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Abstract

A color quantization method is proposed. The method hierarchically uses a bisection tool that preserves certain
color-distribution features. The preserved features are average color, variance in each color dimension, and average color
radius. An algorithm is given that includes the histogram simpli"cation procedure, color palette generation, and pixel
mapping. Experiments show that the proposed method usually obtains acceptable quantized images with competitive
speed. ( 1999 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Eine Methode zur Farbquantisierung wird vorgestellt. Die Methods verwendet ein Werkzeug zur Farbhalbierung
hierarchisch, das gewisse Farbverteilungseigenschaften bewahrt. Diese Eigenschaften sind die durchschnittliche Farbe,
die Varianz in jeder Farbdimension und der durchschnittliche Farbradius. Ein Algorithmus wird angegeben, der ein
Vereinfachungsverfahren des Histogramms, eine Erzeugung der Farbpalette und eine Pixelkarte beinhaltet. Experimente
zeigen, dass die vorgeschlagene Methode akzeptable Quantisierungsbilder mit konkurrenzfaK higer Geschwindigkeit
liefert. ( 1999 Elsevier Science B.V. All rights reserved.

Re2 sume2

Nous proposons une meH thode de quanti"cation de la couleur. Elle utilise hieH rarchiquement un outil de bissection qui
preH serve certaines caracteH ristiques de distribution des couleurs. Celles-ci sont la couleur moyenne, la variance dans
chaque dimension de couleur et le rayon de couleur moyen. Nous donnons un algorithme qui inclus une proceH dure de
simpli"cation d'histogramme, de geH neH ration de palettes de couleurs et de mise en correspondance de pixels. Des
expeH riences montrent que la meH thode proposeH e obtient d'habitude des images quanti"eH es à une vitesse compeH ti-
tive. ( 1999 Elsevier Science B.V. All rights reserved.
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Nomenclature

P The input image
P@ The simpli"ed histogram of P
k The palette size
C

m
The mth color of the palette, 1)m)k

Q The quantized image
S A set of color points in the RGB color

space

S
A
, S

B
A partition of S, i.e., S

A
XS

B
"S and

S
A
WS

B
"0

C
A

The representative color C
A
"(r

A
,g

A
,b

A
)

of S
A

C
B

The representative color C
B
"(r

B
,g

B
,b

B
)

of S
B

p
A

The percentage of points contained in
S
A

p
B

The percentage of points contained in S
B

1. Introduction

Color quantization of an image is a process that
uses a small number of colors to represent the
image. The objective is to approximate as closely as
possible the original full-color images. This tech-
nique is necessary for systems that can display only
a few colors. For example, systems with 8 bits/pixel
frame bu!ers can display only 256 colors. Although
many modern systems have 24 bits/pixel frame
bu!ers and can display 224"16,777,216 colors,
color quantization is still practical for systems run-
ning animations and those used for advanced
graphics applications. It reduces storage require-
ments and saves image transmission time over net-
works.

In general, color quantization can be divided
into two parts: color-palette design, and mapping
of pixels in the original image to colors in the
designed palette. Several approaches can be used to
perform color quantization. Linde et al. proposed
the LBG method [15]. Given an initial palette, the
LBG method minimizes image quantization errors
by repeatedly assigning image pixels to the colors
closest to them in the palette, and then updating
palette colors using the average colors of pixels
assigned to them. The LBG method usually obtains
good color palettes when initial palettes (initial
guesses) are carefully chosen. However, when
a poor initial palette is used, the palette generated
might also be poor. In other words, LBG perfor-
mance is strongly dependent on the initial-palette
choice. Scheunders proposed a genetic approach
[17] to improve LBG's dependence on initial

palettes and to further reduce quantization errors.
Tas,dizen et al. proposed a genetic method [19] for
use in YUV color space. This method minimizes
a distortion measure that uses di!erent weights
for the >, ;, < components (> :; :<"10 : 3 : 3)
when measuring dissimilarities between colors.
A common goal of the methods mentioned above
is minimizing prede"ned distortion measures.
Unfortunately, this kind of approach usually
results in the problem of heavy computation
loads, which makes them impractical for on-line
quantization of colors.

Many methods use top-down (hierarchically di-
visive) approaches to accomplish on-line quantiz-
ation. Among these methods, the median-cut
method [11,14] proposed by Heckbert constructs
the color palette using the strategy that all colors in
the palette should represent approximately equal
numbers of image pixels. The method recursively
subdivides reduced RGB color space (that is, the
input image is "rst prequantized using 3}3}3 bit-
cutting for the RGB components) into rectangular
hyperboxes. During subdivision, the hyperbox con-
taining the largest pixels count is picked and sub-
divided. The division plane passes through the
median point of the projected color distribution
along the dimension with the largest color spread.
The median-cut method has the advantage of being
simple and easy to understand. However, the
quantization error is not small enough.

Joy and Xiang proposed the center-cut method
[12], a modi"cation of the median-cut method. It
uses 3}2}4 bit-cutting to prequantize input images,
which results in the same memory requirement as
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that of the median-cut method, and partially
compensates for the nonuniform nature of RGB
color space. Center-cut divides the hyperbox
along its so-called longest-dimension, and the
division plane passes through the center point
rather than the median point. The center-cut
method is simple and easy to implement. However,
as indicated by the authors in [12], uneven bit-
cutting (3}2}4) may cause undesirable hue shifts
and an auxiliary procedure is required to avoid this
problem.

Wu and Witten proposed the mean-split method
[22,25], which uses the mean rather than the
median of the projected distribution (with the
largest spread) as the partition point. Let ¸ be
the number of clusters assigned to a splitting
hyperbox. The number of clusters, ¸

i
, assigned

to each of the two resulting subboxes is then,
respectively,

¸
i
"¸]Aq

n
i

n
1
#n

2

#(1!q)
<

i
<

1
#<

2
B,

i"1,2. (1)

Here, n
i
is the number of data points contained in

subbox i, and <
i
is the volume of subbox i. The

value of the heuristic parameter q is constrained to
the range [0.5,0.7]. Hyperboxes will not be sub-
divided further if their size are smaller than a pre-
speci"ed value.

Wan et al. proposed the variance-based method
[21,22] which di!ers from the median-cut, center-
cut, and mean-split methods in that the sum of the
square errors in the projected distribution in one of
the three color-component axes is repeatedly mini-
mized (see Eq. (11) of [21]). Therefore, (three-di-
mensional) distortions of quantized images
obtained using this method is usually low (though
not minimal).

Braquelaire and Brun [4] used a similar strategy.
Their method runs in H

1
H

2
H

3
color space

(H
1
"R#G, H

2
"R!G, H

3
"B!1

2
(R#G) ),

and minimizes the quadratic errors associated with
the two subboxes yielded by splitting along the axis
with the largest variance. In general, the median-
cut, center-cut, mean-split, variance-based and
Braquelaire's methods all require that the division
planes are perpendicular to one of the color

axes. This keeps the methods simple and their
computation loads low. However, eliminating
this restriction often leads to smaller quantization
errors.

To address this, Orchard and Bouman proposed
the binary splitting (BS) algorithm [16]. The BS
algorithm uses a division plane that passes through
the mean point of the color set being split and is
perpendicular to the principal axis. They also pro-
posed the erosion-based binary splitting (EBBS)
method based on the BS technique [16] to improve
image quality. The EBBS method takes the spatial
relationship of colors into account and uses more
quantization levels to represent colors which might
yield false contours.

Balasubramanian et al. proposed the PQBS
(binary splitting with prequantization) algorithm
[2] to accelerate the BS algorithm execution
speed. The PQBS algorithm uses a sophisticated
data structure to store the average colors of
the image pixels yielding the same "rst 7}8}6 bits
of the R-G-B components, and uses these aver-
age colors as inputs to the BS algorithm.
This prequantization stage reduces input data
size while retaining image quality. The PQBS
method also uses a spatial-activity measure to
avoid false contours while designing its color
palette.

Wu proposed a color quantization method [23]
based on principal analysis and dynamic program-
ming. Wu's method yields much lower quantization
errors at the expense of added execution time com-
pared to the median-cut and variance-based
methods.

In addition to using the top-down approach
mentioned above, some methods [7,8,26] use a bot-
tom-up approach. The bottom-up approach forms
the color palette by progressively merging input
colors until the number of remaining colors is
equal to (or less than) the predetermined palette
size.

Balasubramanian et al. proposed a sophisti-
cated quantization method called SSQ (sequen-
tial scalar quantization) [3], which individually
quantizes the scalar components of 3D color vec-
tors, thereby generating color palettes more
e$ciently. The quality of quantized images is
also high.
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In this paper, we propose a method that repeat-
edly uses average color, variance, and radius
preserving (ACVRP) bisection to quantize color
images. The bisection method is applied in a
hierarchically divisive manner. The idea about the
ACVRP bisection method is that: whenever a set of
color pixels is to be divided into two subsets, we
always require that the representative colors of the
two generated subsets, weighted by their corre-
sponding population ratios, could preserve color
distribution features of the set being split. Through-
out this paper, the color distribution features
preserved are: average color, variance in each color
dimension, and average color radius. Average color
is preserved (Eqs. (3)}(5) in Section 2) because this
keeps the mean (the average brightness level) of
each color component unchanged. The variance in
each color dimension is preserved (Eqs. (6)}(8) in
Section 2) so that the individual contrast of the red
(R dimension), green (G dimension), and blue (B
dimension) colors could be preserved in a certain
sense, thus avoiding biasing the color hue. The
average color radius is preserved (Eq. (9) in Section
2) to retain the so-called color activity ([1,13], re-
spectively, evaluated in terms of l

1
-norm and

weighted l
2
-norm where our evaluation is l

2
-norm).

(Note that an image with low color activity con-
tains similar colors. A special case is an image with
zero-value color activity, which means the image
contains only one color.) By preserving these color
distribution features, we hope our quantized im-
ages will approximate the original images in the
viewers' eyes. Preserving average color is also used
in dithering techniques (e.g., error di!usion [9]).
Our method and dithering techniques di!er in that
our method tries to preserve average color in the
color palette design procedure, whereas dithering
tries to compensate (during color-mapping using
a given palette) for the shift in the average color of
newly mapped pixels. Such dithering is achieved at
the cost of a substantial computational over-
head, appearance of noise, etc., as indicated in
[2,16]. (Note that dithering can be used as a post-
processing after most color quantization methods
[7,11,16,21,23].) Tsai [20], and Delp and Mitchell
[6], proposed 1D (gray-valued) quantization to
preserve moments (of the "rst, second, and third
orders) of gray images. The novelty of our method

compared to their methods is the generalization
from 1D-scalar to 3D-vector quantization (from
gray to color) and the use of 3D analytical formulas
(derived in Section 2). The di!erences in constraints
on cluster splitting between the proposed method
and the other methods are: our constraints are
intended to make the representatives of the gener-
ated clusters preserve the original data distribution,
instead of balancing populations (e.g. median-cut)
or minimizing (weighted) quantization errors (vari-
ance-based, EBBS, SSQ, etc.). The constraints we
use can also yield 3D formulas for bisecting data
analytically, thus, our bisection method is para-
meter-free and noniterative.

The proposed method uses the histogram-simpli-
"cation procedure illustrated in Section 3 to reduce
data size and decrease computation time. This pro-
cedure is a little similar to that used in the PQBS
method (but we use the "rst 5}5}5 rather than the
7}8}6 bits when prequantizing input images be-
cause, as will be seen later in Tables 2 and 3, data
size can be reduced 15 to 20 times smaller without
degrading image quality much). Throughout this
paper, we consider the proposed method to be run
in RGB color space. It can also be run in other
color spaces since its design is independent of color
space. Some earlier studies showed that better re-
sults can often be obtained by using uniform color
spaces [10,18], however, the price is an increase in
the execution time since the transformation into
uniform color spaces is somewhat time-consuming.
Other studies [3,16] examined the nonlinear rela-
tionship between primary color input values and
display intensities of typical monitors, and then
compensated it. It should also be noted that using
more quantization levels for the luminance term of
the color signal can also increase image quality
because human vision is more sensitive to changes
in luminance than to changes in chromaticity
[3,24].

The remainder of this paper is organized as fol-
lows. In Section 2, the ACVRP bisection method is
illustrated. The whole system for color quantiz-
ation, including histogram-simpli"cation pre-
processing, is introduced in Section 3. An algorithm
is also given there to bene"t readers. Experimental
results are shown in Section 4 and a summary is
given in Section 5.
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2. ACVRP: a bisection method using average color,
variance, and radius preserving

Our method repeatedly bisects data in a hier-
archically divisive manner. Below, we introduce the
bisection tool, ACVRP, designed for the method we
propose.

Suppose an N-point set in RGB color space
S"M(r

i
, g

i
, b

i
)NN

i/1
is to be split into two subsets

S
A

and S
B
. Let C

A
"(r

A
, g

A
, b

A
) and C

B
"(r

B
, g

B
, b

B
)

be the respective representative colors of S
A

and S
B
.

We need to "nd explicit formulas for computing
C

A
and C

B
e$ciently. Let the population percent-

ages of S
A

and S
B

be p
A
"n

A
/N and p

B
"n

B
/N,

respectively. (Here, n
A

and n
B

are the respective
numbers of points [counting multiplicities] con-
tained in S

A
and S

B
.) Since there are eight un-

knowns: p
A
, r

A
, g

A
, b

A
, p

B
, r

B
, g

B
, b

B
, we need eight

constraints. The "rst constraint we will consider is
the natural requirement

p
A
#p

B
"1"100%. (2)

In order to make C
A
"(r

A
, g

A
, b

A
) and C

B
"

(r
B
, g

B
, b

B
), weighted, respectively, by p

A
and p

B
,

preserve the average color of S, we also require that

p
A
r
A
#p

B
r
B
"

1

N

N
+
i/1

r
i
"r6"0, (3)

p
A
g
A
#p

B
g
B
"

1

N

N
+
i/1

g
i
"g6 "0, (4)

p
A
b
A
#p

B
b
B
"

1

N

N
+
i/1

b
i
"bM "0. (5)

(For simplicity, we temporarily assume that the
average color (r6 , g6 , bM ) of the set S being bisected
is (0, 0, 0). This restriction will not be removed
until the "nal paragraph of this section in which
some formulas are useful in the case in which
(r6 ,g6 ,bM )O(0,0,0) are provided.) The remaining four
constraints we use are

p
A
r2
A
#p

B
r2
B
"

1

N

N
+
i/1

r2
i
"r2, (6)

p
A
g2
A
#p

B
g2
B
"

1

N

N
+
i/1

g2
i
"g2, (7)

p
A
b2
A
#p

B
b2
B
"

1

N

N
+
i/1

b2
i
"b2, (8)

and

p
A
Jr2

A
#g2

A
#b2

A
#p

B
Jr2

B
#g2

B
#b2

B

"

1

N

N
+
i/1

Jr2
i
#g2

i
#b2

i
"RM . (9)

Note that r2, g2, b2 are the color variances of S (be-
cause (r6 , g6 , bM )"(0, 0, 0) has been assumed), and RM is
the average color radius of S. Using the eight equa-
tions listed in (2)}(9), we may now solve for p

A
,

(r
A
, g

A
, b

A
), p

B
, and (r

B
, g

B
, b

B
). Eqs. (3)}(5) imply that

r
B
"!

p
A

p
B

r
A
, (10)

g
B
"!

p
A

p
B

g
A
, (11)

b
B
"!

p
A

p
B

b
A
. (12)

Substituting Eqs. (10)}(12) in Eqs. (6)}(8), we obtain

p
A

p
B

r2
A
"

p
A

p
B

(p
B
#p

A
)r2
A
"r2, (13)

p
A

p
B

g2
A
"

p
A

p
B

(p
B
#p

A
)g2

A
"g2, (14)

p
A

p
B

b2
A
"

p
A

p
B

(p
B
#p

A
)b2

A
"b2. (15)

The analytical formulas for computing C
A
"

(r
A
,g

A
,b

A
) are therefore

r
A
"$S

p
B

p
A

r2, (16)

g
A
"$S

p
B

p
A

g2, (17)

b
A
"$S

p
B

p
A

b2. (18)

Once C
A

is known, C
B
"(r

B
, g

B
, b

B
) can also be

evaluated using Eqs. (10)}(12). The remaining prob-
lem is then determining the signs of r

A
, g

A
, and b

A
,

and the values of p
A

and p
B
. To determine the

values of p
A

and p
B
, note that Eq. (2) implies

p
B
"1!p

A
. (19)
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Substituting Eqs. (10)}(12) in (9), we obtain

2p
A
Jr2

A
#g2

A
#b2

A
"RM ,

i.e.,

4p2
A
(r2
A
#g2

A
#b2

A
)"RM 2.

Then, using Eqs. (16)}(18), we obtain

4p
A
p
B
(r2#g2#b2)"RM 2.

Using (19), we obtain

4p
A
(1!p

A
)"RM 2/(r2#g2#b2).

Hence,

4p2
A
!4p

A
#[RM 2/(r2#g2#b2)]"0.

Therefore,

p
A
"

1

2
$

1

2S1!
RM 2

r2#g2#b2
. (20)

To prove p
A

in Eq. (20) always yields real value, we

must show that RM 2)r2#g2#b2. This is guaran-
teed by Schwartz's inequality and is proven in
Appendix A.

Below, we show how to determine the signs of
(r
A
, g

A
, b

A
). Assume there are at least as many color

points in S
A

as there are in S
B
, that is, p

A
*p

B
. Then

p
A
"

1

2
#

1

2S1!
RM 2

r2#g2#b2
. (21)

To determine the signs of (r
A
, g

A
, b

A
) in (16)}(18), we

proceed as follows:

Step 1. Choose the color dimension from among
Mr, g, bN that yields the maximal variance. With-
out loss of generality, r may be chosen, i.e.

r2"maxMr2#g2#b2N. Check whether most of
the color points (r

i
, g

i
, b

i
) in S have positive r

i
. If they

do, set the sign of r
A

positive; otherwise, set the sign
of r

A
negative.

Step 2. Proceed as follows for the remaining color
dimensions (here, g and b):
a. Determine whether most of the color points

(r
i
, g

i
, b

i
) in S yield positive product r

i
g
i
. If they

do, assign g
A

the same sign r
A

has; otherwise,
assign g

A
the opposite sign.

b. Determine whether most of the color points
(r
i
, g

i
, b

i
) in S yield positive product r

i
b
i
. If they

do, assign b
A

the same sign r
A

has; otherwise,
assign b

A
the opposite sign.

Once values for C
A
"(r

A
, g

A
, b

A
) and C

B
"

(r
B
, g

B
, b

B
) have been obtained using the pro-

cedure above, (16)}(18), and (10)}(12), then the par-
tition separating subsets S

A
and S

B
can be con-

sidered a plane perpendicular to the line segment

C
A
C

B
that cuts S into two subsets such that Np

A
points fall in the subset containing the point
C

A
"(r

A
, g

A
, b

A
). However, "nding this plane is

quite time-consuming and may make the whole
method inapplicable to real-time color quantiz-
ation. Therefore, if we note that p

A
and p

B
are just

estimated values, and bear in mind that what we
really want is a way to rapidly bisect data, we then
realize the faster way to partition data is to apply
the nearest neighbor rule: a data point is assigned
to S

A
if and only if the data point is closer to

(r
A
, g

A
, b

A
) than to (r

B
, g

B
, b

B
).

So far, we have assumed that the centroid (r6 , g6 , bM )
of the set S is (0, 0, 0). We now remove this restric-
tion. Whenever the (r6 , g6 , bM ) of S is not (0, 0, 0), we
create a new N-point set SI , which is a translated
version of the N-point set S, such that SI has
the centroid (0, 0, 0). The formulas derived in
this section can then be applied to SI to obtain
the representative colors CI

A
and CI

B
for SI .

We may then translate CI
A

and CI
B

back to
the original coordinate system to obtain the
two desired representative colors C

A
and C

B
for S. Note also that it is then easy to prove that
the "nal values of p

A
, p

B
, C

A
"(r

A
, g

A
, b

A
) and

C
B
"(r

B
, g

B
, b

B
) obtained in this way (translation

and back-translation) can also be expressed directly
in terms of the input data S as follows: replace
Eq. (21) with

p
A
"

1

2
#

1

2S1!
*R2

*r2#*g2#*b2
, (22)

where

*r2"
1

N

N
+
i/1

(r
i
!r6 )2, (23)
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*g2"
1

N

N
+
i/1

(g
i
!g6 )2, (24)

*b2"
1

N

N
+
i/1

(b
i
!bM )2, (25)

and

*R"

1

N

N
+
i/1

J(r
i
!r6 )2#(g

i
!g6 )2#(b

i
!bM )2.

(26)

The computation formula for p
B

is still

p
B
"1!p

A
. (27)

Then replace Eqs. (10)}(12) with

r
B
"

r6!p
A
r
A

p
B

, (28)

g
B
"

g6 !p
A
g
A

p
B

, (29)

b
B
"

bM !p
A
b
A

p
B

. (30)

Finally, replace Eqs. (16)}(18) with

r
A
"r6$S

p
B

p
A

*r2, (31)

g
A
"g6 $S

p
B

p
A

*g2, (32)

b
A
"bM $S

p
B

p
A

*b2. (33)

Of course, the signs in the three equations above
can be determined by a rule analogous to (although
not identical to) that in Steps 1 and 2 above. For
example, the following sentences will replace Step 1,
and an analogous statement will replace Step 2:
Step 1@. Choose the color dimension from among
Mr,g,bN that yields the maximal variance. Without
loss of generality, we may let r be the chosen

dimension, i.e., *r2"maxM*r2, *g2, *b2N. Deter-
mine whether most of the color points (r

i
, g

i
, b

i
) in

S have positive r
i
!r6 . If they do, use a plus sign in

Eq. (31) to evaluate r
A
; otherwise, use a minus sign

in Eq. (31).

3. The proposed method

Our quantization process has two parts: prepro-
cessing, which we call histogram simplixcation, and
the main procedure, which we call hierarchical
divisive quantization. Each pixel in input image
P has a color value expressed as a 24-bit binary
number (8 bits for each of the three color compo-
nents). Part 1 transforms P to P@, and this P@ is for
use as the input to Part 2. In Part 1, we group
together those color points whose 5}5}5 most
signi"cant bits of the r}g}b-component have
identical values. (In other words, each group is
formed of color points so similar to one another
that their 15-bit expressions (5}5}5) are identical,
their 24-bit expressions (8}8}8) might di!er.)
Assume there are J such groups, e.g., P"

G
1
XG

2
X2XG

J
. We then compute the 24-bit

average color <
j
for each group G

j
, which will yield

a simpli"ed histogram for P:

P@"
J
Z
j/1

M<
j
,<

j
,<

j
,2(<

j
repeats DG

j
D times)N,

where DG
j
D denotes the number of points contained

in G
j
. Note that Part 1 reduces the number of

distinct colors in a 512]512 image from, at most,
512]512"262,144 to at most 25`5`5"32,768.
We found that using the output P@ of Part 1 (instead
of the original image P) as the input to Part 2 only
slightly degrades the reconstructed image quality;
however, the computation load in Part 2 is reduced
signi"cantly due to the simpli"cation job done in
Part 1.

In Part 2 (the hierarchically divisive quantization
part), we hierarchically apply the ACVRP bisec-
tion method k!1 times to divide P@, i.e. the sam-
pled colors M<

1
,<

1
,2,<

1
N; M<

2
,<

2
,2,<

2
N; 2;

M<
J
,<

J
,2,<

J
N (counting multiplicities) obtained in

Part 1, into k subsets (usually k"256). The repre-
sentative colors of the k subsets are also generated
in Part 2 to form the desired k-color palette. The
algorithm for this is given below.

Algorithm: The proposed color quantization
method (ACVRP-cut).

Input: An integer k and a full-color (24-bit)
image P"M(r

i
, g

i
, b

i
) D i"1,2,DPDN. (Each color is
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described in 24-bit, and there are at most DPD dis-
tinct colors.)

Output: A quantized image Q containing k colors.
(Each color is described in 24-bit, and there are
only k distinct colors. k@DPD.)

Step 1. Reduce P to P@ using the histogram sim-
pli"cation procedure, i.e., Part 1 described in the
proceeding paragraphs. (Note that each point in P@
is still described in 24-bit.)

Step 2. Initially, let S"P@ and goto Step 4.
Step 3. Choose from among the existing subsets

the subset S whose +
(r,g,b)|S

[(r!r6 )2#(g!g6 )2#
(b!bM )2] is the largest. Here, (r6 , g6 , bM ) is the local
centroid of the subset S. (Note that each subset has
its own local centroid.)

Step 4. Use the *r2, *g2, *b2, and *R2 (de"ned
in Eqs. (23)}(26)) of S to evaluate C

A
"(r

A
,g

A
,b

A
)

and C
B
"(r

B
,g

B
,b

B
) according to Eqs. (22), (27), and

(31)}(33), followed by (28)}(30).
Step 5. Use the two representative colors C

A
and

C
B

to bisect S into the two subsets according to the
nearest-neighbor rule.

Step 6. Repeat Steps 3}5 until there are k subsets.
Step 7. Output the k representatives colors

MC
1
,2,C

k
N of these k existing subsets as the ex-

pected k colors.
Step 8. Do the pixel mapping PPMC

1
,2,C

k
N

according to the following rule: if Part 1 groups
a pixel (r

i
, g

i
, b

i
)3P into, say, group G

j
, and if <

j
,

which is the average color of the group G
j
, is "nally

located in the mth subset (of the k "nal subsets
mentioned in Step 7), then the input pixel (r

i
, g

i
, b

i
)

should be painted using the mth representative
color C

m
.

4. Experimental results

In this section we show the good cluster-splitting
capacity of the proposed ACVRP cut, and compare
it with the cluster-splitting capacities of the other
methods. To make illustration easier, the 2D pro-
jection of the Cherno! Fossil data and Fisher Iris
data were used in the experiment. These two data
sets have often been used in the "eld of data analy-
sis [5], and we scaled the 2D projections of these
two data such that their distributions could be
clearly illustrated.

Fig. 1 shows the result of splitting the Cherno!
Fossil data into three clusters, and Fig. 2 shows the
result of splitting the Fisher Iris data into two
clusters. (Note that, as mentioned in the Introduc-
tion, BS algorithm was used in both EBBS and
PQBS.) The solid lines denote the cut planes, and
the numbers 1 and 2 in Fig. 1 indicate the "rst and
second cuts, respectively. The corresponding root-
mean-square error (RMSE), a commonly used
measure in data-clustering, and the number of mis-
classi"ed points, are both listed in Table 1. Here,
RMSE is the root-mean-square l

2
-norm distance of

each point to the center of the class that the point
belongs to. Figs. 1 and 2 both show that the pro-
posed method made more reasonable splittings
than the other methods. Table 1 also shows the
same holds true for quantity values.

Four experimental applications of the proposed
ACVRP cut to color quantization were performed
using Lena, Boats, Peppers, and Zelda as the input
images (see Fig. 3). The results yielded by the me-
dian-cut [11,14], mean-split [22,25], variance-
based [21,22], center-cut [12], EBBS [16], and
PQBS [2] methods are included for purposes of
comparison. When using the median-cut, mean-
split, variance-based, and center-cut methods, we
followed the original suggestions made by the
authors of these methods for prequantizing images,
i.e., 3}3}3 bit-cutting for the "rst three methods and
3}2}4 bit-cutting for the center-cut method. When
using the EBBS algorithm, we prequantized the
images using the proposed histogram simpli"cation
procedure (5}5}5 grouping) so that the EBBS
method could be compared on equal terms with
our method. When using the PQBS algorithm, we
followed the prequantization method the authors
of PQBS suggested, that is, 7}8}6 grouping. Table
2 shows the number of colors obtained by each
prequantization method for the four images in Fig.
3. We note the following with respect to implemen-
ting these methods: (1) we used q"0.6 in Eq. (1),
and set the minimum hyperbox size equal to 0 for
the mean-split method; (2) we used the nearest-
neighbor rule (choosing the closest of the k repre-
sentative colors) to do pixel mapping for the me-
dian-cut, mean-split, variance-based and center-cut
methods; (3) erosion-based weighting was applied
in the last one-third of the runs, as the authors
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Fig. 1. Three-class clustering results for the Chernoff Fossil data using (a) median-cut, (b) mean-split, (c) variance-based, (d) center-cut,
(e) binary splitting (BS) algorithm, and (f) our method.

suggested, for the EBBS method; (4) we directly
allocated a huge amount of memory (27]28]26)
to the PQBS method in order to simplify the
prequantization procedure, and reduced the time
needed to store and access the prequantized colors;
(5) all the methods were implemented in C on an
SGI Indygo2 workstation. Fig. 4 shows the results
of quantizing Lena into 256 colors. Like EBBS and
PQBS, the proposed method generated acceptable
color smoothness on both the arm and the right
cheek of Lena. Center-cut gave the worst image
quality among the seven methods. The results from
the median-cut and variance-based methods were

better than that of the mean-split method, although
the color smoothness on Lena's arm (from the
median-cut method) and Lena's right cheek (from
the variance-based method) were not very good.

Table 3 lists the results quantizing the images in
Fig. 3 into 256 colors from all methods. The results
were measured using RMS*E (root-mean-square
*E). In the "eld of image processing, this measure-
ment is considered closer to the human perception
[18] (than RMSE). Note that

RMS*E"S
1

M]N

MCN
+
i/1

*E(¸H
Pi
,aH

Pi
,bH

Pi
,¸H

Qi
,aH

Qi
,bH

Qi
)2
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Fig. 2. Two-class clustering results for the Fisher Iris data using (a) median-cut, (b) mean-split, (c) variance-based, (d) center-cut, (e)
binary splitting (BS) algorithm, and (f) our method.

Table 1
RMSEs and numbers of mis-classi"ed data points for the various methods

BS Our
Median-cut Mean-split Variance-based Center-cut algorithm method

Fossil 36.22/13 29.32/6 29.32/6 29.32/6 28.18/4 26.24/0
Iris 79.37/25 76.75/17 50.46/0 76.75/17 51.33/2 50.46/0

and

*E(¸H
Pi
,aH

Pi
,bH

Pi
,¸H

Qi
,aH

Qi
,bH

Qi
)

"J(¸H
Pi
!¸H

Qi
)2#(aH

Pi
!aH

Qi
)2#(bH

Pi
!bH

Qi
)2.

Here, M]N denotes the image size; (¸H
Pi
,aH

Pi
,bH

Pi
) and

(¸H
Qi
,aH

Qi
,bH

Qi
) denote the ¸HaHbH color values of the

i-th pixel in the input image and quantized image.

The computation times listed in Table 3 were mea-
sured in CPU seconds. Apparently, "ner prequant-
ization did help the PQBS method obtain lower
RMS*Es than the other methods yielded. (After
prequantization, the number of prequantized
colors the PQBS used was about 15}20 times larger
than that of the other methods [see Table 2].) The
EBBS method also yielded low RMS*Es. How-
ever, the execution time for the EBBS and PQBS
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Fig. 3. The four full-color images (left to right, top to bottom): Lena, Boats, Peppers, and Zelda.

Table 2
Numbers of distinct colors using various prequantization methods

5}5}5 grouping and
3}2}4 bit-cutting 7}8}6 grouping 3}3}3 bit-cutting

Lena 2650 54063 2596
Boats 2451 39561 2353
Peppers 5113 86816 4972
Zelda 2987 50925 2781

Table 3
RMS*Es and execution time (in s) for the various methods. Images were quantized to 256 colors. The H line shows the average RMS*Es
and time for the four lines above it

Median-cut Mean-split Variance-based Center-cut EBBS PQBS Our method

Lena 3.34/1.02 3.42/1.04 3.22/1.18 4.25/1.05 2.98/5.09 2.78/5.77 2.92/0.91
Boats 7.32/0.97 6.77/0.95 6.35/1.08 13.34/1.02 3.50/4.45 3.34/4.40 3.38/0.88
Peppers 6.90/1.70 5.79/1.69 5.91/1.84 7.82/1.75 5.83/7.17 5.66/8.07 5.69/1.10
Zelda 6.98/1.07 7.04/1.08 4.03/1.20 10.67/1.15 3.59/5.81 3.56/5.62 3.57/0.95

( H 6.14/1.19 5.76/1.19 4.88/1.33 9.02/1.24 3.98/5.63 3.84/5.97 3.89/0.96)
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Fig. 4. 256-color quantized images of Lena obtained from the various methods (left to right, top to bottom): median-cut, mean-split,
variance-based, center-cut, EBBS, PQBS, and our method.

methods were higher than those of the other
methods. On the other hand, although the pro-
posed method used coarser prequantization than
the PQBS method, the RMS*Es of the proposed
method was close to that of the PQBS method. (In
fact, in RMS*E terms, the proposed method was
a little worse than PQBS, but a little better than

EBBS, and much better than the other four
methods.) The execution speed of the proposed
method was the best (similar to the remaining four
methods, but faster than EBBS and PQBS). There-
fore, the proposed method represents a good
compromise between image quality and execution
time.
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5. Summary

The color quantization method proposed here
repeatedly uses a bisection method called ACVRP,
which preserves average color, variance in each
color dimension, and average color radius of the
data set being bisected. To get a k-color palette,
a histogram-simpli"cation procedure is "rst used to
transform the input image P into a simpler form P@.
The ACVRP bisection method is then applied
k!1 times in a hierarchically divisive manner such
that P@ is split to k subsets. The k colors of the
palette, which are the k representative colors of
these k subsets, are automatically generated by
analytical formulas. In the "nal step (pixel-map-
ping), it is not necessary to use the common near-
est-neighbor rule to reduce quantization errors
because our partition result (the k obtained subsets)
are good enough so no re-allocation of pixels from
one subset to another is needed to make our errors
competitive. As shown by the experimental results,
images quantized using the proposed method were
visually acceptable. In commercial application, i.e.,
quantizing images into 256 colors, the proposed
method usually gave low RMS*Es and attractive
execution speed.

Appendix A

RM 2)r2#g2#b2.

Proof. According to Eq. (9),
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. On the other hand,
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Let X"(1/N,2,1/N), and Y"(R
1
,R

2
,2,R

N
) be

two N-dimensional vectors. Then
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where the inequality is due to Schwartz's in-
equality.
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