VLSI design for high-speed LZ-based data compression

J.-M.Chen and C.-H.Wei

Abstract: A simple real-time parallel architecture for CMOS VLSI impiementation of a Ziv—Lempel
data compression system is presented. This encoding system employs a linear systolic array to find
concurrently the matches beiween each input data character and its corresponding dictionary, and
can easily achieve ideal compression ratio by cascading the chips of the encoding cell. A new encoding
architecture is proposed to improve the encoding speed and reduce hardware complexity for the
encoding cells. In addition, the number of memory accesses is reduced to save power consumption for
high-speed applications. The encoder codes one character (more than eight bits) per encoding cycle.
The clock rate by Verilog simulator can be constrained below 15ns using the Compass standard cell

library for the 0.6um CMOS process.

1 Introduction

In recent years the need to develop efficient data compres-
sion methods has increased considerably owing to the
increasing applications of data compression i various
areas. The most widely used classes of lossless data com-
pression algorithms are those developed by Ziv and Lempel
in 1977 and 1978, labelled as LZ77 and LZ78, respectively
[1, 2]. In the LZ77 algorithm, pointers are used to denote
phrases in a fixed-size window that precedes the coding
position. There is a maximum length for substrings that
may be replaced by a pointer, given by the parameter
(typically 2*~2%), These restrictions allow LZ77 to be imple-
mented using a ‘sliding window’ of N characters. In this
scheme the first & — F characters have already been
encoded and the last F characters constitute a lookahead
buffer. The window is illustrated in example 1 {see Fig. 1).

step 1 i
j¢———————— sliding window of N characters —————

(iTs[-Te[-TeleJold[-[ofoloTk] o]0l o[[: [H]T]s]
already encoded—— | “—look ahead buffer

j«———F characters —>|

codeword=(3,4,;) far ‘book;’'

|<—s—1eL—sliding window of N characters———|

[o]efoTd[-[bTofolkIb o o[k 1T [T]i [sTa[e]o]d]
lookahead buff
— OF Sharacters - |

codeword=(0,0,) for
Fig.1 Implementation of LZ77 algorithm using skiding window of N charac-

ters

already encoded

To encode a character, the first N — F characters of the
window are searched to find the longest match with
lookahead buffer. The match may overlap with the buffer
but obviously cannot be the buffer itself. The longest match
is then encoded into a triple codeword (o, /, @) where o is

©IEE, 199

IEE Proceedings online no. 19990535

DOF 10.1049/p-cds: 19990535

Paper first received 16th January 1998 and in revised form 26th March 1999

The authors are with the Department of Electronics Engineering, National
Chiao Tung University, Hsinchu, Taiwan, Republic of China

268

the offset of the longest match from the lookahead buffer,
is the longest length of match, and « is the first character
that did not match the substring in the window. The win-
dow is then shifted right / + 1 characters, ready for the next
encoding step. Attaching the explicit character to each
pointer ensures that coding can proceed even if no match is
found for the first character of the lookahead buffer.

In the LZ77 algorithm, whenever there is no match or if
there is a match of length one, each symbol that respec-
tively constitutes the matched substrings would be substi-
tuted by a codeword of three bytes long. This may result in
expansion rather than compression in the encoding process.
If many such unfavourable codewords occurred in a file,
the compression achieved would be low. The LZSS algo-
rithm [3], one of the variants of the LZ77 algorithm, adopts
a free mixture of pointer and characters to replace the triple
codeword in LZ77 [1] 1o overcome the expansion problem.
A character itself will be used only when a pointer takes
more space than the characters it encodes. An extra bit,
known as flag, is added to each pointer or character to dis-
tinguish between them. The output is packed so that there
are no unused bits. Many designers have incorporated this
technique in the software implementation which signifi-
cantly improves the compression ratio. However, the speed
of data compression by software is usually not satisfactory
for a real-time system.

Several LLZ hardware architectures have been presented
in the literature [4-8]. The most computationally expensive
step in the hardware is to search for the maximum match-
ing strings in the sliding dictionary. However, the LZ-based
algorithm must be executed at a very high throughput rate
for real-time transmission and storage. The content
addressable memory (CAM) approach (7] can provide con-
stant time to search the matching strings for each symbol,
but it must consume static DC current for many of the
CAM cells during the match action cycle. If the size of the
sliding window is increased the power consumption prob-
lem will dominate the chip performance.

We present the design of a systolic array processor for
efficient implementation of the LZSS compression tech-
nique by using wrap architecture [9}. This new approach
can find 2 maximum match length for each clock cycle.
The new hardware structure can execute the data compres-
sion task on-the-fly in the real-time communication system.

IEE Proc.-Circuits Devices Syst., Vol 146, No. 5, October 1999

Lo, [L1

S0UT
AD
LO
in_buf Viesdl P
| DIN dout | din OFF0
di3 | di3 i
di2 »| di2 monitor packet sender
di1 P dit Active_out —] acti g
»| sin di0 »| di0 .
o codeword —| codei L
- SING sout P si $SOuT | chari DATA »
*{ MCDE > i
» ACTI acto »{ acti A0 »|acti
. » . fag—s{flag ™ FINISH
| CODEIN code — codei Lo »{codei —
> send—»{ send SEND
»OFFIN ofio —| ofi OFF0 ot] !
» .
»1INDEX indexo celino >
Fig.2 Block diagram of encoder
CODEIN: initial /ength value for codeword (default: 0)
QFFIN: initial gff§et value for codeword (default: 0)
INDEX: ceil mumber for last stage of encoding cell (default: ()
SOUT: output character of cell O (the last stage of systolic array)
AQ: active signal output of cell 0
LO: length output of ecll O
OFFO; offset output of cell 0
stage 0 stage N-k stage N-k+1 stage N
cell N OO cell k cellk-1 ... cell0
Dout Dyt DIN
¢ D3, | 2,01, DO, ¢ __Da,,|D2nlm,,|Don4_Dan|02n|01n|oon < ___qu,,IDzn[m,,]Don -
Y Y V¥ YV Vv YV VY VI : I
—L> D3,~D0,\y : D3,~D0, D3,~Do,, L D3,~Do, l |
cemparator — comparzdor — comparator - comparator :
Iy ¢¢ N 1 ‘L‘L Iy I
switch S 1 switch 8§ :
I VI [P e X :
CODEIN { Fless I
n| 2|13} | g =9 LOn | Linf L2, L3, I

.—-—.
DATA_IN Sks1

—] S0, [51,152,] 53, = =] 50| 51, 52,| 83

4

80,

L

182,83, = — — i 30, |51, |52, | 53,

Fig.3 Amay data flow of wrap architecrure for encoding system

To implement the encoder with VLSI ASIC design tech-
nology, the system is divided into several modules and
facilitated by the systolic architecture. As shown in Fig. 2,
the encoding system contains several blocks: VLcell, moni-
tor, packet, sender, and in_buf, The VLcell block is com-
posed of a segment of the systolic array illustratec in Fig. 3
to find a series of optimal matches. The in_buf block
includes input pads, registers, and buffers to receive the
input signals and convert them to internal CMOS signals,
DIN is the input of encoded character string for the dic-
tionary registers; SIN and SINC are the input uncoded
character string under norma! mode and cascade mode,
respeciively. When ihe ACTI signal goes to high the
encoder begins to compress the uncoded mput character
string. The size of the dictionary is configurable up to a
suitable window size by adjusting the MODE value of
encoder. If the MODE value is set to 0, the encoder can
cascade several encoders in a pipeline and the bulfer size of

IEE Proc.-Circuits Devices Syst., Vol 1486, No. 5, October 1999

a sliding window embedded in VLcell can be expanded to a
suitable width. Typical width of the window is 2~8 K of
dictionary, which has 0.25~1 K cells. The bit number » for
the offset is 11~13. The primary advantages of our system
are high speed and simple hardware structure with expand-
able dictionary size to increase the compression ratio easily.
We also adopt an efficient output buffer to control the out-
put rate and convert the output packets to and from words
of fixed width, e.g. 16 bits for compatibility with typical
computer hardware. Since power consumption is an impor-
tant consideration for high throughput-rate application, we
use a parallel process technique to reduce the number of
register access times and reduce power dissipation.

2 Wrap architecture for encoding and decoding

In the systolic array described in [10], data pass from one
processor to the neighbouring ones in a regular, rhythmic
pattern. As described in [11), the array data flow of the

269

wrap architecture for encoding is given in Fig. 3. Each
encoding cell, consisting of four dictionary registers DO, ~
D3, and four storage registers S0, ~ 83,, is capable of
recording four characters. Data flows from left to right
along the bottom through the storage registers S0, ~ S3,
and then wraps back, flowing from right to left along the
top through the dictionary registers D0, ~ D3,,. Notice that
the order direction of stage number is opposite to that of
the cell number. Each cell selects one of the four register’s
contents (S0, ~ S3,) to compare with the contents of its
dictionary registers D0, ~ D3, and those of the four
dictionary registers obtained from its preceding stage,
respectively. Thus, the symbols Iy ~ }; represent the corre-
sponding match length values for encoding cell &, and the
symbol /, represents the optimal length selected from one
of four registers 1.0, L1,, L2, and L3, The symbol L,
represents the length received from the preceding stage
{encoding cell k& + 1). The decoder system has the same reg-
ister structure and data flow but a different decoding unit
cell.

The encoding cell & selects the maximal length among
nine length values (fy ~ & and), and send the largest
length L, with its appending offser O, value to the encod-
ing cell of next stage, cell k - 1. The Oy, value is determined
by the path of largest length 1. The offset Ok of cell £ is
equal to that of 8% + i for L, being equivalent to /; {(where /;
is one valus of [j ~ /). Otherwise, Oy, is copied from the off-
set Oy value of the preceding stage (cell & + 1) when the
largest length I is equal to /.. Each stage utilises switch 8
to select the largest length 1, and its appending offset value
Oy. Nine length values {;, ~ /; and /) in each encoding cell
k are initially set to zero when the encoding cell & begins to
process the input string. Assuming that /; first becomes
unity in the first stage (cell V), the position of switch S is
switched to node Ny. Thus, only [, and its appending offser
value O (8N) can be sent to the second stage. In the next
cycle /, will continue to add one for the consecutive match
between the next input character and the content of same

task (assume that |, is negligible)

storage register. The value of [is still larger than the values
of the others (/; ~ [, and k&), even though /; ~ /; and /, are
ready to increment by one. Hence, the switch position is
still located at node N, and this encoding cell still sends 4
and its offset value O, (8N) to the next stage. From now
on, if /, continues to increase during the following encoding
cycles, switch S will stay at node Np until / stops increas-
ing. Thus, we ignore the values of /| ~ I; and [, during these
encoding cycles until /; is reset to zero. From this descrip-
tion, it can be seen that the length value is not unique in
determining the position of switch S.

In our design we utilise only the group code and compa-
ison results instead of the real length value to control the
position of switch S. Hence, each encoding cell just sends
(code, offser) pairs instead of (Jength, offset} pair to the next
stage. Finally, these pairs are sent to ‘monitor’ to extract a
sequence of matches that exactly include the corresponding
input stream. Thus our system doesn’t use any counter or
magnitude comparator in the series of encoding cells to
achieve optimal compression ratio. Hence, these modifica-
tions reduce the complexity in hardware implementation.

3 VLSl implementation of encoding scheme

As described in Fig. 3, the encoding cell selects the optimal
length based on the match length which indicates the rela-
tionship between adjacent input characters. If the match
length is monotonically increased among adjacent input
characters, these characters will be compressed into the
same codeword. Hence we classify the characters as the
same group, where the first character is named as group
leader.

As an example, cell k and cell & — [are two consecutive
cells, where cell & is the preceding stage of cell k- 1. The
uncoded character stiing I8 {S4S8;...812...}, being equal to
{groupGroupNOT...}, and the encoded string is
{DyD,..Dp..}, such as {ThegrouproupFGroupEND-
YZA..}, stored in the dictionary registers. As shown in
Fig. 4, during clock cycle i cell & compares the new

task (I is received from celi k)

7 b 5l B bbb |y B ol U5 kg B By
a S¢-Dg | SoD; | S¢D2 |S0L3 | SgDy | 5005 [SoDs } SpDy
5 Y g1 h . e
a £ £ £€ gE | B g0 |gu E-P
= v $;-D7 | S1Dg
3 rh jre fr-g {rr |ro0 [ru Jep | 2
’ g $;D 5D,
2 e |og |or | oo low |§5]or | & i H H H 3 H LI :
3 v |$3P7 $3-Dpp H § H H : H 5 H H
ug fur Juo | wu lup {ur Jue |uu *
SeD
4 407 Sebp * | SgDg| SoDg| SoDyof SoDpy |01z | So-Dy3|SeDpg S0 D,
pr |po fpu [pp jpr [po [pu |pb g2 | gr|go |gu | gp|gF -G |gr |20 ’
3 S50y 5502 v = SpDzg
G-o |Gy |Gp | Gr [Go |[Gu |Gp -F r-r 0 |ru |tp |-F {rG | rr | ro {ru
p SgDy | ¥ S6Dy3 v = 52Dy
-u_{r-p T -0 |ru r-p |r-F r-G o0 Jou | op { &F |0-G [or 0-0 | o-u | 0-p
87Dz v S7-Drg v = 5z-D
7 o-p |o-r -0 ou |op jo-F |oG o-t ua Jup | vF |G Jer |u-o u-u { u-p fl-éa
v S3D Y = 34D
8] wr |uo |y u-p | wF |-G {juor u-o” pp lpE | pG lpr po_ipu pp | v-E J— i
v SeDyg * 5Dz
9 po |pu |pp {oF |pG [pr |po |pu x2x] GG | Gr |{Go {Gu |Gp |GE [GN |GD
S1gDy7 = v 8D
0] Ny Np INF | NG [Nt [No [N [| ee | e o [ew | rp | e | e [en |60
SD = 555,
1 op |oF (06 |or 00 |ou [0p [GE” | oo |00 |ou [op | 0B [oN |oD |0y [TF°
SprDg = v SgD.
2} rr 16 |7t |To |Tu |Tp JrE [FN°] |wr | o |op [vE |unN |oD [uy [uz [
HIH : : ¢ : i : H T | v : H T T T T T
- : : H H i H i i PP : : : i H H
cell k call k-1
Position of the switch S:
Clock No. 01 2 3 4 56 7 8 9 101112 ...
Cell K NyNg NgNg NgX Ns Ns NgNs X X X ... X: don't care
Cell -] X X X X N N; N; N; N; N7 N7 N7 N7 ...

Fig.4 Exanple of encoding cell

270

IEE Proc.-Circuits Devices Syst., Vol 146, No. 5. October 1999

uncoded character S; with the eight encoded characters
DD;,...Dx7 and obtains nine length values (, 1, ..., &, &),
where J, is obtained from the preceding stage. For the sake
of simplification, we assume that the /, value from cell & +
1 is always zero and negligible in Fig. 4. The symbol -
represents the comparison operator between the uncoded
character and the encoded character, and ‘=’ represents the
input character matching the encoded character. From
cycles 0 to 4 in cell k the first five uncoded characters
{group} find a series of matched string {D-D,DsDD;} in
dictionary. Thus the [, value will be sent to cell & — 1, ie. it
is the f_| value of cell k — 1, and the switch position should
be at node N, from cycles 1 to 4. During these five clock
cycles the five input characters {group} are assembled into
the same group by cell &, where the first uncoded character
Sy, 2, marked by symbol * is the group leader and the fol-
lowing four characters {roup} marked by symbol v are its
group members. Since the J; length value of cell & is always
less than the /, value of cell & from cycles 0 to 4, the /, value
of cell £ is negligible. During cycle $ there is no match and
it is not necessary to determine the switch position of cell &.
From cycles 6 to 9 the encoding cell & can find a series of
matches between the input characters string {S¢5,S:So},
{roup} and the coded characters string {DgDyDDy)).
Thus, these four character {roup} should be assembled into
the same group, and the switch position of cell &£ should be
switched to node N; and send /s value of cell k to cell k — 1.

latch new input character
latch new data of dictionary

execute match task

first stage send new match results i~y
to second stage
————————————————————————————————— pipeline

atch new input group code

second stage latch new match result
|
lateh ngw input offset valus

check
it any group
exists?

match result

from same data path

of existing group,
is't'?

yes

send group code 01
sava data path of
selected group

send group code 11
save data path of
selected group

send group 00

1 e
o/
Fig.5 Fowchart of main task for encoding cell

The selected group in cell k& will be transmitted to cell k& —
1, and it (4_; of cell & — 1) becomes a candidate to compete
with the eight comparison results of cell £ — 1 after four
clock cycles. If the group leader of /,_; first appears in cell &
— 1, the (length, offser) data of §,_; will be transmitted to cell
k — 2. As shown in Fig. 4 the group composed of siring
{group} becomes the unique group in cell k£ — 1 from clock
cycles 4 to 8, so the switch position of cell k£ — 1 is allocated
N; node. Therefore the (length, offser) data of comparison

IEE Proc.-Circuits Devices Syst., Vol. 146, No. 5, October 1999

results between the first five input characters {group} and
the encoded string {D;D,DD¢D;} in cell & will be trans-
ferred transparently from cell K to cell £ — 1, cell k-2, ...
and the final stage (cell 0) according to the arrival time of
group leader in the future consecutive cells.

As described in Fig. 4, the main task of the encoding cell
is to control the switch position. If the arrival iime of any
group leader is earlier than the others, the switch position
of that encoding cell will be switched to the node that can
construct a data path for the optimal group leader to pass,
such as node N, of cell £ during clock 0 or node N; of cell
k = 1 during clock 4 in Fig. 4. The flowchart of the encod-
ing cell’s main task can be shown as Fig. 5, where codes 01
and 11 indicate that the character is a group leader and a
group member, respectively. Code 00 indicates that the
character does not belong to any group. Switch S of the
encoding cell shown in Fig. 3 can be treated as a finite
state machine which can save the data path of the existing
group and control the switch position. If one data path is
selected in this encoding cycle, it has the highest priority to
be selected during the next encoding cycle, e.g. the first
group string {group} in cell k from cycles 0 to 4 and in cell
k — 1 from cycles 4 to 8, respectively. On the contrary, the
finite state machine will select the optimal data path again
when the coriginal data path gets an unmatched result dur-
ing the next encoding cycle. For example, during clock
cycle 9, in cell k — 1 the switch position is switched to N
position.

Table 1: Transition table of finite state machine for each
state register

Current state Currentinput NL[1] Next state
O+ Ty Pt+ Ty Mo+ TotTad Ab+ T Ty
1 0 X 0

1 1 X 1

0 0 X 0

0 1 1 1

0 1 0 0

T: clock period

ty: positive edge time for the current clock cleye

NLI]: inverse value of L, [1], MSB of L,

Tar delay time of D type register for latching new data

Tax delay time of combinational {ogic circuit for NL[1]

Ty delay time of one AND gate

P+ Tk by (64 T for dop h (84 T f0F Qs ooy i (014 Td fOF G

The block diagram of the modified encoding cell is illus-
trated in Fig. 6, where the diagram of the finite state
machine is marked by the dash line, and its transition table
is shown in Table 1. In Fig. 6, nine state registers are used
to generate a new group code L, and its appending offser
values O,. The individual value of /~/; is equal to 1 when
the respective comparison result is matched, otherwise it is
0 for unmatched status, These filtered group codes and
their appending offser values arrive at the MONITOR to
generate the optimal code pair (length, offset). From now
on the main task of the encoding cell can be adjusted to
encode the group codes based on the current match results,
the current state, and the current incoming group code as
follows:

MSB L,[1] = (lo - gon) + (It - q1n) + (I2 - g2n)
+...+(l7'Q7n) +(lk-an)
(1)
LSB L.0)=l+h+b+. .. +l+lk (2)

271

D3,4
D3 \8 DFF | DFF | DFF | D_FF n-
n D3, D2, | Di, po, [
D31 \ > D3
D2, AY 8 > D2:
n+1) 8 > D1,
+— 8 b
D0n+1 o\ 8 o N N sDon
N Ll h
8 Vv v vy b ‘v vV oy 4
sn 8,=0,? | 8,=Dy? | 8,=Ds? | 8,=D,2 [$,=00n7 | Sn=Dy? | S1=D,? | S,=Pa?
D_FF
F Iy I I lg Iy Ip Iy o
h A A h h
8
(-
muxsym ux _ |27 _ finite state machine _ _ _
- [|
T T T T | 8P {code out) |
> comb. 0
latohsym | latch | lateh | fateh | fateh | ! "~ “logic
> P c
¥ Y y 3 ! » ciroult (offset out) "
{symbalin) 1 i
| g |
8
n+1 | 5 9 1
Lo, | \\ Qn=(dpn: D4ns -+ Dz Aerd 1
" latch | |
0 I 9-bit D _FF |
: N —p] ! state register -
I-n +1 latch é D_FF K | Qni 1
Je — | _ - ___ 1
latch {code} off,
L Ly D_FF
> _ offset
{code in) latch muxeym ()
latchsym muxset MUX
latchoff ————» 0o, Of, 02, 03,
(offset in) | latch latch latch latch
[y A 3
Ons

Fig.6 Circuit diagram for encoding cell

where symbol ‘+> and symbol °’ represent logical AND
and OR operators, respectively. We use a simple finite state
machine circuit to generate the optimal group code accord-
ing to 4, — &, and /, so that neither counter nor magnitude
comparator are needed. This system has been implemented
by using a 0.6um standard cell library, e.g. provided by
Compass Company, USA.

The timing sequence of the encoding cell given in Fig. 6
is shown in Fig. 7. At time 7 for encoding cell 7, all of the
D-type flip-flops latch the individval new values, then com-
pare the input character S, with the eight encoded charac-
ters D3,~D0, of cell » and D3,,, ~ DO, from the
dictionary registers of cell # + 1. The current comparison
results J~f; and], are transmitted to the finite state
machine to obtain a new code L, and the new next state
Q.- At time T, + T, cell # latches the new state of group
leaders Q,, where Q, is composed of Gy G1 - G Jice:
Finally, encoding cell » utilises the new state values to
obtain the new offset output value O,. Thus the encoding
cell is separated into two pipeline stages to execute the
encoding process for one input character. As simulated by
the Synopsys synthesis tool, the critical path of cell n is
identified from the S,, D3,~D0,, and D3, ,~D0,., to the
output of the new code L,. The critical path delay is about
7us, calculated from positive edge ck to L0 as shown in

272

Fig. 8 by Verilog simulation. Hence the clock period T
should be larger than 7ns to get the correct encoding results
for the encoding cell.

3.1 Monitor module
As depicted in Fig. 9, the monitor module receives the
character, offset and group codes from cell 0 and decodes
the longest length based on group code, where the longest
length is equivalent to pending values in Fig. 9. The main
function of the monitor, as shown in Fig. 9, is to indicate
whether one codeword is found or not by the send signal.
Suppose a pointer uses the space of p uncoded charac-
ters, the encoding rule is based on the length value of the
codeword. If the length value is greater than that of p, the
monitor will send the codeword. Otherwise, the monitor
sends the uncoded character.

3.2 Packet module

The packet module receives codewords from the monitor,
concatenates these codewords together and segments them
into 16-bit words for output. In [12], encoding and decod-
ing buffers have been employed for the Huffman coding
algorithm. Since the Huffman code has variable-length
codewords it needs a complicated programmable logic
array (PLA) to record the lengths of the individual code-

IEE Proc.-Circuiis Devices Syst., Vol. 146, No. 5, October 1999

e T —>|

A A A
clock

T0+T

, To+2T

. To+3T s Ty+47 . To+5T

i t
muxsym x selecto x se!ecﬂ x select2 Xselecta X select 0 X select 1
!

D3,~D0,,, Sp. b O

W N W

m "

b

+

valid valid
code out
latchsym
| t |
new state of

group leader

I |

e)

A

evaluate L
2 "

valid

:)GX
valid |

L,

valid

Lo

|

(0

valid valid

Q, u
|

s&s('m

muxset

valid
|

offsetout | 0,

n

I
|
|
I
I
I
I
|
i
I

Fig.7 Timing sequence for encoding cell

words for executing the packing task. The LZSS codeword
has two codeword formats, i.e. uncompressed and com-
pressed forms. Thus, if is not necessary for the LZSS code-
word to utilise the PLA table. In our design a simple
combinational logic circuit instead of the PLA table is used
to control the barrel shifter.

The circuit diagram of the packet module is shown in
Fig. 10. The 16-bit register W2 is the output latch. If the
sum of Residue and Length is greater than 15, the Full out-
put of the accumulator will be set to High and the packet
module will put the contents of the W2 register at the posi-
tive trigger of Out_clock signal. Since the maximum bit-
number of the concatenation of Flag and codeword is
greafer than 16, the sum of Length and Residue may be
equal to 32, sum of 17 and 15. In this case there are two
16-bit packets being ready for output, the system will send
W2 contents first and then W3 contents at the positive trig-
ger of Out_clock and that of Out_again, respectively. Here
Out_again is generated by Next_carry signal of the accu-
mulator.

The parallel concatenation of codewords is done by
MUXI and Barrel Shifter, which provide 16-bit windows
on their 33 input bits. MUXI1 is controlled by the Flag sig-
nal and shifts the codeword from W0 into W1 so that the
rightmost bit of W1 is the last bit of the codeword. Conse-
quently the data stored in W1 is ready to concatenate with
the next codeword. The Barrel Shifter is controlled by the
residue value which represents the number of the residual
bits in W1. The residual bits in W1 are determined by
MUXI.

3.3 Sender module
When the Over signal of the packet module falls from high
to low the system is to finish the encoding process. When

IEE Proc.-Circuits Devices Syst., Vol. 146, No. 5, October 1999

x selelcto X sele'ct1 X seléct 2 X selecta Xselecto n
|

vajid
0,

"

valid valid
0O, 0

valid
0,

n n

|
latchoff ' | ! I
0 1 2 3 0
I | | I |

the value of the residue register is not equal to zero all the
final residual bits in W2 or Barrel_Shifter must be sent to
the sender module for output. If the packet module has just
sent an output in the previous ckl cycle, the 16-bit output
of Barrel_Shifter is sent to sender. Otherwise, packet sends
the 16-bit output of register W2.

4 VLSl design of decoding scheme

A block diagram of the decoding processor is shown in
Fig. 11. The functions of the major modules are described
as follows. The input to the Frontend is a bit stream with-
cut explicit word boundaries. The Frontend has to decode
a codeword, determine its length and Flag, and shift the
input data stream by the number of bits corresponding to
the decoded code length before decoding the next code-
word. The pre-processor separates the codeword into the
corresponding offset and character parts, and generates
Active=1 for the successive length cycles. As the system
receives a Ready signal the counter generates three enable
signals te start the decoding process. As enable 0 rises to
high, the 16-bit register W1 stores the first 16-bit register.
During enable 1 cycle, W1 stores the second 16-bit input
stream and the first 16-bit input stream must be shifted into
‘WO0. The flag and length of the first codeword are deter-
mined at the same cycle, When the enable 2 signal goes
high the Frontend produces the first codeword and its flag,
and the system begins to enter the normal decoding process
in the consecutive cycle.

The circuit diagram of the pre-processor for decoding is
shown in Fig. 12. The pre-processor has to separate the
codeword into character and offset, generate the Active sig-
nal to the rightmost cell, and send a Request signal to
Frontend to process the next best match. In our decoding

271

ok - T L I

AO

OFFO0

I _Jo17 Jooz

007__ {Jooo

Lo io |

1

souT 4d

Jat

code O

code_1

off 0

off_1 |

Qo

offi flozo

¥ foof 00f

codei 1

11 1

muxadf 2 J3

3 Jlo

muxset 1112

aichsym f4 10

I8) (1]

atchoff 12 10

14 o I8

coden? 1

codeng

time +« L

113894 114582

115271 116959

FiQ.8 Verilog simdation for encoding cell

latch new character
latch new offset value
latch new group code

send best previous
match pair (length, offset)
bagsed on codsword rule

character to be deferred
set send_signal="1' pending=pending +1
reset pending value

at beginning of next encoding cycle code=00

send best previous
match pair (length, offset}
based on codeword rule

set send_signal="1'

—————————————— l R

send currant character
at next encoding cycle

set send_signal="1"
at next encoding cycle

reset pending value
at beginning of next encoding cycle

Fig.9 Fowchrs of monitor module

274

process the cutput rate is fixed, ie. the outpur decoded
characters have the same length and will be generated to
the same rate (one character per decoding cycle), but the
input rate is variable. If the pre-processor receives the
match of a pair {offSet, length) this match will be decoded
into a series of successive length characters.

It is not necessary for the pre-processor to receive the
codeword from Frontend in every decoding cycle. When
the Request signal goes high it indicates that the previous
codeword has decoded completely and the buffer register
should receive the next codeword being ready for decoding.
The down counter takes the responsibility of informing the
pre-processor itself to take the new data from the Fron-
tend. The down counter latches the length value from
DEMUX, sends the high level of Active signal for the
length consecutive cycles when the Flag is equal to 1, and
will decrease one at each positive trigger of ck timing clock.
As soon as the down counter decreases to two it changes
the state of the Request signal to high. The Buffer, Flag
and End signal registers will then receive the new data in
the next decoding clock cycle. If the new Flag is equal to 0,
the current codeword in the Buffer is just a character. In
this case the Request signal must also be changed to high
and all the registers will latch the new data in the next
cycle, too,

Dataflow in the systolic array of the series decoding cell
has been described in previous literature [11] The main
task of the decoding cell # is to compare the input offser

IEE Proc.-Circuits Devices Syst., Vol 146, No. 5, October 1999

value with the stored offsef values in cell 1, where the
stored offset values are 2n and 2n + 1 when the cell number
is n. If the input offser value is equivalent to one of the
stored off¥et values 2n or 2u + 1, the output decoded char-
acter will be copied from S, register or S,,; register, repec-
tively, where S, register comes from the preceding stage
{cell n + 1). Otherwise, the input character is retransmitted
to the next stage (cell n - 1}. The original characters will be
recovered without distortion by the systolic array of the
series decoding cell. The decoding cell [11] is shown in
Fig. 12.

5 Hardware synthesis and simulation and power
analysis

The new encoding architecture is implemented by the
0.6um standard cell library supported by the Compass
Company in the USA. We utilise the synthesis tool from
Synopsys to synthesise the Verilog RTL code to gate-level
schematic. The hardware cost including the estimated
equivalent wire load for each module and encoding cell
were listed in Table 2. In this encoding systern the buffer
size of the encoding window is 512, and the total gate

active

D_f

D_tf

AN
cki1 —l

AN

over_signal

Py
S

ck1-J

select one to output under specified condition

t

ck1-—I: Wi |
1€
N
16 16 d 16 N
MN[0 1] {1 o
— 4 J8 A
b—] Ny Y
MUX1 out[15:0]1 (32:17] [15:0] residue_out
if flag=1 : Rl >
= . N
out={WO[16:8], W1 [6:0]} barrel_shifter N4
else > >codesize+residue-16
out=W0[15:0] [16:0] residue
A A >
17 T cL1 14
\\ residue+1 4 0 1
AN 7)
-~
§ [Wo | 4{ v ~. send2
] 0 A new_residue
B 17 cki > accumalator_ =sum mode 18
$ 1 ‘\ sum={length+residue)
2 _J full next_carry
= A
- 4 full next
N hJ y
. | tength timing controller
a =
g g+flag*s send2 _r—]_!_[_!—l_ out again
<—send 1 -89
d3 :E !
szn_ send2 j 1
send sendd out_clock
—* out_clock — >
send ——s out_again Em
Tck1 T clear
Fiq.10 Circuit dingram of encoding packet mocle
F o cviee —o enable_2 frontend rea:y
B e e stop ead |
end >
jcoumer read_
output a—tcharacter (€776 oharacter] pre- |iag again input
. « processorfe tat | IN BUF le—
| QUTBUR cel R 2" offset ata_out gaa -
0 [" aclive * atal
request fie,
4—. aaine ‘_ - It —
Cirgul §top
Fig.11 System diagram for decoding processor

TEE Proc.-Circuits Devices Sysr., Vol. 146, No. 5, October 1999

275

1
pre-processor ;
E
E

1 . 1
1) 1
! ! : end
- : [over : - 9 D_ff end_signal _uu_'ﬂ
1 _! 1 1 ._] _I 1
1 ck k :
: ok T : ! cIIar ¢ I T —j— !
s cloar L clear)
! " ! 1
B | ok clear § Sn+1 ! \ : i
l ' : character 8 flag : -
! []
1 D, F—I* \ D_ff ck_]\ T :
1 new ok 1 ' i clear § ‘
1 character | go clear 1 ! e fear 6 !
I 1 ! G o ! data
! o i I offset 12 |g buffer -
Il T ., " 1 D _ff A | .| t
i X 1 N & 17 |
! N P T 1 k_l T ck .
! 2 clear : ! e clear .
) CE" . : 4 clear |
1 number n 1 4 i
| '—‘r Q
: : 1 active down i
« : S A, [“_:‘"”’_ counter :
. m ¥y ck—l T : 1 3 | enable_2
! f(A,=1) clear : VoK | |
\ On=2n>m=0M 1 1 clear T >
: On=2n+1->m=10 | : y : request
| else m=00 : 1 i
1 1 !]
D o e e e e e e e e e e e e e e e e 1 '_ _____________________________ !
Fig.12 Circuit diagram of pre-processor and decoding cell for decoding
Table 2: Equivalent gate count for each module
Veell Vicell . .
Module name Cell ©4Cells) (256 Cells) Receiver Monitor Packet Sender
Gate Count {including 1345 21771 88472 3645 346 1376.7 275.12
wire load calculated by
equivalent gate count)
Total 90472.8

count, not including 1/O pads, is about 90473 gates. The
gate count is less than that in other architectures [§] with
the same buffer size.

To verify our encoding system we compare the input
strings of encoding processor with the output strings of the
decoding processor whose block diagram is shown in
Fig. 11. If there is no difference between them the modified
architecture should be correct. We use some input files for
verification by Verilog simulator {13]. From these simula-
tion results we verify that our encoding and decoding cir-
cuits are correct. The hardware simulation results of the
whole chip including /O and power pads are shown in
Fig. 13. The DATA of Fig. 13 is the data output consist-
ing of flag and encoded codeword. The SEND signal is the
handshaking signal to inform the receiver whether the
encoding system transmits output data or not. The low
level of the FINISH signal indicates that the encoding sys-
tem has finished the entire encoding task. As shown in
Fig. 13, the function of our encoding system can work cor-
rectly even when the clock cycle is about 11ns. The operat-
ing frequency is the reciprocal of the clock period so the
maximum operating frequency can reach 1 MHz and the
compression bit rate is about 728Mbit/s. To reduce ground
bounce noise for high-speed application we use ten pairs of
power pads for the drivers of I/O pads, and six pairs of
power pads for the core of digital circuit and predrivers of
I/O pads. The total IO pin count is 128.

276

For high speed-application power consumption is an
important issue. The gate count of the registers contributes
the major part of the hardware for most LZ-type compres-
sors. In the Zito-Wolf system gach register must access and
latch new data in every clock cycle, and thus the dynamic
power consumption is very large. As described in [14], we
estimate the percentage activity of the circuit P, and the
total capacitance C, driven by gate outputs in circuit. Thus,
the estimated power consumption of the complex circuit
for CMOS design can be estimated as follows:

Pi=P,x Cy x VEp x fo (3)
where f, is the clock frequency. From egn. 3, minimiging
the percentage of the switching capacitance P, can save
power dissipation. In our design only one quarter of regis-
fers execute the data access operation for input characters,
codes, and offsets as shown in Fig. 7 during one clock
cycle. Therefore minimising the number of memory
accesses will reduce the power dissipation for the sake of
redocing P, The number of memory accesses for our
encoding cell is about 7/19 of the Zito-Wolf architecture
[11], so that the dynamic power dissipation can be lowered
with the same throughput rate. Since our implementation is
based on CMOS design, there is no DC path during the
operating cycle. For the CAM implementation [7] the DC
path exists in the circuit of the CAM cell such that the
power dissipation of CAM architecture is larger than the
CMOS design under the same throughput rate, clock fre-

IEE Proc.-Circuits Devices Syst., Vol. 146, No. 5, Ociober 1999

N S e

cr

SING 00 00 00
SIN | Jes 65 120 20

souT 163 [a3 (63 20

ACTI

AD

OFF0 foot Joos Jood Jooi Yooz

Lo 1 1J0 &

CODEIN p) 0 0

topck l 1 |

OFFIN 000 000
SEND | | L M
DATA 0542 0842 Jadda [a948
FINISH
time L 1 1 i
91270 91840 92410 92980

Fig.13 Whole chip simmdation by Verilog simudator

quency, and the same buffer size conditions. For high-
speed applications the power dissipation of our architecture
implemented by CMOS process is lower than those of the
other implementations for the same compression ratio.

6 Conclusion

A parallel structure for a high-speed LZSS coder has been
introduced. This paraliel LZSS coder encodes each charac-
ter in one clock cycle, and its operating frequency can reach
91MHz. This sysiem has several advantages. First, the
compression time is linearly proportional to the input
length. Only a single clock cycle is required for processing
one character, and the clock cycle is bounded by the critical
delay of the encoder and independent of window size. Sec-
ondly, the architecture is simple and modularly expandable.
In our design only 256 encoding cells are integrated in one
chip at most because of the problems of power, clock dis-
tribution, and hardware complexity. We can cascade sev-
eral chips to increase the dictionary buffer size and achieve
the ideal desired compression ratio.

Although the hardware complexity of our modified
architecture is higher than those of other architectures in [4,
6], the speed is much higher. Suppose the trigger cycle C,;,
represents the number of time unit (clock cycle) between
two initiations of a pipeline. A trigger cycle Cyy, of k means
that two initiations are separated by & clock cycks. Assume
the clock period is T, The average compression speed bit

IEE Proc.-Circuits Devices Syst., Vol. 146, No. 5, October 1999

rate of our architecture is (1 * 8)(Cy, * T.), where C,p, is
equal to one, and T, = Tdyy + Tty ey Assume M and
N represent the maximum length of the maftching string
and buffer size, respectively. The maximum compression
speed bit rate in [4] is (M * 8T, * C,y), where Oy is
equal to (V/2) + M. If we want to achieve the ideal com-
pression ratio, the encoding buffer in [4-6] is 512 at least.
Our G, is much lower than that of [4, 6], so our speed is
apparently higher for the same process technology. Thus,
the new compression system is more suitable for real-time
application to increase the bandwidth of a communication
system and can also be used to effectively increase the
amount of mass storage available to computer systerns. By
utilising VLSI technology to implement the system chip,
the data compression hardware can be integrated into real-
time systems so that data can be compressed and decom-
pressed on-the-fly.

7 Acknowledgment

This work was supported by the National Science Council
of Republic of China under grant NSC82-0404-E009-338.

8 References

1 ZIV,], and LEMPEL, A.: ‘A universal algorithm for sequential data
compression’, IEEE Trans. Inf. Theory, 1977, IT-23, pp. 337343

2 71V,)., and LEMPEL, A : “‘Compression of individual sequence via
variable-rate coding’, JEEE Trans. Inf. Theory, 1978, IT-24, pp. 530-
536

277

278

BELL, T.C.: ‘Beiter OPM/L text compression’, IEEE Trans. Com-

nun., 1986, COM-34, pp. 1176-1182

JUNG, B., and BURLESON, W.: ‘A VLSI systolic array architecture

for Lempel-Ziv-based data compression”, Proceedings of IEEE inter-

national symposium on Circuit and systers, June 1994, Vol. 3, pp. 65—
8

STORER, J.A. ‘Data compression; methods and theory’ (Computer
Science Press, Rockville, Maryland, 1988)

RANGANATHAN, N., and HENRIQUES, S.: ‘“High-speed VLSI
designs for Lemple-Ziv-based data compression’, JEEE Trans. Circuits
Svst. I, Analog Digit. Signal Process., 1993, 40, (2), pp. 96-106

LEE, C.Y., and YANG, R.Y.: ‘High-throughput data compassor
design using content addressable memory’, IEE Proc. Circuits Devices
Syst., 1995, 142, (1), pp. 69-73

CHEN, C.T,, and CHEN, L.GG: ‘A novel architecture for Lempel-
Ziv-based data compression’. Proceedings of ICCE international con-
ference on Consumer electronics, 1996, pp. 210-211

9

STORER, JA. ‘Tmage and text compression’ (Kluwer Academic
Publishers, Norwell, Massachusetts, 1992)

KUNG, 8Y. ‘VLSI array processors’ (Prentice-Hall, Englewood
Cliffs, NJ, 1988)

ZITO-WOLF, R.J.: ‘A systolic architecture for sliding-window data
compression’. Proceedings of TEEE Workshop on VLST signal process-
ing, Part 4, November 1990, pp. 339-351

LEL S.M., and SUN, M.T.. ‘An entropy coding system for digital
HDTYV application’, IEEE Trans. Circuit Syst. Video Technol,, 1991, 1,
(1), pp. 147-155

Cadence Design System Inc., Verilog-XL manual, version 1.7, Sept.
1993

WESTE, N.H.E.,, and ESHRAGHIAN, K.: ‘Principles of CMOS
VLSI design: a perspective system’ (Addison-Wesley Publishing Com-
pany, 1993, 2nd edn.), pp.236-238

{EE Proc.-Cireuits Devices Svst., Vol. 146, No. 5, October 1999

