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BEND-FLOW SIMULATION USING 2D DEPTH-AVERAGED MODEL

By H. C. Lien,1 T. Y. Hsieh,2 J. C. Yang,3 Member, ASCE, and
K. C. Yeh,4 Associate Member, ASCE

ABSTRACT: The purpose of this paper is to present a 2D depth-averaged model for simulating and examining
flow patterns in channel bends. In particular, this paper proposes a 2D depth-averaged model that takes into
account the influence of the secondary flow phenomenon through the calculation of the dispersion stresses arisen
from the integration of the products of the discrepancy between the mean and the true velocity distributions.
The proposed model uses an orthogonal curvilinear coordinate system to efficiently and accurately simulate the
flow field with irregular boundaries. As for the numerical solution procedure, the two-step split-operator approach
consisting of the dispersion step and the propagation step with the staggered grid is used to numerically solve
the flow governing equations. Two sets of experimental data from de Vriend and Koch and from Rozovskii
were used to demonstrate the model’s capabilities. The former data set was from a mildly curved channel,
whereas the latter was from a sharply curved channel. The simulations considering the secondary flow effect
agree well with the measured data. Furthermore, an examination of the dispersion stress terms shows that the
dispersion stresses play a major role in the transverse convection of the momentum shifting from the inner bank
to the outer bank for flows in both mild and sharp bends.
INTRODUCTION

Flow characteristics in channel bends are much more com-
plicated than those in straight reaches. The occurrence of the
secondary flow is one of the dominant features of flows in
bends. Secondary flow results from the imbalance between the
transverse water surface gradient force and centrifugal force
over the depth due to the vertical variation of the primary flow
velocity. In other words, the inward pressure gradient near the
bed prevails over the centrifugal force resulting in an inward
flow along the bed and an outward flow near the water surface.
This circulatory flow pattern is termed secondary flow. Pio-
neering investigations of the flow phenomena in open-channel
bends are generally attributed to Thompson (1876) who ob-
served the spiral motion inherent in a channel bend by intro-
ducing seeds and dyes into the flow. Since then, many studies
have been conducted on flows in bends [e.g., Mockmore
(1943), Shukhry (1949), Rozovskii (1961), and Yen (1965)].

The 3D numerical models have been developed (Leschziner
and Rodi 1979; Shimizu et al. 1990; Sinha et al. 1998) to
simulate the complicated spiral flow motion in the bend. How-
ever, 2D depth-averaged models are often adopted in practice
by hydraulic engineers because of their easy implementation
and application. For 2D bend-flow models, steady-flow mod-
els, such as that of Odgaard (1989), have been developed to
avoid the possible numerical instability and large amount of
computation time. After reviewing both laboratory and field
data obtained by others (de Vriend and Geldof 1983; Kikkawa
et al. 1976; Zimmermann and Kennedy 1978), Odgaard (1989)
found that both the velocity and flow depth are essentially
constant along the river channel’s centerline and that their var-
iation in the transverse direction is nearly linear over the cen-
tral portion of the cross section. Hence, the velocity and flow
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depth in the lateral direction are linearized with respect to their
centerline values in Odgaard’s model. Yen and Ho (1990) de-
veloped a numerical model for the simulation of bed evolution
in channel bends with fixed walls. They followed Odgaard’s
concept and adopted several published approximations of the
transverse velocity distribution to reduce the depth-averaged
water flow equations. An alternative approach for describing
bend flow is to use the concept of moment of momentum
(Falcon Ascanio 1979; Jin and Steffler 1993; Yeh and Kennedy
1993). The method couples the depth-averaged continuity and
momentum equations with two moment-of-momentum equa-
tions derived from the balance among the momentum flux of
the convective terms, pressure gradient term, and stress terms
for closure purposes. For steady bend-flow models, the deter-
mination of flow depth in the flow domain is difficult due to
the lack of time derivative of the flow depth in the continuity
equation. Hence, the flow depth cannot be calculated directly
from the differential continuity equation. Generally speaking,
in steady-flow models the flow depth at the centerline can first
be computed through the integration of discharge over the
cross section; then its profile in the transverse direction is lin-
earized with respect to the centerline value (Odgaard 1989;
Yen and Ho 1990), or computed by the method of integration
(Kalkwijk and de Vriend 1980).

Among the existing unsteady 2D bend-flow models, the
models developed by Molls and Chaudhry (1995) and Nagata
et al. (1997) are discussed in this paper. Molls and Chaudhry’s
model (1995) simulated the experimental bend-flow data con-
ducted by Rozovskii (1961). They proposed the concept of
integrated effective stress, which consists of laminar viscosity
stress, turbulence stress, and dispersion stress due to depth-
averaging. However, they ignored the nonuniform distribution
of vertical velocity in the bend-flow simulation. Nagata et al.’s
model (1997) considers a secondary flow component that was
derived by using the vertical distributions of the main and
transverse velocities in the same way as Kalkwijk and de
Vriend (1980). In their studies, only one of the dispersion
stresses acting on the face perpendicular to the streamwise axis
and acting in the direction of the transverse axis is used as the
secondary flow component.

The dispersion stress terms resulted from the integration of
the product of the difference between the mean velocity and
the true velocity distribution in the bend-flow field. de Vriend
(1977) used the perturbation method to derive the velocity
distribution over the depth in the shallow curved channel, and
the vertical velocity profiles were then verified by the exper-
iments. The vertical velocity distribution of the main flow and
JOURNAL OF HYDRAULIC ENGINEERING / OCTOBER 1999 / 1097

9.125:1097-1108.



D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 o

n 
05

/0
1/

14
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.
secondary flow can be approximated by a logarithmic profile
and a nonlinear profile, respectively. Using these velocity dis-
tributions, one can obtain the dispersion stresses by numerical
integration.

The purpose of this paper is to present an unsteady 2D
depth-averaged flow model with the consideration of disper-
sion stress terms to simulate the bend-flow field. The model
uses an orthogonal curvilinear coordinate system to efficiently
and accurately simulate the flow field with irregular bounda-
ries. Numerically, the proposed model applies a two-step split-
operator approach proposed by Lien et al. (1999) for solving
the flow governing equations. Two sets of experimental data
measured by de Vriend and Koch (1977) and Rozovskii (1961)
are used to examine the capabilities of the proposed model in
simulating the bend flow.

MATHEMATICAL FORMULATION

Depth-Averaged Equations in Orthogonal Curvilinear
Coordinates

Under the assumption of incompressible fluid, constant vis-
cosity, and a hydrostatic pressure distribution over the depth,
the depth-averaged equations can be obtained from integrating
Navier-Stokes equations from the channel bottom to the water
surface with the kinematic boundary conditions. The unsteady
2D depth-averaged flow governing equations including the ba-
sic continuity and momentum equations can, respectively, be
written in orthogonal curvilinear coordinates as follows:

Continuity equation

d  ¯ ¯h h 1 (h ūd ) 1 (h v̄d ) = 0 (1)1 2 2 1
t j h

Momentum equations

j-direction

¯ ¯ ¯ ¯ ¯ū ū ū v̄ ū 1 h 1 h1 2 2¯ ¯ ¯1 1 1 ūv̄ 2 v̄
t h j h h h h h h h j1 2 1 2 1 2

g  1  1 
= 2 (z 1 d ) 1 (h T ) 1 (h T )b 2 11 1 12

h j rh h d j rh h d h1 1 2 1 2

t 2 ts b1 h 1 h 1 11 2
1 T 2 T 112 22 rdrh h d h rh h d j1 2 1 2

1 z z zs b s
1 2(h t ) 1 (h t ) 2 (h t )2 11 s 2 11 b 1 12 sFrh h d j j h1 2

zb
1 (h t )1 12 b G

h (2)

h-direction

¯ ¯ ¯ ¯ ¯v̄ ū v̄ v̄ v̄ 1 h 1 h2 1 2¯ ¯ ¯1 1 1 ūv̄ 2 ū
t h j h h h h j h h h1 2 1 2 1 2

g  1  1 
= 2 (z 1 d ) 1 (h T ) 1 (h T )b 2 12 1 22

h h rh h d j rh h d h2 1 2 1 2

t 2 t1 h 1 h s b1 2 2 2
2 T 1 T 111 12 rdrh h d h rh h d j1 2 1 2

1 z z zs b s
1 2(h t ) 1 (h t ) 2 (h t )2 12 s 2 12 b 1 22 sFrh h d j j h1 2

zb
1 (h t )1 22 b G

h (3)

in which
1098 / JOURNAL OF HYDRAULIC ENGINEERING / OCTOBER 1999
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zs

2 2¯T = [t 2 ru9 2 r(ū 2 ū) ] dz (4)11 11E
zb

zs

2 2¯T = [t 2 rv9 2 r(v̄ 2 v̄) ] dz (5)22 22E
zb

zs

¯ ¯T = T = [t 2 ru9v9 2 r(ū 2 ū)(v̄ 2 v̄) dz (6)12 21 12E
zb

t 1 ū v̄ h11 1= 2n 1 (7)l F Gr h j h h h1 1 2

t 1 v̄ ū h22 2= 2n 1 (8)l F Gr h h h h j2 1 2

t t h  v̄ h  ū12 21 2 1= = n 1 (9)l F S D S DGr r h j h h h h1 2 2 1

where j and h = orthogonal curvilinear coordinates in stream-
wise axis and transverse axis, respectively; h1 and h2 = metric
coefficients in j- and h-directions, respectively; u = j-com-
ponent of velocity; v = h-component of velocity; r = fluid
density; d = water depth; g = gravitational acceleration; zb =
bed elevation; and tij = shear stress acting on the face perpen-
dicular to the i-axis and acting in the direction of the j-axis;

and = ith direction components of free-surface and bed-t ts bi i

shear stresses, respectively; = integrated effective stress; nlTi ,j

= laminar kinematic viscosity; overbar = time average;(¯ )
double overbar = depth average; prime (9) = fluctuating¯( )¯
component; and subscripts s and b indicate the dependent var-
iables at the water surface and channel bed, respectively.

The shear stress on the free water surface (caused by the
wind) has little significance compared with the bed-shear stress
and can be neglected; that is

t = t = 0 (10)s s1 2

The components of the bed-shear stress in the j- and h-direc-
tions can be written as follows:

2 2 1/2¯ ¯ ¯t = C rū(ū 1 v̄ ) (11)b f1

2 2 1/2¯ ¯ ¯t = C rv̄ (ū 1 v̄ ) (12)b f2

where Cf = g/c2 = friction factor; and c = Chézy factor.

Integrated Effective Stresses

Eqs. (4)–(6) are the integrated effective stresses that act
tangentially on the sides of a fluid element. Each of them con-
sists of laminar viscous stress, turbulent stress, and dispersion
stress due to depth-averaging. In this study, the depth-averaged
turbulent stress is computed using Boussinesq’s eddy viscosity
concept. It is assumed to be proportional to gradients of the
depth-averaged velocities like the laminar viscous stress. The
combination of laminar and turbulent kinematic viscosity

substituting for nl in (7)–(9), can be expressed asn ,l1t

n = n 1 n (13)l1t l t

where nt = (Falconer 1980) is used; = (tb /r)1/2 =ku d/6 u* *
shear velocity; and k = van Kármán’s constant (about 0.4).

As mentioned before, the secondary flow in channel bends
is caused by the local imbalance between the centrifugal forces
and the transverse pressure forces generated by superelevation
of the water surface. The vertical distributions of the velocity
are no longer uniform. In this model, the velocity profiles in
the streamwise and transverse directions proposed by de
Vriend (1977) are adopted

g gÏ Ï¯ ¯ū = ū 1 1 1 ln z = ūf (z) (14)mF Gkc kc

¯̄ud g gÏ Ï¯v̄ = v̄ f (z) 1 2F (z) 1 F (z) 2 2 1 2 ? f (z)m 1 2 mF S D G2k r kc kc
.125:1097-1108.
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(15)

in which

g gÏ Ï
f (z) = 1 1 1 ln z (16)m

kc kc

1
ln z

F (z) = dz (17)1 E z 2 10

1 2ln z
F (z) = dz (18)2 E z 2 10

where z = (z 2 zb)/d = dimensionless distance from the bed;
and r = radius of curvature.

According to (14) and (15), the main velocity profile is as-
sumed to have a logarithmic distribution, and the transverse
velocity profile is a combination of a logarithmic distribution
and a nonlinear distribution of the secondary flow. It is obvious
that only the secondary flow due to the curvature of the bend
is considered in the formulation of the transverse velocity pro-
file. Such consideration of transverse secondary flow is a main
factor to shift the streamwise momentum from the inner region
of a bend toward the outer region and to increase the main
velocity near the outer bank. In addition, the effect of the
secondary flow on the streamwise velocity profile is neglected,
and these velocity profiles, used in the model, are inadequate
for a reverse secondary eddy that occurred near the surface at
the outer bank. After including the velocity profiles shown in
(14) and (15), the dispersion stress terms can be derived as
follows. The first term (DSXX) indicates that the integration
of the products of the discrepancy between the mean and the
true velocity distributions in the streamwise direction

z zs s
gÏ2 2¯ ¯r (ū 2 ū) dz = r ū 1 1E E F kcz zb b

2 1
g z 2 zÏ b 2¯1 ln 2 1 dz = r ū dS D G Ekc d 0

2 2
g g gÏ Ï Ï2¯? 1 ln (z) dz = rū d = DSXXF G S Dkc kc kc (19)

The second term (DSYY) indicates that the integration of the
products of velocity discrepancy in the transverse direction.

z 1s
g gÏ Ï2¯ ¯r (v̄ 2 v̄) dz = rd v̄ 1 ln zE E H F Gkc kcz 0b

2
¯̄ud g gÏ Ï

1 2F (z) 1 F (z) 2 2 1 2 ? f (z) dz1 2 mF S D GJ2k r kc kc
2 2 2 3¯ ¯ ¯g 2ūv̄d g ū dÏ Ï2¯= r v̄ d 1 ?FF1 1 ?FF2 = DSYYF S D G2 4 2kc k r kc k r

(20)

The third term (DSXY) indicates that the integration of the
products of velocity discrepancy in the streamwise direction
and that in the transverse direction

z 1s
g gÏ Ï¯ ¯ ¯r (ū 2 ū)(v̄ 2 v̄) dz = rd ū 1 ln zE E H F GJkc kcz 0b

¯g g ūd gÏ Ï Ï¯? v̄ 1 ln z 1 2F (z) 1 F (z)1 2H F G F2kc kc k r kc
J. Hydraul. Eng. 199
2
g gÏ Ï¯ ¯2 2 1 2 ? f (z) dz = r ūv̄dmS D GJ F S Dkc kc

2 2¯̄u d gÏ
1 ?FF1 = DSXYG2k r kc (21)

where
1

gÏ
FF1 = (1 1 ln z) 2F (z) 1 F (z)1 2E F kc0

gÏ
2 2 1 2 ? f (z) dzmS D Gkc (22)

1 2
g gÏ Ï

FF2 = 2F (z) 1 F (z) 2 2 1 2 ? f (z) dz1 2 mE F S D Gkc kc0

(23)

Note that (22) and (23) can be integrated numerically by using
the trapezoidal rule.

NUMERICAL ALGORITHM

Two-Step Split-Operator Approach

The present model used a two-step split-operator approach
proposed by Lien et al. (1999) for solving the governing equa-
tions. The key feature of this method is to solve the momen-
tum equations in two steps. The first step (dispersion step) is
to compute the provisional velocity in the momentum equa-
tions without considering the pressure gradient and bed fric-
tion. The second step (propagation step) is to correct the pro-
visional velocity by considering a divergence-free velocity
field including the effect of the pressure gradient and bed fric-
tion. They are expressed sequentially in the vector form as
follows:

Dispersion step
d

V 1n n= 2(V ?=)V 1 =?T (24)S D
t r

Propagation step
n11 d

tbV V in112 = 2g=(z 1 d ) 2 (25)bS D S D
t t rd

n11=?V = 0 (26)

After proceeding with depth-averaging and dropping the dou-
ble overbar for simplification, one can derive the difference¯( )¯
form of (28)–(30) in the orthogonal curvilinear coordinate sys-
tem as follows:

Dispersion step

d n n n n nu 2 u u Du v Du 1
= 2 ? 2 ? 2S D S DDt h Dj h Dh h h1 2 1 2

nDh Dh 1 D(h T )1 2 2 11n n n 2? u v 2 (v ) 1F GDh Dj rh h d Dj1 2

n1 D(h T ) 1 Dh 1 Dh1 12 1 2n n1 1 T 2 T12 22
rh h d Dh rh h d Dh rh h d Dj1 2 1 2 1 2

1 Dz Dz Dzs b sn n n1 2(h t ) 1 (h t ) 2 (h t )2 11 s 2 11 b 1 12 sFrh h d Dj Dj Dh1 2

Dzbn1 (h t )1 12 b GDh (27)

Similarly, the difference form of velocity component in the h-
direction can be derived from (3) as follows:
JOURNAL OF HYDRAULIC ENGINEERING / OCTOBER 1999 / 1099
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Propagation step

n11 d n n11 d 2 d 2u 2 u g  C u (u ) 1 (v )Ïfn11= 2 (z 1 d ) 2bF G nDt h j d1

(28)

n11 nd 2 d  n11 n11 n11 n11h h 1 (h u d ) 1 (h v d ) = 0 (29)1 2 2 1
Dt j h

The difference form of velocity component in the h-direction
in the propagation step is similar to (28) in which ud denotes
the provisional velocities; superscript n denotes the known
variables at time step n; and superscript n 1 1 denotes the
unknown variables at time step n 1 1.

The expression of velocity at time step n 1 1 can be rear-
ranged from (28) as

1 gDt n11 d n11u = u 2 (z 1 d ) (30)bF GC C h jt t 1

where

n d 2 d 2C (u ) 1 (v )Ïf
C = 1 1 Dt (31)t nd

Using the first-order Taylor-series expansion term for depth
one can easily obtain the linearized expression of (30)n11d ,

as

Ddn11(h ud) = a 1 b Dd 1 g (32)2 1 1 1
j

where

n11 nh gDt h h gDt z d2 2 2 bn da = 2 d ; b = u 2 1 (33a,b)1 1 F GC h C C h j jt 1 t t 1

ng = b d (33c)1 1

Similarly, is similar to (32). Substituting (32) inton11(h vd )2

(29) leads to

Dd  Dd
h h 1 a 1 b Dd 1 g1 2 1 1 1S DDt j j

 Dd
1 a 1 b Dd 1 g = 02 2 2S D

h h (34)

where Dd = 2 dn = increment of depth.n11d

Boundary Conditions

The boundary conditions needed for (34) are usually the
discharge hydrograph per unit width at the upstream end and
water surface elevation at the downstream end. These types of
boundary conditions are easily transformed into the function
of the depth-increment variables in (34) (Lien et al. 1999).

At solid boundaries, the law of the wall is applied outside
the viscous sublayer and transition layer, in the range of 30 <
y1 < 100, in which y1 = ywu*/v; and yw = distance between
the first computational grid point adjacent to the wall and the
wall itself. Within the wall region, the universal law of the
wall is applied as
1100 / JOURNAL OF HYDRAULIC ENGINEERING / OCTOBER 1999
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11 1u = ln(Ey ) (35)
k

where u1 = uw /u*; uw = depth-averaged resultant velocity near
the wall; and E = roughness parameter = 9.0. On the basis of
law of the wall, a so-called wall function (Rastogi and Rodi
1978) is formulated, which links the near-wall velocities. Us-
ing the logarithmic velocity law given by (35) and the ex-
pression for wall shear stress, tw can be expressed as2(=ru )*
(Biglari and Sturm 1998)

t ku uw w*= (36)1r ln(Ey )

The above wall shear stress is used as the wall boundary con-
dition and is substituted into the momentum equation in the
wall region to solve for the velocity component parallel to the
wall.

VERIFICATION AND ANALYSIS

To verify the capabilities of the proposed model, two sets
of experimental data on bend flow conducted by de Vriend
and Koch (1977) and Rozovskii (1961) are adopted herein.
Data regarding the channel dimensions and flow conditions are
summarized in Table 1. Note that the two channels in Table 1
belong to mildly curved and sharply curved channels, respec-
tively. Because the explicit scheme is used in the dispersion
step, the stability of the solution is determined from the Cour-
ant-Friedrichs-Lewy (CFL) condition

uu u uv ui ,j i ,jCFL = max 1 Dt < 1 (37)i ,j FS D GDx Dy1 j

With regard to the model’s convergence, the following cri-
teria should be satisfied:

n11 n n 25max[(C 2 C )/C ] # 1.0 3 10 (38)i ,j i ,j i ,j

where C could stand for or d. For the unsteady-state¯ ¯ū, v̄,
case, calculation will not stop until the specified time period
is reached.

Flow in Mildly Curved Channel

In de Vriend and Koch’s mild-bend flow equipment exper-
iment, the channel consisted of a 39-m-long straight section
followed by a 907 bend with a radius of curvature of 50 m.
The channel cross section was rectangular, and the width was
6 m. The channel bed was horizontal in the straight part and
had a longitudinal slope of 3 3 1024 in the curved part. The
discharge given from the upstream end of the channel was 0.61
m3/s; the average velocity UM was about 0.4 m/s, and the
average flow depth was 0.25 m.

A mesh of 103 3 35, a time interval Dt = 1.0 s, and the
no-slip boundary at the banks were used in the numerical sim-
ulation. The simulation reach covered a 23-m-long straight
channel before the entrance of the bend to the tailgate at the
end of the channel. The upstream boundary condition was the
inflow discharge per unit width, and the downstream boundary
condition was the measured flow depth. It can be observed
from the experiment that the main velocity near the outer bank
TABLE 1. Channel Dimensions and Flow Conditions in Experiments of de Vriend and Koch (1977) and Rozovskii (1961)

Experimenter
(1)

Discharge Q
(m3/s)

(2)

Depth d
(m)
(3)

Width B
(m)
(4)

Bend
radius Rc

(m)
(5)

B/Rc

(6)

u
(degrees)

(7)

Chézy
factor c
(m1/2/s)

(8)

Froude
number F

(9)

Reynold’s
number R

(10)

Dean’s
number
R d/RÏ c

(11)

Grid
number

(12)

Time
step Dt

(s)
(13)

de Vriend and
Koch (1977) 0.610 0.25 6 50 0.12 90 70 0.26 9.2 3 104 6,505 103 3 35 1.0

Rozovskii (1961) 0.0123 0.058 0.8 0.8 1.0 180 60 0.35 1.4 3 103 377 61 3 43 0.05
99.125:1097-1108.
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FIG. 1. Velocity Redistribution for de Vriend and Koch’s Sim-
ulation: (a) without Secondary Flow; (b) with Secondary Flow

increases along the bend and becomes greater than that near
the inner bank due to the transverse convection of streamwise
momentum along the bend caused by the secondary flow.

Fig. 1(a) shows the velocity redistribution across the chan-
nel width along the bend without considering the dispersion
stresses. The simulated results are consistent with the potential
theory by which the velocity is inversely proportional to the
radius of the curvature. Hence, the flow velocity along the
channel bend is higher in the inner-bank region than that in
the outer-bank region, as clearly shown in Fig. 1(a). If the
dispersion stresses are included in the bend-flow simulation,
they act as sink or source in the momentum equation, which
cause the transverse convection of momentum to shift from
the inner bank to the outer bank (Kalkwijk and de Vriend
1980; de Vriend 1981). Fig. 1(b) shows the simulated results
with dispersion stresses, which clearly demonstrate a shift of
the maximum main velocity along the channel bend from the
inner-bank region toward the outer-bank region. Fig. 2 shows
the variation of velocity ratios U/UM across the dimensionless
channel width [(R 2 Ri)B] obtained from the present model,
the measured value, and Yeh’s moment-of-momentum model,
where U is the depth-averaged velocity, and Ri is the radius
of curvature of the inner bank. It can be observed from Fig.
J. Hydraul. Eng. 199
FIG. 2. Velocity Ratio U/UM across Dimensionless Channel
Width for de Vriend and Koch’s Simulation. Measured (C); Com-
puted with Secondary Flow (——); Computed without Second-
ary Flow (– ? ? –); and Yeh’s Model (1993) ( ? ? ? ? )

2 that the velocity becomes lower near the inner bank and
higher near the outer bank starting from the u = 27.57 section.
This phenomenon is becoming more distinguishing as the flow
moves further downstream. The computed results with the ef-
fect of secondary flow have good agreement with the measured
data. It clearly shows that the transverse convection of mo-
mentum shifting from the inner bank to the outer bank is due
to the consideration of dispersion stress terms in the momen-
tum equations. Fig. 3 shows the corresponding dimensionless
depth ratio (Zs-Zsm)/d against the dimensionless channel
width, where Zsm is the mean water surface elevation across
the channel width. The difference between the simulated re-
sults with and without secondary flow is not significant be-
cause the secondary-flow effect in the mild bend is weak.

Flow in Sharply Curved Channel

Rozovskii (1961) constructed a sharp 807 bend channel in
which the ratio of width to mean radius of curvature was 1.0.
A curve with a width-to-mean radius ratio of 0.4 and more is
considered to be sharp and will exhibit highly 3D flow char-
acteristics. The cross section of the bend was rectangular and
connected to straight inlet and outlet reaches of the same cross
section. The approach channel was 6 m long, and the exit
channel was 3 m in length. The entire channel was horizontal.
The channel bottom was smooth, and the Chézy coefficient
was 60 m1/2/s. The Reynolds number was 15,600 and the
Froude number was 0.11. The discharge in the channel was
0.0123 m3/s, and the averaged velocity (UM) was about 0.265
m/s. This set of data was referred to as experiment No. 1 in a
series of Rozovskii’s bend-flow experiments (1961).
JOURNAL OF HYDRAULIC ENGINEERING / OCTOBER 1999 / 1101
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FIG. 3. Depth Ratio (Zs = Zsm)/d across Dimensionless Chan-
nel Width for de Vriend and Koch’s Simulation. Measured (C);
Computed with Secondary Flow (——); and Computed without
Secondary Flow (– ? ? –)

A grid system composed of 61 3 43 nodes and time interval
Dt = 0.05 s were used in the numerical simulation. The inlet
boundary of inflow discharge was located 0.5 m upstream of
the bend, and the outlet boundary of measured flow depth was
located 0.5 m downstream of the bend.

By referring to Figs. 4–6, results of numerical simulation
using the no-slip and free-slip conditions may be compared.
Figs. 4(a and b) show the computed velocity distribution
across the channel width without/with the secondary flow ef-
fect using the no-slip condition at the banks, respectively.
Without considering the secondary flow effect, a recirculation
zone near the bend outlet is developed where the flow sepa-
rates from the inner sidewall. However, in Rozovskii’s exper-
iment the flow separation was not observed. The simulated
results using the no-slip condition with the secondary flow
effect shown in Fig. 4(b) in which the flow separation disap-
pears near the exit of the bend is clearly better than the com-
puted results without considering the secondary flow effect
from Fig. 4(a).

Figs. 5(a) and 5(b) show the computed velocity distribution
across the channel width using the free-slip condition at the
banks without/with the secondary flow effect, respectively. As
shown in Fig. 5(a), the velocity at the inner bank becomes
larger and that at the outer bank becomes smaller when the
flow enters the bend. Such a flow pattern prevails through the
entire bend. The simulated streamwise velocity becomes uni-
form again after a short distance downstream of the bend exit.
When considering the secondary flow effect, Fig. 5(b) indi-
cates different velocity distributions after the flow enters the
1102 / JOURNAL OF HYDRAULIC ENGINEERING / OCTOBER 1999
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FIG. 4. Velocity Redistribution by Numerical Simulation for
Rozovskii’s Experiment Using No-Slip Condition: (a) without
Secondary Flow; (b) with Secondary Flow

bend. The maximum main velocity at the inner bank with the
secondary flow effect is smaller than that without considering
the secondary flow effect. Furthermore, Fig. 5(b) shows that
the velocity distribution with the secondary flow effect is no
longer uniform in the straight channel even after the flow exits
the bend. The velocity near the outer-bank region abruptly
speeds up, and the corresponding velocity near the inner-bank
region decelerates. This phenomenon can be explained by the
decline of the transverse slope of the water surface and the
release of the remaining additional momentum by the second-
ary flow effect when the radius of curvature at the bend exit
abruptly changes to infinity.

Fig. 6 shows the simulated results of U/UM across the non-
dimensional channel width at the different sections. In Fig. 6,
999.125:1097-1108.
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FIG. 5. Velocity Redistribution by Numerical Simulation for
Rozovskii’s Experiment Using Free-Slip Condition: (a) without
Secondary Flow; (b) with Secondary Flow

simulated results from three cases with various conditions are
compared with the experimental data, which are no-slip/free-
slip with the secondary flow effect cases and free-slip without
the secondary flow effect case. Coincidentally, the results for
the free-slip case with the secondary flow effect shows better
consistency with the experimental data than those for the no-
slip case with the secondary flow effect (Molls and Chaudhry
1995) along the curved region of the channel. Nevertheless,
the latter case shows the persuasive results at the entrance and
the exit of the bend (u = 07 and 867 sections) but a rather
significant deviation from the experimental data from u = 357
to 1437. The deviation may be because the effect of the no-
slip boundary condition on the inner bank is too strong, which
may induce the computed velocity near the inner bank to be
smaller and that near the outer bank to be greater in compar-
J. Hydraul. Eng. 199
FIG. 6. Velocity Ratio U/UM across Dimensionless Channel
Width for Rozovskii’s Simulation. Measured (C); Computed with
Secondary Flow (Free-Slip) (——); Computed without Second-
ary Flow (Free-Slip) ( ? ? ? ? ); and Computed with Secondary Flow
(No-Slip) (– ? ? –)

ison with the experimental data. It appears that the use of the
wall function with the depth-averaged Boussinesq’s eddy vis-
cosity, along with the assumption of bed-shear stresses shown
in (15) and (16), cannot completely solve the near-wall prob-
lems, although it has agreeable results from the flow in the
mildly curved channel. In fact, the modeling flow phenomenon
near the wall will remain a challenge for flow simulation in
years to come. Further research for solving near-wall problems
by the depth-averaged model is underway. However, based on
previous investigation, one can obviously observe that the sec-
ondary flow effect plays the significant role in bend-flow sim-
ulation. In the review of the existing depth-averaged bend-flow
model, most of the models simulated bend flow using the free-
slip condition at the bank. Because the main purpose here is
to examine the effect of dispersion stresses, it may be better
to avoid the unnecessary complication caused by the no-slip
condition. Hence in the following discussion, the results based
on the free-slip condition are chosen to compare with the ex-
perimental data and the results from Yeh’s moment-of-mo-
mentum model (1993) and Molls’s model (1995), which were
also based on the free-slip condition.

Fig. 6 shows that the free-slip case without the secondary
flow effect seems to have good agreement with the experi-
mental data from u = 357 to 1007 but have poor agreement
from u = 1437 to 1857. It also clearly shows that the velocity
distribution pattern across the channel width computed without
the secondary flow effect remains almost constant in the bend
except near the exit of the bend. However, the experimental
data show that the maximum main velocity abruptly shifts to-
JOURNAL OF HYDRAULIC ENGINEERING / OCTOBER 1999 / 1103
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FIG. 7. Velocity Ratio U/UM across Dimensionless Channel
Width for Rozovskii’s Simulation. Measured (C); Computed with
Secondary Flow (Free-Slip) (——); Yeh’s (Free-Slip) Model
(1993) ( ? ? ? ? ); and Leschziner’s Model (1979) (– ? ? –)

ward the outer bank at the u = 1867 section. Such flow phe-
nomenon can be simulated by considering the secondary flow
effect. In general, the proposed model has satisfactory perfor-
mance compared with the experimental data. In the reach be-
tween u = 357 and 1867 sections, the experimental data and
the simulated results with the secondary flow effect clearly
show that, along the curved channel, the velocity near the in-
ner bank is gradually decreasing whereas the velocity near the
outer bank is increasing. In the reach between u = 357 and
1007, there is little difference between measured and computed
primary velocity near the inner bank. This may be because the
intensity of the secondary flow used in modeling is larger than
that from practical flow characteristics in this reach. Fig. 7
shows the ratios of U/UM across the nondimensional channel
1104 / JOURNAL OF HYDRAULIC ENGINEERING / OCTOBER 1999
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width at the various sections. The results obtained from the
present model are compared with Yeh’s moment-of-momen-
tum model, the 3D model developed by Leschziner and Rodi
(1979), and the experimental data. It is expected that the 3D
model would perform much better than the 2D models because
the flow in the sharply curved bend is highly 3D. Surprisingly,
the present model produces similar results to those of the 3D
model, particularly near the bend exit. Fig. 8 shows the vari-
ations of the sidewall flow depth using free-slip condition
with/without secondary flow along the dimensionless channel
length [channel length over channel width (i.e., S/B). It can be
seen that, along the bend, the water level rises at the outer
bank and falls at the inner bank. Note that, without the sec-
ondary flow effect, the water level will be underestimated at
the outer bank. Furthermore, the consideration of the second-
ary flow effect can decrease the slope of superelevation be-
tween the inner bank and outer bank as observed in measured
data.

Fig. 9 shows the sidewall flow depth in a comparison of the
present model (free-slip), the 2D model (free-slip) developed
by Molls and Chaudhry (1995), the 3D model, and the ex-
perimental data. With the exception of the small deviation at
the upstream boundary, the outer-bank predictions with the
present model is slightly more accurate than those predicted
by 3D and Molls-Chaudhry models. The inner-bank sidewall
flow depth is predicted better by the 3D model. For all the
models considered, the maximum relative error in the sidewall
flow depth occurred along the inner bank. The maximum error
of the present model is about 4.5% and occurred at the di-
mensionless channel length of 1.25. The Molls-Chaudhry
model is about 5.5% at the dimensionless channel length of
3.15, and the 3D model is about 2.5% at the dimensionless
channel length of 2.4.

In short, the different patterns of velocity distribution across
channel width between a mildly curved channel and a sharply
curved channel can be clearly seen by a comparison of Figs.
1(b) and 5(b). The maximum main velocity occurred at the
outer bank in a mildly curved channel due to the secondary
flow effect (de Vriend 1981). In contrast, the maximum main
velocity was observed at the inner bank in a sharply curved
channel, but it is toward the outer bank after exiting the end
of the curved channel. Usually, the large intensity of secondary
flow in the sharp bend will increase the transverse convection
of momentum causing the maximum main velocity toward the
outer bank. On the other hand, as the curve becomes sharper,
the free-vortex effect will grow stronger in the bend like the
potential flow (de Vriend 1981). Hence, such flow phenome-
non in a sharply curved channel may occur because the free-
vortex effect is larger than the secondary flow effect. In ad-
dition, the CPU time needed for Rozovskii’s run is about 1.25
times that of de Vriend and Koch’s run.
FIG. 8. Sidewall Flow Depth (Free-Slip Cases with/without Secondary-Flow Comparison)
9.125:1097-1108.
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Examination of Dispersion Stress Terms

The dispersion stresses are important terms to describe the
secondary flow effect in bend-flow simulations. The role of
dispersion stresses in the simulation of Rozovskii’s case is
discussed first in the following. Since in Rozovskii’s case the
channel geometry is a semicircle, the curvilinear coordinate
system simply becomes a polar coordinate system. The metric
coefficient h1 is equal to the radius of curvature, and h2 is equal
to unity. Therefore the derivative of h1 with respect to h (trans-
verse direction) is unity and that of h2 with respect to j
(streamwise direction) vanishes, so that in the j-direction mo-
mentum equation DSXY is two times larger and DSXX and
DSYY vanish. Similarly, DSXY vanishes and DSXX and
DSYY remain in the h-direction momentum equation. Fig. 10
shows the variation of each dispersion stress components [i.e.,
DSXX, DSYY, and DSXY in (23)–(25)] in the j-direction or
h-direction momentum equations at the centerline along the
dimensionless channel length. The DSYY is the dominant
stress in the bend, which is about seven times larger than
DSXX and three times larger than DSXY. In Fig. 10, the dis-
J. Hydraul. Eng. 19
persion stresses appear to abruptly change near the entrance
and exit of the bend. This may not be unexpected because the
velocity profile introduced for the computation of the second-
ary flow effect is considered under the fully developed con-
dition. The developing variation may exist while flow moves
through the transition region that is from the straight channel
to the bend or near the inflection of the S-curved channel. Fig.
11 shows the variation of some significant forces, including
the centrifugal force (CFX), dispersion force (2?DSXY), and
bed friction (BFX) in the j-direction momentum equation,
along the centerline of the channel. It is clear that the disper-
sion force (2?DSXY) is larger than the bed friction as shown
in Fig. 11. This illustrates the importance of dispersion stresses
in bend-flow simulations. Fig. 12 shows the variation of some
significant forces, including centrifugal force (CFY), disper-
sion forces (DSXX and DSYY), and bed friction (BFY) in the
h-direction momentum equation, along the centerline of the
channel. Fig. 12 shows that the centrifugal force is the major
force component in the h-direction, DSYY has much less ef-
fect, and DSXX and BFY give almost no effect.
FIG. 11. Variation of Force in j-Direction Momentum Equation for Rozovskii’s Simulation

FIG. 10. Variation of Dispersion Stresses along Dimensionless Channel Length for Rozovskii’s Simulation

FIG. 9. Sidewall Flow Depth (2D- and 3D-Model Comparison)
JOURNAL OF HYDRAULIC ENGINEERING / OCTOBER 1999 / 1105
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FIG. 12. Variation of Force in h-Direction Momentum Equation for Rozovskii’s Simulation

FIG. 13. Variation of Dispersion Stresses for de Vriend and Koch’s Simulation

FIG. 14. Variation of Force in j-Direction Momentum Equation for de Vriend and Koch’s Simulation

FIG. 15. Comparison of Forces at Outer and Inner Banks for Rozovskii’s Simulation
OF HYDRAULIC ENGINEERING / OCTOBER 1999

J. Hydraul. Eng. 1999.125:1097-1108.



D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 o

n 
05

/0
1/

14
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.
As for the simulation of de Vriend and Koch’s experiment,
Figs. 13 and 14, respectively, show the comparisons of vari-
ations of dispersion stress terms and significant forces in the
j-direction along the centerline of the channel. In Fig. 13, it
is obvious that the major stress is DSXX, and DSXY and
DSYY are much smaller. In a comparison of the results for
the mildly curved channel (Fig. 13) and the sharply curved
channel (Fig. 10), one can find that the dispersion stresses play
the various level of effect to the flow development in the bend.
For the mildly curved channel, DSXX is the major stress, and
for the sharply curved channel, DSYY becomes the significant
one. Furthermore, as observed from Fig 14, the bed friction is
the dominant force whereas the centrifugal force and disper-
sion force are minor. In comparing Figs. 14 and 11, it may
lead to the consequence that the corresponding intensity of
secondary flow appearing in the sharp bend is stronger than
that in the mild bend because the dispersion force (2?DSXY)
is the most dominant force in the sharp bend. Fig. 15 shows
a comparison of forces between the outer bank and the inner
bank in the j-direction momentum equation for Rozovskii’s
simulation. The dispersion force (2?DSXY) near the inner
bank decreases rapidly from the beginning of the bend to the
end of the curve, whereas at the outer bank it varies gently
along the bend but abruptly increases near the end of the
curve. This phenomenon may demonstrate the transverse con-
vection of streamwise momentum by the variation of the dis-
persion force to simulate the secondary flow effect in the bend.
The bed friction at the outer and inner banks varies in the
same way as the dispersion force.

In summary, dispersion stresses are an important factor that
should be considered in bend-flow simulations. They act as
sink or source in the momentum equations and contribute to
the transverse convection of the momentum. Their relative
contributions in the overall secondary flow effect depend on
flows in mild or sharp bends.

CONCLUSIONS

This paper presents an unsteady 2D depth-averaged model
developed using orthogonal curvilinear coordinate system. The
model takes into account vertical velocity profiles in a bend
using them to capture the effect of dispersion stress on the
floor. Dispersion stress terms serve as a sink or source in the
momentum-conservation equations needed to calculate the
transverse convection of momentum caused by the secondary
flow along a channel bend (Kalkwijk and de Vriend 1980; de
Vriend 1981). If the dispersion stress terms are neglected, the
government equations reduce to a conventional depth-aver-
aged equation assuming uniform velocity over depth. In other
words, the model presented herein should be more applicable
for practical application in bend-flow modeling than the con-
ventional depth-averaged models because of its ability to ac-
count for the secondary flow effect.

Two sets of experimental bend-flow data, one with mild
bends and one with sharp bends, were used to demonstrate the
capabilities of the proposed model. The simulated results and
experimental data agree well in the case of the mildly curved
channel. Although some discrepancies exist between the com-
puted results and the measured data in the sharply curved
channel, the computed results show that the secondary flow
effect has been properly represented by calculating the dis-
persion stresses. According to the analysis of the dispersion
stress terms, the contribution of each dispersion stress com-
ponent has been demonstrated for the mildly curved and
sharply curved channels. The DSXX is the major stress in the
mildly curved channel; however, DSYY becomes the domi-
nant stress in the sharply curved channel. Furthermore, one
can observe from the growth and shrinkage of dispersion stress
for Rozovskii’s simulation along the outer and inner banks, as
J. Hydraul. Eng. 199
shown in Fig. 15, that the shift of the streamwise momentum
from the inner bank to the outer bank can be clearly realized.
In short, the dispersion stresses play an important role in ac-
curately simulating or predicting flow fields in sharp bends as
well as in mild bends.
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APPENDIX II. NOTATION

The following symbols are used in this paper:

Cf = g/c2 = friction factor;
c = Chézy factor;

DSXX = dispersion stress as shown in Eq. (19);
DSXY = dispersion stress as shown in Eq. (21);
DSYY = dispersion stress as shown in Eq. (20);

d = water depth;
E = roughness parameter;
F = body force;
g = gravitational acceleration;

h1, h2 = metric coefficients in j and h directions, re-
spectively;

P = pressure;
r = radius of curvature;

Ti ,j = integrated effective stress;
t = time;
u = j component of velocity;

uw = velocity near wall;
u* = shear velocity;

v = h component of velocity;
zb = bed elevation;
1108 / JOURNAL OF HYDRAULIC ENGINEERING / OCTOBER 1999
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z = (z 2 zb)/d = dimensionless distance from bed;
k = von Kármán’s constant (about 0.4);
nl = laminar kinematic viscosity;
nt = turbulent kinematic viscosity;
r = fluid density;

ti j = shear stress acting on face perpendicular to i-
axis and acting in direction of j-axis;

t , ts bi i
= ith direction components of free-surface and

bed-shear stress, respectively; and
tw = wall shear stress.

Superscript

d = provisional variable in dispersion step;
n = known variables at time level (n);

n 1 1 = unknown variables at time level (n 1 1);
(¯ ) = time average;
¯( )¯ = depth average; and

(9) = fluctuating component.

Subscripts

b = dependent variables at channel bed; and
s = dependent variables at water surface.
999.125:1097-1108.


