indicates the rela-
tionship between adjacent input characters. If the match
length is monotonically increased among adjacent input
characters, these characters will be compressed into the
same codeword. Hence we classify the characters as the
same group, where the first character is named as group
leader.

As an example, cell k and cell k ~ 1 are two consecutive
cells, where cell k is the preceding stage of cell k -~ 1. The
uncoded character string is {SOS I...S12...}, being equal to
{groupGroupNOT. ..}, and the encoded string is
{DODI...D23...}, such as { Theg~ouproupFGroupEND-
YZA ...}, stored in the dictionary registers. As shown in
Fig. 4, during clock cycle i cell k compares the new

task (Ik., is received from cell k)

cell k cell k-1

Position of the Switch S:
Clock No. 0 1 2 3 4 5 6 7 8 9 10 I1 12 .,.,..

CeU K-i
CeU K NdN4 N4Na W d X Ns Ns NI Ns X X X,, x &on',

X X X X Ni Ni N, Nj N; W7 N7 N7 N7
Fig.4 Em& of e n c d t g cell

270 IEE Proe-Circuits Devices Sysl.. Vol. 146. No. 5. October 1999

uncoded character Si with the eight encoded characters
D;D;+I ... Di++' and obtains nine length values (lo. I,, ,,., /7, lk),
where r, is obtained from the preceding stage. For the sake
of simplification, we assume that the r, value from cell k +
1 is always zero and negligible in Fig. 4. The symbol '-'
represents the comparison operator between the uncoded
character and the encoded character, and '=' represents the
input character matching the encoded character. From
cycles 0 to 4 in cell k the first five uncoded characters
{group} fmd a series of matched string {D3D4DSD6D7} in
dictionav. Thus the /4 value will be sent to cell k - 1, i.e. it
is the value o f d l k ~ 1, and the switch position should
be at node N4 from cycles 1 to 4. During these five clock
cycles the five input characters {group} arc assembled into
the same group by cell k, where the fxst uncoded character
SO, g, marked by symbol '*' is the group leader and the fol-
lowing four characters {roup} marked by symbol 'v' are its
group members. Since the /,, length value of cell k is always
less than the /4 value of cell k from cycles 0 to 4, the lo value
of cell k is neghgible. During cycle 5 there is no match and
it is not necessary to determine the switch position of cell k.
From cycles 6 to 9 the encoding cell k can find a series of
matches between the input characters string {S6S7S8S9},
{roup} and the coded characters string {D8D9DIoDll).
Thus, these four character {roup} should be assembled into
the same group, and the switch position of cell k should be
switched to node Ns and send l5 value of cell k to cell k - I .

latch new input character
latch new data of dictionam , " I

execute match task

to second stage
Dioeiine_...................~..

latch new input group code
latch new inDut offset value
\ J

r
yes

check
match result

from same data path
of existing group

is 'l'?

check if

WS"1tS
is ' l7

ves

-U'
Fig.5 Flo,vchmt of main taskfor ncoding Lell

The selected group in cell k will he transmitted to cell k ~

1, and it of cell k ~ 1) becomes a candidate to compete
with the eight comparison results of cell k ~ 1 after four
clock cycles. If the group leader of lk-l fxst appears in cell k
- 1, the (length, offset) data of lk-l will be transmitted to cell
k ~ 2. As shown in Fig. 4 the group composed of string
{group} becomes the unique group in cell k - 1 from clock
cycles 4 to 8, so the switch position of cell k ~ 1 is allocated
Ni node. Therefore the (length, offset) data of comparison

IEE Proc.-Circuifs Devices Sysl., Vol. 146, No. 5. October 1999

results between the first five input characters {group} and
the encoded string {D3D4DsD6D7} in cell k will be trans-
ferred transparently from cell k to cell k - I, cell k ~ 2, ._.
and the final stage (cell 0) according to the amval time of
group leader in the future consecutive cells.

As described in Fig. 4, the main task of the encoding cell
is to control the switch position. If the amval time of any
group leader is earlier than the others, the switch position
of that encoding cell will be switched to the node that can
construct a data path for the optimal group leader to pass,
such as node N4 of cell k during clock 0 or node N, of cell
k - 1 during clock 4 in Fig. 4. The flowchart of the encod-
ing cell's main task can be shown as Fig. 5, where codes 01
and 11 indicate that the character is a group leader and a
group member, respectively. Code 00 indicates that the
character does not belong to any group. Switch S of the
encoding cell shown in Fig. 3 can be treated as a finite
state machine which can save the data path of the existing
group and control the switch position. If one data path is
selected in this encoding cycle, it has the highest priority to
be selected during the next encoding cycle, e.g. the fxst
group string {group} in cell k from cycles 0 to 4 and in cell
k - 1 from cycles 4 to 8, respectively. On the contrary, the
finite state machine will select the optimal data path again
when the original data path gets an unmatched result dur-
ing the next encoding cycle. For example, during clock
cycle 9, in cell k - 1 the switch position is switched to N7
position.

Table 1: Transition table of finite state machine for each
state register

Current state Current input NLl l I Next state
a(ti+ Tdr) mtl+rdJ N(tl+rd,+rdx) cttl+r+rd,,)
1 0 X O
1 1 X 1
0 0 X O
0 1 1 1
0 1 0 0
Z clock period
tr: oositive edae time for the current clock clcve
Niill: inversLvalue of L, Ill, MSB of L,
Jd; delay time of D type register for latching new data

'

Ti; delay time of combinational logic circuit for NL I11
Td,j delay time of one AND gate
F(tl+JdJ: lo (tl+Td,)for qon, ll (tl+Jd,) for qln, ..., I,(t,+T,Jfor qkn

The block diagram of the modified encoding cell is illus-
trated in Fig. 6, where the diagram of the fmite state
machine is marked by the dash line, and its transition table
is shown in Table 1. In Fig. 6, nine state registers are used
to generate a new group code L, and its appending offset
values 0,. The individual value of lo-17 is equal to 1 when
the respective comparison result is matched, othenvise it is
0 for unmatched status. These fdtered group codes and
their appending oflet values amve at the MONITOR to
generate the optimal code pair (length, offset). From now
on the main task of the encoding cell can be adjusted to
encode the group codes based on the current match results,
the current state, and the current incoming group code as
follows:

MSB Ln[l] = (lo Q O ~) + (11 41%) + (h . ~ 2 %)

+ . . . + (l , ' %) + (lk ' %k)
(1)

LSB L,[0] = lo + ZI + 12 + . . . + Z7 + l k (2)

271

latchsyrn A

Fig. 6 Circuit diagramfor Wcoalig cell

muyset

latchoff

where symbol '+' and symbol '.' represent logical AND
and OR operators, respectively. We use a simple finite state
machine circuit to generate the optimal group code accord-
ing to la ~ j7, and lk so that neither counter nor magnitude
comparator are needed. This system has been implemented
by using a 0 . 6 ~ standard cell library, e.g. provided by
Compass Company, USA.

The timing sequence of the encoding cell given in Fig. 6
is shown in Fig. 7. At One Tn for encoding cell n, all of the
D-type flip-flops latch the individual new values, then com-
pare the input character S,, with the eight encoded charaG
ters D3,-DOn of cell n and D3,+, - DO,,, from the
dictionary registers of cell n + I . The current comparison
results &-I7 and lk are transmitted to the f i t e state
machine to obtain a new code L, and the new next state
Qni. At time Tn + T, cell n latches the new state of group
leaders Qn, where Q, is composed of qnn, qln, ..., q7", qh.
Finally, encoding cell n utilises the new state values to
obtain the new offset output value 0,. Thus the encoding
cell is separated into two pipeline stages to execute the
encoding process for one input character. As simulated by
the Synopsys synthesis tool, the critical path of cell n is
identifed from the Sa, D3,-DOa, and D3,+,-DO,+, to the
output of the new code L,. The critical path delay is about
7ns, calculated from positive edge ck to M as shown in

212

Fig. 8 by Verilog simulation. Hence the clock period T
should be larger than 7ns to get the correct e n d i n g results
for the encoding cell.

3.1 Monitor module
As depicted in Fig. 9, the monitor module receives the
character, offset and group codes from cell 0 and decodes
the longest length based on goup code, where the longest
length is equivalent to p e d h g values in Fig. 9. The main
function of the monitor, as shown in Fig. 9, is to indicate
whether one codeword is found or not by the send signal.

Suppose a pointer uses the space of p uncoded charac-
ters, the encoding rule is based on the length value of the
codeword. If the length value is greater than that of p , the
monitor will send the codeword. Otherwise, the monitor
sends the uncoded character.

3.2 Packet module
The packet module receives codewords from the monitor,
concatenates these codewords together and segments them
into 16-bit words for output. In [12], encoding and decod-
ing buffers have been employed for the HUmnan coding
algorithm. Since the Huffman code has variable-length
codewords it needs a complicated programmable logic
array @'LA) to record the lengths of the individual code

IEE Proc.-Circuits Derices SyX. Voi. 146, No. 5, October 1999

I To+2T ITo+3T , To+4T T0+5T
I TO I

I I I I I
Jo(

I I I
musym se& 0 select I select2 select 3 select0 select 1

D3,-DO,, S,. lk. 0. N N 36(36(
IO"l7 I)# I I I

I I I I

new state of I valid valid valid valid valid
group leader Q" Qn Qn Qn Q" I

I I I I I I
muxset I select 0 X selict 1 X se i~c t2 X sele'ct3 X seidcto

I I I I

latchoff
I
I
I

Fig.1 T b n i ~ s e y u e n e e f o r d ~ e U

words for executing the packing task. The LZSS codeword
has two codeword formats, i.e. uncompressed and com-
pressed forms. Thus, it is not necessary for the LZSS code-
word to utilise the PLA table. In our design a simple
combinational logic circnit instead of the PLA table is used
to control the barrel shifter.

The circuit diagram of the packet module is shown in
Fig. 10. The 16-bit register W2 is the output latch. If the
sum of Residue and Length is greater than 15, the Full out-
put of the accumulator will be set to High and the packet
module will put the contents of the W2 register at the posi-
tive trigger of Out-clock signal. Since the maximum bit-
number of the concatenation of Flag and codeword is
greater than 16, the sum of Length and Residue may be
equal to 32, sum of 17 and 15. In this case there are two
16-hit packets being ready for output, the system will send
W2 contents frst and then W3 contents at the positive trig-
ger of Out-clock and that of Out-again, resptively. Here
Out-again is generated hy Next-any signal of the accu-
mulator.

The parallel concatenation of codewords is done by
MUXl and Barrel_Shifter, which provide 16-bit windows
on their 33 input hits. MUXl is controlled by the Flag sig-
nal and shifts the codeword from WO into W1 so that the
rightmost bit of W1 is the last hit of the codeword. Conse-
quently the data stored in W1 is ready to concatenate with
the next codeword. The Barrel-Shifter is controlled by the
residue value which represents the number of the residual
bits in W1. The residnal bits in W1 are determined hy
MUXI.

3.3 Sender module
When the Over signal of the packet module falls from high
to low the system is to f k h the encoding process. When

IEE Proc.-Cilcuils Devices Sysl.. Vol. 146, No. 5, Oelober I999

the value of the residue register is not equal to zero all the
final residual bits in W2 or Barrel-Shifter must be sent to
the sender module for output. If the packet module has just
sent an output in the previous ckl cycle, the 16-bit output
of Barrel-Shifter is sent to sender. Otherwise, packet sends
the 16-bit output of register W2.

4

A block diagram of the decoding processor is shown in
Fig. 11. The functions of the major modules are described
as follows. The input to the Frontend is a bit stream with-
out explicit word boundaries. The Frontend has to decode
a codeword, determine its length and Flag, and shift the
input data stream hy the number of bits corresponding to
the decoded code length before decoding the next code-
word. The pre-processor separates the codeword into the
corresponding offset and character parts, and generates
Active=l for the successive length cycles. As the system
receives a Ready signal the counter generates three enable
signals to start the decoding process. As enable-0 rises to
high, the 16-bit register W1 stores the fmt 16-bit register.
During enable-1 cycle, W1 stores the second 16-bit input
stream and the fust 16-bit input stream must be shifted into
WO. The flag and length of the frst codeword are deter-
mined at the same cycle. When the enable-2 signal goes
high the Frontend produces the fmt codeword and its flag,
and the system begins to enter the normal decoding process
in the consecutive cycle.

The circuit diagram of the preprocessor for decoding is
shown in Fig. 12. The pre-processor has to separate the
codeword into character and offset, generate the Active sig-
nal to the rightmost cell, and send a Request signal to
Frontend to process the next best match. In ow decoding

VLsl design of decoding scheme

273

ck

A0

OFF0

LO

SOUT

code-0

code-1

off-0

off-I

QO

Offi

codei

muxdn

muxset

alchsym

atchofl

codenl

coden0

match pair (lengm, onset)
based on Codeword rule

Set Send_SiQnal='l'

reset pending value

I I r-

1 10171007 007 !(OOO

l o 11 1

4d 14f

I

character to be deferred
pending=pending+l

I--------" I

a1 beginning Of next enmding cycle

time 8

113894 114582 115271 1 15959

wde=w 1
send best previous

match pair (length, onset)
based an codeword rule

pipeline

at next encoding cycle
Set send_signal='l'

at next encoding Cycle

reset pending value

Fig. 9 %wc!mt ofmvniror morhrle

214

process the output rate is fixed, i.e. the output decoded
characters have the same length and will be generated to
the same rate (one character per decoding cycle), but the
input rate is variable. If the pre-processor receives the
match of a pair (offset , length) this match will he decoded
into a series of successive length characters.

It is not necessary for the pre-processor to receive the
codeword from Frontend in every decoding cycle. When
the Request signal goes high it indicates that the previous
codeword has decoded completely and the huffer register
should receive the next codeword being ready for decoding.
The down counter takes the responsibility of informing the
preprocessor itself to take the new data from the Fron-
tend. The down counter latches the length value from
DEMUX, sends the high level of Active signal for the
length consecutive cycles when the Flag is equal to 1, and
will decrease one at each positive trigger of ck timing clock.
As soon as the down counter decreases to two it changes
the state of the Request signal to high. The Buffer, Flag
and Endsignal registers will 'then receive the new data in
the next decoding clock cycle. If the new Flag is equal to 0,
the current codeword in the Buffer is just a character. In
this case the Request signal must also be changed to high
and all the registers will latch the new data in the next
cycle, too.

Dataflow in the systolic array of the series decoding cell
has been described in previous literature [Ill. The main
task of the decoding cell n is to compare the input oflet

IEE Proc.-Cireuits Devices S'sr.. Vol. 146, No. 5. Ocrober 1999

value with the stored oflet values in cell n, where the
stored ofset values are 2n and 2n + 1 when the cell number
is n. If the input oflet value is equivalent to one of the
stored offset values 2n or 2n + 1, the output decoded char-
acter will be copied from S, register or Sa+, register, repeo
tively, where Sn+l register comes from the preceding stage
(cell n t I). Othenvise, the input character is retransmitted
to the next stage (cell n - 1). The original characters will be
recovered without distortion by the systolic array of the
series decoding cell. The decoding cell [ll] is shown in
Fig. 12.

5
analysis

The new encoding architecture is implemented by the
0 . 6 ~ standard ceU library supported by the Compass
Company in the USA. We utilise the synthesis tool from
Synopsys to synthesise the Verilog RTL code to gate-level
schematic. The hardware cost including the estimated
equivalent wire load for each module and encoding cell
were listed in Table 2. In this encoding system the buffer
size of the encoding window is 512, and the total gate

Hardware synthesis and simulation and power

active over-signal

ckl ckl
select one to output under specified condnion

out={WO[16:8], W1[6:0]}
> >codesize+residue-16

send send3

send - out-again=

f

out-again
+

out_clock
+

enable-2-trontendeady -
..... ?si-

character ""' processor

..... -
~ 1

275

VLcell Receiver Monitor Packet Sender Module name

Gatecount (including 1345 21771 88472 364.5 346 1376.7 275.12
wire load calculated by
equivalent gate count1

Total 90472.8

Vcell
Cell (64 Cellsl (256 Cellsl

count, not including U0 pads, is about 90473 gates. The
gate count is less than that in other architectures [8] with
the same buffer size.

To verify our encoding system we compare the input
strings of encodmg processor with the output strings of the
decoding processor whose block diagram is shown in
Fig. 1 1. If there is no difference between them the modified
architecture should be correct. We use some input fdes for
verification by Verilog simulator [13]. From these simula-
tion results we verity that our encoding and decoding cir-
cuits are correct. The hardware simulation results of the
whole chip including U0 and power pads are shown in
Fig. 13. The DATA of Fig. 13 is the data output consist-
ing of flag and encoded codeword. The SEND signal is the
handshaking signal to inform the receiver whether the
encoding system transmits output data or not. The low
level of the FINISH signal indicates that the encoding sys-
tem has fmished the entire encoding task. As shown in
Fig. 13, the function of our encoding system can work cor-
rectly even when the clock cycle is about 11 ns. The operat-
ing frequency is the reciprocal of the clock period so the
maximum operating frequency can reach 91 MHz and the
compression hit rate is about 728Mbitls. To reduce ground
bounce noise for high-speed application we use ten pairs of
power pads for the drivers of VO pads, and six pairs of
power pads for the core of digital circuit and predrivers of
U 0 pads. The total VO pin count is 128.

276

For high speed-application power consumption is an
important issue. The gate count of the registers contributes
the major part of the hardware for most LZ-type compres-
sors. In the Zit+Wolfsystem each register must access and
latch new data in every clock cycle, and thus the dynamic
power consumption is very large. As described in [14], we
estimate the percentage activity of the circuit Pa and the
total capacitance C, driven by gate outputs in circuit. Thus,
the estimated power consumption of the complex circuit
for CMOS design can be estimated as follows:

where f, is the clock frequency. From eqn. 3, minimising
the percentage of the switching capacitance Pa can save
power dissipation. In our design only one quarter of regis-
ters execute the data access operation for input characters,
codes, and offsets as shown in Fig. 7 during one clock
cycle. Therefore minimising the number of memory
accesses will reduce the power dissipation for the sake of
reducing P,. The number of memory accesses for our
encoding cell is about 7/19 of the Zitc-Wolf architecture
[I I], so that the dynamic power dissipation can he lowered
with the same throughput rate. Since our implementation is
based on CMOS design, there is no DC path during the
operating cycle. For the CAM implementation [7l the DC
path exists in the circuit of the CAM cell such that the
power dissipation of CAM architecture is larger than the
CMOS design under the same throughput rate, clock fre-

Pd = Pa x c, x V i D x fc (3)

IEE Proc-Circuils Devices Sysr.. Yo/. 146, No. 5. Ocrober 1999

-
ck

cr

SING

SIN

s o n
ACT1

A0

OFF0

LO

CODEIN

topck

OFFlN

SEND

DATA

FINISH

-

I L

00 00 01

165 65 y20 20

163 143 163 120

I OM I008 rood rOM 1007

1 1 y o 11

1 I I I

1
000 000

~

10542 0542 lad4a la948

time , 4

91270 91&0 92410 92980
Fig. 13

quency, and the same buffer size conditions. For high-
speed applications the power dissipation of our architecture
implemented by CMOS process is lower than those of the
other implementations for the same compression ratio.

6 Conclusion

A parallel structure for a high-speed LZSS coder has been
introduced. This parallel LZSS coder encodes each charao
ter in one clock cycle, and its operating frequency can reach
91MHz. This system has several advantages. First, the
compression time is linearly proportional to the input
length. Only a single clock cycle is required for processing
one character, and the clock cycle is bounded by the critical
delay of the encoder and independent of window size. S e 0
ondly, the architecture is simple and modularly expandable.
In our design only 256 encoding cells are integrated in one
chip at most because of the problems of power, clock dis-
tribution, and hardware complexity. We can cascade sev-
eral chips to increase the dictionary buffer size and achieve
the ideal desired compression ratio.

Although the hardware complexity of our modified
architecture is higher than those of other architectures in [4,
61, the speed is much higher. Suppose the trigger cycle C,.ig
represents the numbcr of time unit (clock cycle) between
two initiations of a pipeline. A trigger cycle Clrig of k means
that two initiations are separated by k clock cycles. Assume
the clock period is T,. The average compression speed bit

%/e eh@ ~imulatwn by VedoC sirnuloror

IEE Proc.-Circuifs Devices Sysr., Vol. 146, No. 5. Ocrober 1999

rate of our architecture is (1 * 8)/(Ctri, * TJ, where C,, is
equal to one, and T, = Tdl,,el + TdIood-Gecp Assume M and
N represent the maximum length of the matching string
and buffer size, respectively. The muximm compression
speed bit rate in [4] is (M * X)/(T, * Cl,ig), where Clrig is
equal to (Ni2) + M. If we want to achieve the ideal com-
pression ratio, the encoding buffer in [U] is 512 at least.
Our C,". is much lower than that of [4, 61, so our speed is
apparently higher for the same process technology. Thns,
the new compression system is more suitable for real-time
application to increase the bandwidth of a communication
system and can also be used to effectively increase the
amount of mass storage available to computer systems. By
utilising VLSI technology to implement the system chip,
the data compression hardware can be integrated into real-
time systems so that data can be compressed and decom-
pressed on-the-fly.

7 Acknowledgment

This work was supported by the National Science Council
of Republic of China under grant NSCX2-0404-E009-338.

8 References

1

2

ZN, J., and LEMPEL, A.: 'A miversal algorithm for sequential data
compression', IEEE Tram, lnf Theory, 1977, IT-23, pp. 337-343
ZlV, J., and LEMPEL, A.: 'Compression of individual sequence Via
variable-rate coding', IEEE Trons. Inf Theory, 1978, ll-24, pp. 5 3 k
536

277

3 BELL, T.C.: 'Better OPML text compression', IEEE Trans. Corn-
mun, 1986, COM-34, pp. 11761182

4 JUNG, B., and BURLESON, W.: 'A VLSI systolic array architecture
for Lempel-Ziv-based data compression'. Proceedings of IEEE inter-
national symposium an Cicuit and systems, June 1994, Vol. 3, pp. 6 s
68
STORER. J.A.: 'Data cammession: methods and theorv' (Cornouter

9 STORER, J.A.: 'Image and text compression' (Kluwer Academic
Publishers, Norwell, Massachusetts, 1992)

10 K ~ G , s , y 'vu1 array processors~ (fientice.~dl, Englewood
ClitTs, NJ, 1988)

11 ZITO-WOLF, R.J.: 'A systolic architecture for sliding-whdow data
compression'. Proceedings of IEEE Workshop on VLSI sig,ialprocess- 5

7 LEE, C.Y., Gd YANG, R.Y.: 'High-throughbht- data winpassor
design using content addressable ~ E E proe cjrails ~ ~ ~ i , . ~
S p t . . 1995, 142, (I), pp. 69-73
CHEN, C.T., and CHEN, L.G.: 'A novel architecture far LernpeI-
Ziv-based data compression'. Proceedings of ICCE international con-
ference on Consumer ekoronicr, 1996, pp. 21t&211

13 Cadence Design System Inc., Venlog-XL manual, version 1.7, Sept.
1993

14 WESTE, N.H.E., and ESHRAGHIAN, K.: 'Principles of CMOS
VLSI design: a perspective system' (Addison-Wesley Publishing Com-
pany, 1993, 2nd ed".), pp.236-238

8

278 IEE Proc.-Cirmits Devices Sy.. Vol. 146. No. 5, October 1999

