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Abstract: A simple real-time parallel architecture for CMOS VLSI implementation of a Ziv-hmpel 
data compression system is presented. This encoding system employs a linear systolic array to find 
concurrently the matches between each input data character and its corresponding dictionary, and 
can easily achieve ideal compression ratio by cascading the chips of the encoding cell. A new encoding 
architecture is proposed to improve the encoding speed and reduce hardware complexity for the 
encoding cells. In addition, the number of memory accesses is reduced to save power consumption for 
high-speed applications. The encoder codes one character (more than eight bits) per encoding cycle. 
The clock rate by Verilog simulator can be constrained below lSns using the Compass standard cell 
library for the 0 . 6 ~  CMOS process. 

1 Introduction 

In recent years the need to develop efficient data compres- 
sion methods has increased considerably owing to the 
iucreasing applications of data compression in various 
areas. The most widely used classes of lossless data com- 
pression algorithms are those developed by Ziv and Lempel 
in 1977 and 1978, labelled as LZ77 and LZ78, respectively 
[l, 21. In the LZ77 algorithm, pointers are used to denote 
phrases in a fixed-size window that precedes the coding 
position, There is a maximum length for substrings that 
may be replaced by a pointer, given by the parameter F 
(typically 24-25). These restrictions allow LZ77 to be imple- 
mented using a 'sliding window' of N characters. In this 
scheme the first N - F characteis have already been 
encoded and the last F characters constitute a lookahead 
buffer. The window is illustrated in example 1 (see Fig. 1). 

step 1 k- sliding window of N characters -4 
I 

l g l o l o i d l  - 1  b l o l o l k l b l o l o l k l ;  I IlTls 
already encoded- look ahead buffer 

Fcharacters 4 
codeword=(3,4,:) for 'book 

p-siiding window of N characters ,, 
g l o l o l d l - ) b l o l o l k ) b l o l o l k /  ; I i  I T l i  l s l g l o l o l d  

already encoded 2 L F c h a m c t e r s A  lookahahead buffer 

cadeword=(0.0.1) for r' 
Fig. 1 Imphemxion ofLZ77 dgorirhm urhg sl idff l~ ~'iwfoiv of N &mac 

To encode a character, the frst N - F characters of the 
window are searched to find the longest match with 
lookahead buffer. The match may overlap with the buffer 
but obviously cannot be the buffer itself. The longest match 
is then encoded into a triple codeword (0, l, U) where o is 
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the offset of the longest match from the lookahead buffer, 1 
is the longest length of match, and a is the first character 
that did not match the substring in the window. The win- 
dow is then shifted right I + 1 characters, ready for the next 
encoding step. Attaching the explicit character to each 
pointer ensures that coding can proceed even if no match is 
found for the first character of the lookahead buffer. 

In the LZ77 algorithm, whenever there is no match or if 
there is a match of length one, each symbol that r e s p  
tively constitutes the matched substrings would be substi- 
tuted by a codeword of three bytes long. This may result in 
expansion rather than compression in the encoding process. 
If many such unfavourable codewords occurred in a file, 
the compression achieved would be low. The LZSS algo- 
rithm [3], one of the variants of the LZ77 algorithm, adopts 
a free mixture of pointer and characters to replace the triple 
codeword in LZ77 [l] to overcome the expansion problem. 
A character itself will be used only when a pointer takes 
more space than the characters it encodes. An extra bit, 
known asflug, is added to each pointer or character to dis- 
tinguish between them. The output is packed so that there 
are no unused bits. Many designers have incorporated this 
technique in the software implementation which signifi- 
cantly improves the compression ratio. However, the speed 
of data compression by software is usually not satisfactory 
for a real-time system. 

Several LZ hardware architectures have been presented 
in the literature [ H I .  The most computationally expensive 
step in the hardware is to search for the maximum match- 
ing strings in the sliding dictionary. However, the LZ-based 
algorithm must be executed at a very high throughput rate 
for real-time transmission and storage. The content 
addressable memory (CAM) approach [7] can provide con- 
stant time to search the matching strings for each symbol, 
but it must consume static DC current for many of the 
CAM cells during the match action cycle. If the size of the 
sliding window is increased the power consumption prob- 
lem will dominate the chip performance. 

We present the design of a systolic array processor for 
efficient implementation of the LZSS compression tech- 
nique by using wrap architecture [9]. This new approach 
can fmd a maximum match length for each clock cycle. 
The new hardware structure can execute the data compres- 
sion task on-thefly in the real-time communication system. 
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Fig.2 Bcock&grm ofencoder 
CODEIN: initial iength value for codeword (default: 0) 
OFFIN initial ofiset value for codeword (defalt: 0) 
INDEX. cell number for l a ?  stage of ending cell (default: 0) 
SOW: output character of cell 0 (the last stage of ~ystolic amy) 
A 0  active signal output of cell 0 
Lo: length oulpul of cell 0 
OFF0 ojj..er output of cell 0 

Fig. 3 A m y  dalafrow of w o p  architecture for mmditg systm 

To implement the encoder with VLSI ASIC dsign tech- 
nology, the system is divided into several modules and 
facilitated by the systolic architecture. As shown in Fig. 2, 
the encoding system contains several blocks: VLtell, moni- 
tor, packet, sender, and in-buf. The VLcell block is com- 
posed of a segment of the systolic array illustratec in Fig. 3 
to find a series of optimal matches. The in_l,uf block 
includes input pads, registers, and buffers to nxeive the 
input signals and convert them to internal CMOS signals. 
DIN is the input of encoded character string for the d ie  
tioniuy registers; SIN and SINC are the input uncoded 
character string under normal mode and cascade mode, 
respectively. When the ACT1 signal goes to high the 
encoder begins to compress the uncoded input character 
string. The size of the dictionary is configurabb: up to a 
suitable window size by adjusting the MODE value of 
encoder. If the MODE value is set to 0, the encoder can 
cascade several encoders in a pipeline and the bulyer size of 
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a sliding window embedded in VLcell can he expanded to a 
suitable width. Typical width of the window is 2-8 K of 
dictionary, which has 0.25-1 K cells. The bit number n for 
the offset is 11-13. The primary advantages of our system 
are high speed and simple hardware structure with expand- 
able dictionary size to increase the compression ratio easily. 
We also adopt an effcient output buffer to control the out- 
put rate and convert the output packets to and from words 
of fmed width, e.g. 16 bits for compatibility with typical 
computer hardware. Since power consumption is an impor- 
tant consideration for high throughput-rate application, we 
use a parallel process technique to reduce the number of 
register access times and reduce power dissipation. 

2 Wrap architecture for encoding and decoding 

In the systolic array described in [IO], data pass from one 
processor to the neighbouring ones in a regular, rhythrmc 
pattern. As described in [ll], the array data flow of the 
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wrap architecture for encoding is given in Fig. 3. Each 
encoding cell, consisting of four dictionary registers DO, - 
D3, and four storage registers SO, - S3,, is capable of 
recording four characters. Data flows from left to right 
along the bottom through the storage registers SO, - S3, 
and then wraps back, flowing from right to left along the 
top through the dictionary registers DO. - D3.. Notice that 
the order direction of stage number is opposite to that of 
the cell number. Each cell selects one of the four register's 
contents (SO, - S3,) to compare with the contents of its 
dictionary registers DO, - D3, and those of the four 
dictionary registers obtained from its preceding stage, 
respectively. Thus, the symbols l0 - l7 represent the corre- 
sponding match length values for encoding cell k, and the 
symbol lk represents the optimal length selected from one 
of four registers LO,, LI,, L2,, and L3,. The symbol 
represents the length received from the preceding stage 
(encoding cell k + 1). The decoder system has the same reg- 
ister structure and data flow but a different decoding unit 
cell. 

The encoding cell k selects the maximal length among 
nine length values (lo - l7 and lk), and send the largest 
length L, with its appending offset 0, value to the encod- 
ing cell of next stage, cell k - 1. The 0, value is determined 
by the path of largest length Lk. The offset Ok of cell k is 
equal to that of 8k + i for Lk being equivalent to I, (where I, 
is one valus of lo - 17). Otherwise, 0, is copied from the of- 
set O,,, value of the preceding stage (cell k + 1) when the 
largest length Lk is equal to lk Each stage utilises switch S 
to select the largest h @ h  Lk and its appending o f e t  value 
0,. Nine length values (lo - l7 and lk) in each encoding cell 
k are initially set to zero when the encoding cell k begins to 
process the input string. Assuming that lo first becomes 
unity in the first stage (cell N), the position of switch S is 
switched to node No. Thus, only lo and its appending offsef 
value 0, ( X A 9  can be sent to the second stage. In the next 
cycle lo will continue to add one for the consecutive match 
between the next input character and the content of same 

task (assume that I, IS neqiiaibla) 

storage register. The value of lo is still larger than the values 
of the others ( I ,  - I7 and I,), even though I ,  - l7 and l, are 
ready to increment by one. Hence, the switch position is 
still located at node No, and this encoding cell still sends lo 
and its offsef value 0, (SN)  to the next stage. From now 
on, if lo continues to increase during the following encoding 
cycles. switch S will stay at node No until lo stops increas- 
ing. Thus, we ignore the values of 1, - 1, and lk during these 
encoding cycles until lo is reset to zero. From this descrip- 
tion, it can be seen that the length value is not unique in 
determining the position of switch S. 

In our design we utilise only the group code and compar- 
ison results instead of the real length value to control the 
position of switch S. Hence, each encoding cell just sends 
(code, offsef) pairs instead of (length, offset) pair to the next 
stage. Finally, these pairs are sent to 'monitor' to extract a 
sequence of matches that exactly include the corresponding 
input stream. Thus our system doesn't use any counter or 
magnitude comparator in the series of encoding cells to 
achieve optimal compression ratio. Hence, these modifica- 
tions reduce the complexity in hardware implementation. 

3 VLSl implementation of encoding scheme 

As described in Fig. 3, the encoding cell selects the optimal 
length based on the match length which indicates the rela- 
tionship between adjacent input characters. If the match 
length is monotonically increased among adjacent input 
characters, these characters will be compressed into the 
same codeword. Hence we classify the characters as the 
same group, where the first character is named as group 
leader. 

As an example, cell k and cell k ~ 1 are two consecutive 
cells, where cell k is the preceding stage of cell k -~ 1. The 
uncoded character string is {SOS I...S12...}, being equal to 
{groupGroupNOT. ..}, and the encoded string is 
{DODI...D23...}, such as { Theg~ouproupFGroupEND- 
YZA ...}, stored in the dictionary registers. As shown in 
Fig. 4, during clock cycle i cell k compares the new 

task (Ik., is received from cell k) 

cell k cell k-1 

Position of the Switch S: 
Clock No. 0 1 2 3 4 5 6 7 8 9 10 I1 12 .,.,.. 

CeU K-i 
CeU K NdN4 N4Na W d X  Ns Ns NI Ns X X X ....,, x &on', 

X X X X Ni Ni N, Nj N; W7 N7 N7 N7 ...... 
Fig.4 Em& of e n c d t g  cell 
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uncoded character Si with the eight encoded characters 
D;D;+I ... Di++' and obtains nine length values (lo. I,, ,,., /7, lk), 
where r, is obtained from the preceding stage. For the sake 
of simplification, we assume that the r, value from cell k + 
1 is always zero and negligible in Fig. 4. The symbol '-' 
represents the comparison operator between the uncoded 
character and the encoded character, and '=' represents the 
input character matching the encoded character. From 
cycles 0 to 4 in cell k the first five uncoded characters 
{group} fmd a series of matched string {D3D4DSD6D7} in 
dictionav. Thus the /4 value will be sent to cell k - 1, i.e. it 
is the value o f d l  k ~ 1, and the switch position should 
be at node N4 from cycles 1 to 4. During these five clock 
cycles the five input characters {group} arc assembled into 
the same group by cell k, where the fxst uncoded character 
SO, g, marked by symbol '*' is the group leader and the fol- 
lowing four characters {roup} marked by symbol 'v' are its 
group members. Since the /,, length value of cell k is always 
less than the /4 value of cell k from cycles 0 to 4, the lo value 
of cell k is neghgible. During cycle 5 there is no match and 
it is not necessary to determine the switch position of cell k.  
From cycles 6 to 9 the encoding cell k can find a series of 
matches between the input characters string {S6S7S8S9}, 
{roup} and the coded characters string {D8D9DIoDll). 
Thus, these four character {roup} should be assembled into 
the same group, and the switch position of cell k should be 
switched to node Ns and send l5 value of cell k to cell k - I .  

latch new input character 
latch new data of dictionam , " I 

execute match task 

to second stage 
Dioeiine .........._...................~.. 

latch new input group code 
latch new inDut offset value 
\ J 

r 
yes 

check 
match result 

from same data path 
of existing group 

is 'l'? 

check if 

WS"1tS 
is ' l7 

ves 

-U' 
Fig.5 Flo,vchmt of main taskfor ncoding Lell 

The selected group in cell k will he transmitted to cell k ~ 

1, and it of cell k ~ 1) becomes a candidate to compete 
with the eight comparison results of cell k ~ 1 after four 
clock cycles. If the group leader of lk-l fxst appears in cell k 
- 1, the (length, offset) data of lk-l will be transmitted to cell 
k ~ 2. As shown in Fig. 4 the group composed of string 
{group} becomes the unique group in cell k - 1 from clock 
cycles 4 to 8, so the switch position of cell k ~ 1 is allocated 
Ni node. Therefore the (length, offset) data of comparison 

IEE Proc.-Circuifs Devices Sysl., Vol. 146, No. 5. October 1999 

results between the first five input characters {group} and 
the encoded string {D3D4DsD6D7} in cell k will be trans- 
ferred transparently from cell k to cell k - I, cell k ~ 2, ._. 
and the final stage (cell 0) according to the amval time of 
group leader in the future consecutive cells. 

As described in Fig. 4, the main task of the encoding cell 
is to control the switch position. If the amval time of any 
group leader is earlier than the others, the switch position 
of that encoding cell will be switched to the node that can 
construct a data path for the optimal group leader to pass, 
such as node N4 of cell k during clock 0 or node N, of cell 
k - 1 during clock 4 in Fig. 4. The flowchart of the encod- 
ing cell's main task can be shown as Fig. 5, where codes 01 
and 11 indicate that the character is a group leader and a 
group member, respectively. Code 00 indicates that the 
character does not belong to any group. Switch S of the 
encoding cell shown in Fig. 3 can be treated as a finite 
state machine which can save the data path of the existing 
group and control the switch position. If one data path is 
selected in this encoding cycle, it has the highest priority to 
be selected during the next encoding cycle, e.g. the fxst 
group string {group} in cell k from cycles 0 to 4 and in cell 
k - 1 from cycles 4 to 8, respectively. On the contrary, the 
finite state machine will select the optimal data path again 
when the original data path gets an unmatched result dur- 
ing the next encoding cycle. For example, during clock 
cycle 9, in cell k - 1 the switch position is switched to N7 
position. 

Table 1: Transition table of finite state machine for each 
state register 

Current state Current input NLl l I  Next state 
a( ti+ Tdr) mtl+rdJ N(tl+rd,+rdx) cttl+r+rd,,) 
1 0 X O 
1 1 X 1 
0 0 X O 
0 1 1 1 
0 1 0 0 
Z clock period 
tr: oositive edae time for the current clock clcve 
Niill: inversLvalue of L, Ill, MSB of L, 
Jd; delay time of D type register for latching new data 

' 

Ti; delay time of combinational logic circuit for NL I11 
Td,j delay time of one AND gate 
F(tl+JdJ: lo (tl+Td,)for qon, ll (tl+Jd,) for qln, ..., I,(t,+T,Jfor qkn 

The block diagram of the modified encoding cell is illus- 
trated in Fig. 6, where the diagram of the fmite state 
machine is marked by the dash line, and its transition table 
is shown in Table 1. In Fig. 6, nine state registers are used 
to generate a new group code L, and its appending offset 
values 0,. The individual value of lo-17 is equal to 1 when 
the respective comparison result is matched, othenvise it is 
0 for unmatched status. These fdtered group codes and 
their appending oflet values amve at the MONITOR to 
generate the optimal code pair (length, offset). From now 
on the main task of the encoding cell can be adjusted to 
encode the group codes based on the current match results, 
the current state, and the current incoming group code as 
follows: 

MSB Ln[l] = ( lo  Q O ~ )  + (11 41%) + (h . ~ 2 % )  

+ . . . + ( l ,  ' %) + (lk ' %k) 
(1) 

LSB L,[0] = lo + ZI + 12 + . . . + Z7 + l k  (2) 
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latchsyrn A 

Fig. 6 Circuit diagramfor Wcoalig cell 

muyset 

latchoff 

where symbol '+' and symbol '.' represent logical AND 
and OR operators, respectively. We use a simple finite state 
machine circuit to generate the optimal group code accord- 
ing to la ~ j7, and lk so that neither counter nor magnitude 
comparator are needed. This system has been implemented 
by using a 0 . 6 ~  standard cell library, e.g. provided by 
Compass Company, USA. 

The timing sequence of the encoding cell given in Fig. 6 
is shown in Fig. 7. At One Tn for encoding cell n, all of the 
D-type flip-flops latch the individual new values, then com- 
pare the input character S,, with the eight encoded charaG 
ters D3,-DOn of cell n and D3,+, - DO,,, from the 
dictionary registers of cell n + I .  The current comparison 
results &-I7 and lk are transmitted to the f i t e  state 
machine to obtain a new code L, and the new next state 
Qni. At time Tn + T, cell n latches the new state of group 
leaders Qn, where Q, is composed of qnn, qln, ..., q7", qh. 
Finally, encoding cell n utilises the new state values to 
obtain the new offset output value 0,. Thus the encoding 
cell is separated into two pipeline stages to execute the 
encoding process for one input character. As simulated by 
the Synopsys synthesis tool, the critical path of cell n is 
identifed from the Sa, D3,-DOa, and D3,+,-DO,+, to the 
output of the new code L,. The critical path delay is about 
7ns, calculated from positive edge ck to M as shown in 

212 

Fig. 8 by Verilog simulation. Hence the clock period T 
should be larger than 7ns to get the correct e n d i n g  results 
for the encoding cell. 

3.1 Monitor module 
As depicted in Fig. 9, the monitor module receives the 
character, offset and group codes from cell 0 and decodes 
the longest length based on goup code, where the longest 
length is equivalent to p e d h g  values in Fig. 9. The main 
function of the monitor, as shown in Fig. 9, is to indicate 
whether one codeword is found or not by the send signal. 

Suppose a pointer uses the space of p uncoded charac- 
ters, the encoding rule is based on the length value of the 
codeword. If the length value is greater than that of p ,  the 
monitor will send the codeword. Otherwise, the monitor 
sends the uncoded character. 

3.2 Packet module 
The packet module receives codewords from the monitor, 
concatenates these codewords together and segments them 
into 16-bit words for output. In [12], encoding and decod- 
ing buffers have been employed for the HUmnan coding 
algorithm. Since the Huffman code has variable-length 
codewords it needs a complicated programmable logic 
array @'LA) to record the lengths of the individual code 
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Fig.1 T b n i ~ s e y u e n e e f o r d ~ e U  

words for executing the packing task. The LZSS codeword 
has two codeword formats, i.e. uncompressed and com- 
pressed forms. Thus, it is not necessary for the LZSS code- 
word to utilise the PLA table. In our design a simple 
combinational logic circnit instead of the PLA table is used 
to control the barrel shifter. 

The circuit diagram of the packet module is shown in 
Fig. 10. The 16-bit register W2 is the output latch. If the 
sum of Residue and Length is greater than 15, the Full out- 
put of the accumulator will be set to High and the packet 
module will put the contents of the W2 register at the posi- 
tive trigger of Out-clock signal. Since the maximum bit- 
number of the concatenation of Flag and codeword is 
greater than 16, the sum of Length and Residue may be 
equal to 32, sum of 17 and 15. In this case there are two 
16-hit packets being ready for output, the system will send 
W2 contents frst and then W3 contents at the positive trig- 
ger of Out-clock and that of Out-again, resptively. Here 
Out-again is generated hy Next-any signal of the accu- 
mulator. 

The parallel concatenation of codewords is done by 
MUXl and Barrel_Shifter, which provide 16-bit windows 
on their 33 input hits. MUXl is controlled by the Flag sig- 
nal and shifts the codeword from WO into W1 so that the 
rightmost bit of W1 is the last hit of the codeword. Conse- 
quently the data stored in W1 is ready to concatenate with 
the next codeword. The Barrel-Shifter is controlled by the 
residue value which represents the number of the residual 
bits in W1. The residnal bits in W1 are determined hy 
MUXI. 

3.3 Sender module 
When the Over signal of the packet module falls from high 
to low the system is to f k h  the encoding process. When 
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the value of the residue register is not equal to zero all the 
final residual bits in W2 or Barrel-Shifter must be sent to 
the sender module for output. If the packet module has just 
sent an output in the previous ckl cycle, the 16-bit output 
of Barrel-Shifter is sent to sender. Otherwise, packet sends 
the 16-bit output of register W2. 

4 

A block diagram of the decoding processor is shown in 
Fig. 11. The functions of the major modules are described 
as follows. The input to the Frontend is a bit stream with- 
out explicit word boundaries. The Frontend has to decode 
a codeword, determine its length and Flag, and shift the 
input data stream hy the number of bits corresponding to 
the decoded code length before decoding the next code- 
word. The pre-processor separates the codeword into the 
corresponding offset and character parts, and generates 
Active=l for the successive length cycles. As the system 
receives a Ready signal the counter generates three enable 
signals to start the decoding process. As enable-0 rises to 
high, the 16-bit register W1 stores the fmt 16-bit register. 
During enable-1 cycle, W1 stores the second 16-bit input 
stream and the fust 16-bit input stream must be shifted into 
WO. The flag and length of the frst codeword are deter- 
mined at the same cycle. When the enable-2 signal goes 
high the Frontend produces the fmt codeword and its flag, 
and the system begins to enter the normal decoding process 
in the consecutive cycle. 

The circuit diagram of the preprocessor for decoding is 
shown in Fig. 12. The pre-processor has to separate the 
codeword into character and offset, generate the Active sig- 
nal to the rightmost cell, and send a Request signal to 
Frontend to process the next best match. In ow decoding 

VLsl design of decoding scheme 
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process the output rate is fixed, i.e. the output decoded 
characters have the same length and will be generated to 
the same rate (one character per decoding cycle), but the 
input rate is variable. If the pre-processor receives the 
match of a pair (offset ,  length) this match will he decoded 
into a series of successive length characters. 

It is not necessary for the pre-processor to receive the 
codeword from Frontend in every decoding cycle. When 
the Request signal goes high it indicates that the previous 
codeword has decoded completely and the huffer register 
should receive the next codeword being ready for decoding. 
The down counter takes the responsibility of informing the 
preprocessor itself to take the new data from the Fron- 
tend. The down counter latches the length value from 
DEMUX, sends the high level of Active signal for the 
length consecutive cycles when the Flag is equal to 1, and 
will decrease one at each positive trigger of ck timing clock. 
As soon as the down counter decreases to two it changes 
the state of the Request signal to high. The Buffer, Flag 
and Endsignal registers will 'then receive the new data in 
the next decoding clock cycle. If the new Flag is equal to 0, 
the current codeword in the Buffer is just a character. In 
this case the Request signal must also be changed to high 
and all the registers will latch the new data in the next 
cycle, too. 

Dataflow in the systolic array of the series decoding cell 
has been described in previous literature [Ill. The main 
task of the decoding cell n is to compare the input oflet  
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value with the stored oflet values in cell n, where the 
stored ofset values are 2n and 2n + 1 when the cell number 
is n. If the input oflet value is equivalent to one of the 
stored offset values 2n or 2n + 1, the output decoded char- 
acter will be copied from S, register or Sa+, register, repeo 
tively, where Sn+l register comes from the preceding stage 
(cell n t I). Othenvise, the input character is retransmitted 
to the next stage (cell n - 1). The original characters will be 
recovered without distortion by the systolic array of the 
series decoding cell. The decoding cell [ll] is shown in 
Fig. 12. 

5 
analysis 

The new encoding architecture is implemented by the 
0 . 6 ~  standard ceU library supported by the Compass 
Company in the USA. We utilise the synthesis tool from 
Synopsys to synthesise the Verilog RTL code to gate-level 
schematic. The hardware cost including the estimated 
equivalent wire load for each module and encoding cell 
were listed in Table 2. In this encoding system the buffer 
size of the encoding window is 512, and the total gate 

Hardware synthesis and simulation and power 
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VLcell Receiver Monitor Packet Sender Module name 

Gatecount (including 1345 21771 88472 364.5 346 1376.7 275.12 
wire load calculated by 
equivalent gate count1 

Total 90472.8 

Vcell 
Cell (64 Cellsl (256 Cellsl 

count, not including U0 pads, is about 90473 gates. The 
gate count is less than that in other architectures [8] with 
the same buffer size. 

To verify our encoding system we compare the input 
strings of encodmg processor with the output strings of the 
decoding processor whose block diagram is shown in 
Fig. 1 1. If there is no difference between them the modified 
architecture should be correct. We use some input fdes for 
verification by Verilog simulator [13]. From these simula- 
tion results we verity that our encoding and decoding cir- 
cuits are correct. The hardware simulation results of the 
whole chip including U0 and power pads are shown in 
Fig. 13. The DATA of Fig. 13 is the data output consist- 
ing of flag and encoded codeword. The SEND signal is the 
handshaking signal to inform the receiver whether the 
encoding system transmits output data or not. The low 
level of the FINISH signal indicates that the encoding sys- 
tem has fmished the entire encoding task. As shown in 
Fig. 13, the function of our encoding system can work cor- 
rectly even when the clock cycle is about 11 ns. The operat- 
ing frequency is the reciprocal of the clock period so the 
maximum operating frequency can reach 91 MHz and the 
compression hit rate is about 728Mbitls. To reduce ground 
bounce noise for high-speed application we use ten pairs of 
power pads for the drivers of VO pads, and six pairs of 
power pads for the core of digital circuit and predrivers of 
U 0  pads. The total VO pin count is 128. 
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For high speed-application power consumption is an 
important issue. The gate count of the registers contributes 
the major part of the hardware for most LZ-type compres- 
sors. In the Zit+Wolfsystem each register must access and 
latch new data in every clock cycle, and thus the dynamic 
power consumption is very large. As described in [14], we 
estimate the percentage activity of the circuit Pa and the 
total capacitance C, driven by gate outputs in circuit. Thus, 
the estimated power consumption of the complex circuit 
for CMOS design can be estimated as follows: 

where f, is the clock frequency. From eqn. 3, minimising 
the percentage of the switching capacitance Pa can save 
power dissipation. In our design only one quarter of regis- 
ters execute the data access operation for input characters, 
codes, and offsets as shown in Fig. 7 during one clock 
cycle. Therefore minimising the number of memory 
accesses will reduce the power dissipation for the sake of 
reducing P,. The number of memory accesses for our 
encoding cell is about 7/19 of the Zitc-Wolf architecture 
[I I], so that the dynamic power dissipation can he lowered 
with the same throughput rate. Since our implementation is 
based on CMOS design, there is no DC path during the 
operating cycle. For the CAM implementation [7l the DC 
path exists in the circuit of the CAM cell such that the 
power dissipation of CAM architecture is larger than the 
CMOS design under the same throughput rate, clock fre- 

Pd = Pa x c, x V i D  x fc (3) 
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quency, and the same buffer size conditions. For high- 
speed applications the power dissipation of our architecture 
implemented by CMOS process is lower than those of the 
other implementations for the same compression ratio. 

6 Conclusion 

A parallel structure for a high-speed LZSS coder has been 
introduced. This parallel LZSS coder encodes each charao 
ter in one clock cycle, and its operating frequency can reach 
91MHz. This system has several advantages. First, the 
compression time is linearly proportional to the input 
length. Only a single clock cycle is required for processing 
one character, and the clock cycle is bounded by the critical 
delay of the encoder and independent of window size. S e 0  
ondly, the architecture is simple and modularly expandable. 
In our design only 256 encoding cells are integrated in one 
chip at most because of the problems of power, clock dis- 
tribution, and hardware complexity. We can cascade sev- 
eral chips to increase the dictionary buffer size and achieve 
the ideal desired compression ratio. 

Although the hardware complexity of our modified 
architecture is higher than those of other architectures in [4, 
61, the speed is much higher. Suppose the trigger cycle C,.ig 
represents the numbcr of time unit (clock cycle) between 
two initiations of a pipeline. A trigger cycle Clrig of k means 
that two initiations are separated by k clock cycles. Assume 
the clock period is T,. The average compression speed bit 

%/e eh@ ~imulatwn by VedoC sirnuloror 
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rate of our architecture is (1 * 8)/(Ctri, * TJ,  where C,, is 
equal to one, and T, = Tdl,,el + TdIood-Gecp Assume M and 
N represent the maximum length of the matching string 
and buffer size, respectively. The muximm compression 
speed bit rate in [4] is ( M  * X)/(T, * Cl,ig), where Clrig is 
equal to (Ni2) + M. If we want to achieve the ideal com- 
pression ratio, the encoding buffer in [U] is 512 at least. 
Our C,". is much lower than that of [4, 61, so our speed is 
apparently higher for the same process technology. Thns, 
the new compression system is more suitable for real-time 
application to increase the bandwidth of a communication 
system and can also be used to effectively increase the 
amount of mass storage available to computer systems. By 
utilising VLSI technology to implement the system chip, 
the data compression hardware can be integrated into real- 
time systems so that data can be compressed and decom- 
pressed on-the-fly. 
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