
A ®nest partitioning algorithm for attribute grammars

Wuu Yang

Department of Computer and Information Science, National Chiao-Tung University, Hsin-Chu, Taiwan

Received 4 August 1999; accepted 25 February 2000

Abstract

The attribute dependence graph of a syntax tree may be partitioned into disjoint regions. Attribute
instances in di�erent regions are independent of one other. The advantages of partitioning the attribute
dependence graph include simplifying the attribute grammar conceptually and allowing the possibility of
parallel evaluation. We present a static partitioning algorithm for attribute grammars. The algorithm
builds the set of all feasible partitions for every production by analyzing the grammar. After the
attributed syntax tree is constructed, one of the feasible partitions is chosen for each production instance
in the syntax tree. Gluing together the selected partitions for individual production instances results in a
partition of the attribute dependence graph of the syntax tree. No further merging or partitioning is
needed at evaluation time. In addition to static partitioning, the algorithm always produces the ®nest
partition of every attribute dependence graph. An application of the partitioning technique is the
strictness analysis for a simple programming language that contains no higher-order functions. 7 2000
Elsevier Science Ltd. All rights reserved.

Keywords: Attribute grammars; Partitioning; Strictness analysis; Parallel evaluation

1. Introduction

Since their introduction in 1968 [1], attribute grammars have attracted much research
interest. Attribute grammars [2] are a concise and powerful formalism for specifying
computations on context-free languages.
A main research focus on attribute grammars is designing algorithms for evaluating the

attribute instances in a syntax tree. Traditionally, researchers attempt to design sequential
evaluation algorithms. Due to the rapid progress in multi-processing hardware, it is interesting
to design parallel evaluation algorithms. In many parallel evaluation methods, an attributed

Computer Languages 25 (1999) 145±164

0096-0551/00/$ - see front matter 7 2000 Elsevier Science Ltd. All rights reserved.
PII: S0096-0551(00)00003-5

www.elsevier.com/locate/complang

syntax tree or its attribute dependence graph is partitioned into blocks; the blocks are assigned
to di�erent processes for evaluation.
Partitioning may be based on nonterminals. Certain nonterminals may be designated as

dividers. The instances of the dividers divide a syntax tree into non-overlapping blocks.
Partitioning may also be based on productions in a similar fashion. Because dependence
relations among attribute instances are ignored in these partitioning methods, processes need to
make frequent communication in order to exchange attribute values. Communication slows
down evaluation seriously.
If the attribute instances evaluated by di�erent processes are independent, communication

between processes can be completely eliminated. Therefore, partitioning based on attribute
dependence relation is also an attractive method. There are generally two approaches in
dependence-based partitioning. In the dynamic approach, partitioning is performed by the
attribute evaluator after the attribute dependence graph of a syntax tree is constructed. In the
static approach, partitioning is carried out by a grammar analyzer before the attribute
dependence graph is constructed. There are also hybrid methods in which some kind of
preliminary partitioning is carried out by gathering useful information about the underlying
attribute grammar. When attribute instances in a syntax tree are evaluated, the attribute
evaluator performs further merging or partitioning based on the preliminary information to
produce the actual partitioning. In the hybrid methods, the overhead of partitioning is split
among the grammar analyzer and the evaluator.
In this paper, we present a static partitioning algorithm. A production may appear more

than once in a syntax tree. The attribute dependence graphs of di�erent instances of the same
production may be partitioned di�erently due to di�erent surrounding environments in the
syntax tree. The algorithm ®rst computes all possible partitions of the attribute occurrences of
individual productions and the environments under which the partitions are applied. After the
syntax tree is constructed, the attribute evaluator selects a partition for each production
instance in the syntax tree. A partition of the attribute dependence graph of the syntax tree is
naturally induced from the partitions of individual production instances in the tree. The
attribute evaluator does not need to perform further merging or partitioning.
In addition to dividing the attribute dependence graphs into disjoint regions, dependence-

based partitioning algorithms should divide the attribute dependence graphs into as many
regions as possible in order to increase the e�ectiveness of the parallel evaluation. The
partitioning algorithm presented in this paper produces the ®nest partitioning of the attribute
dependence graphs. This means that the result of partitioning exposes the maximal parallelism
for evaluation in an attributed syntax tree.
When we attempt to specify the properties of a new arti®cial language, such as a

programming language, with attribute grammars, it is not clear to us how to divide the
speci®cation into independent parts. The partitioning algorithm presented in this paper is a
useful tool for this purpose. It can identify independent components of a complicated attribute-
grammar speci®cation. Furthermore, these independent components can be evaluated in
parallel.
The partitioning algorithm presented in this paper may also be used for strictness analysis

for languages without higher-order functions. Note, in most programming languages, the if±
then±else constructs are non-strict, i.e. only one of the two branches needs to be executed.

W. Yang / Computer Languages 25 (1999) 145±164146

Thus, it is possible to avoid evaluating certain parameters to a procedure or a function if we
can decide that the parameters are used only in one branch of an if±then±else construct. To
perform strictness analysis, we ®rst translate a program into an attribute grammar and then
partition the attributes. In Section 5, we present the detailed method.
This paper is concerned only with the partitioning algorithm. Visit-oriented parallel

evaluation plans may also be generated by extending the algorithms presented in [3], as
follows: a set of plans is generated for each production in the attribute grammar. One of the
plans is selected for each production instance q in the syntax tree. The selection is based on
the parent and child production instances of q in the syntax tree and the partitions applied
at these production instances. The combination of the partitioning algorithm and the visit-
oriented parallel evaluation algorithms, thus, form a basis of the parallel evaluation system.
The parallel evaluation system is applicable to all non-circular attribute grammars.
In Klein's parallel ordered attribute grammars [4], the dependence graphs of individual

productions are divided into segments. In the attribute dependence graph of a syntax tree,
segments from distinct production instances that share common attribute instances are glued
together at evaluation time. Segments are not independent; therefore, communication among
the evaluation processes may be required. Klaiber and Gokhale [5] add parallelism to
Katayama's algorithm [6] by re-structuring the syntax tree so that evaluation in a list
production is translated into a loop. Parallelism is, therefore, extracted from the loop. Reps's
scan grammar [7] carries a similar nature. However, parallelism is explicitly expressed in a
data-parallel statement within an attribute grammar. In Boehm's algorithm [8], a syntax tree,
rather than the attribute dependence graph, is divided into disjoint regions. Each region is
assigned to a process. Attribute instances in a region may be evaluated according to
statically generated plans or according to dynamically computed dependencies. Jourdan
surveyed various parallel attribute evaluation methods on various hardware architectures [9].
One of the static methods is based on the visit sequence. The fork operations and
corresponding join operations are added in the visit-sequence-based plans to evaluate
independent attribute occurrences in a production concurrently. Kuiper and Swierstra [10]
de®ned tree-based distributors and attribute-based distributors that divide the syntax tree and
the attribute dependence graph, respectively, into disjoint, connected regions. By contrast, the
partitioning algorithm presented in this paper is a dependence-based approach. Zaring [11]
proposes several synchronous and asynchronous parallel evaluation algorithms for attribute
grammars. The asynchronous methods add appropriate spawn and lock operations to the
statically generated evaluation plans in order to coordinate the parallel evaluation processes.
The synchronous methods make use of fork (which is called synchset in his thesis) and
implicit join operations in the evaluation plans to evaluate mutually independent attribute
instances. In contrast to the above algorithms, the algorithm presented in this paper always
assigns inter-dependent attribute instances to the same process for evaluation.
Jourdan [9] and Zaring [11] also address various incremental parallel evaluation methods for

attribute grammars, which is not considered in this paper.
The remainder of this paper is organized as follows. In Section 2, we introduce the notations

used in this paper. Section 3 presents the partitioning algorithm. The selection algorithm is
presented in Section 4. In Section 5, we discuss the correctness and the ®nest partitioning
properties of the algorithm. Section 6 describes an application of the partitioning technique

W. Yang / Computer Languages 25 (1999) 145±164 147

presented in this paper to the strictness analysis for a simple programming language that
contains no higher-order functions. Section 7 concludes this paper.

2. Notations

In this section, we de®ne the notations used in this paper. Basically, we adopt Kastens's
notations [12]. An attribute grammar is built from a context-free grammar (N, T, P, S), where
N is a ®nite set of nonterminals, T is a ®nite set of terminals, S is a distinguished nonterminal,
called the start symbol, and P is a set of productions of the form: X 4 a, where X is a
nonterminal and a is a string of terminals and nonterminals. For each nonterminal X, there is
at least one production whose left-hand-side symbol is X. In this paper, a production q
will be written as X04 a0X1a1X2a2 . . .Xk ak, where X0, X1, X2, . . . , Xk are nonterminal symbols
and a0, a1, a2, . . . , ak are (possibly empty) strings of terminal symbols. Furthermore, we assume
that the start symbol does not appear in the right-hand side of any production.
As usual, we require that the sets of terminals and nonterminals be disjoint. In this paper, a

symbol refers to a terminal or a nonterminal. There may be several occurrences of a symbol in
a production. Furthermore, a production may be applied more than once in a syntax tree. In
this case, we say that there are many instances of a symbol occurrence in the syntax tree.
Attached to each symbol X of the context-free grammar is a set of attributes. Intuitively,

instances of attributes describe the properties of speci®c instances of symbols in a syntax tree.
In order to simplify our presentation, we assume that attributes of di�erent symbols have
di�erent names. The attributes of a symbol are partitioned into two disjoint subsets, called the
inherited attributes and the synthesized attributes. We will assume that the start symbol has no
inherited attributes and that a terminal has only a synthesized attribute that represents the
character string comprising the terminal symbol.
An attribute a of a symbol X is denoted by X.a. Since there may be many occurrences of a

symbol, there are many occurrences of an attribute in a production. Similarly, since a
production may be applied more than once in a syntax tree, there may be many instances of an
attribute occurrence in a syntax tree.
There are attribution equations de®ning these attributes. In a production, there is an

attribution equation de®ning each synthesized attribute occurrence of the left-hand-side symbol
and each inherited attribute occurrence of the right-hand-side symbols. An example attribute
grammar is shown in Fig. 1(a).
Attribution equations indicate dependencies among attribute occurrences in a production.

The dependency relations in a production q may be represented in the dependence graph of q,
denoted by DP(q), in which nodes denote attribute occurrences in production q, and edges
dependencies between attribute occurrences. An edge X.a 4 Y.b means that the attribute
occurrence X.a is a parameter to the function de®ning the attribute occurrence Y.b in
production q. Fig. 1(b) shows the DP graphs for the example grammar in Fig. 1(a).

De®nition. The attribute dependence graph of an attributed syntax tree is made up of a ®nite set
of nodes and a ®nite set of directed edges in which every attribute instance of every symbol in
the syntax tree is represented by a node and every dependency between two attribute instances

W. Yang / Computer Languages 25 (1999) 145±164148

is represented by an edge.

Two syntax trees based on the grammar in Fig. 1 and the corresponding attribute
dependence graphs are shown in Fig. 7.

Fig. 1. An attribute grammar and its DP.

W. Yang / Computer Languages 25 (1999) 145±164 149

3. The PartitionAG algorithm

An attribute dependence graph may be partitioned into disjoint regions so that there is no
dependence relation among attribute instances in di�erent regions. There are, in general, two
approaches to partitioning an attribute dependence graph. We may partition the attribute
dependence graph of a syntax tree after the attribute dependence graph has been built up. This
is a dynamic approach. In a dynamic approach, the partitioning must be done on a per tree
basis, which slows down the evaluation process. Alternatively, we may partition the
dependence graphs of individual productions. When the attribute dependence graph of a syntax
tree is built by gluing together the dependence graphs of individual productions, a partition of
the attribute dependence graph is naturally induced from the partitions of the dependence
graphs of individual productions. This is a static approach. The advantage of a static approach
is that partitioning is performed on the attribute grammars, not on the attribute dependence
graphs. The evaluator does not need to spend time on partitioning when evaluating the
attribute instances in a syntax tree. In this section, we propose a static partitioning algorithm.
A cooperating evaluation algorithm will be presented in the next section.
There are many criteria to judge a partition of an attribute dependence graph. From the

point of view of parallel evaluation, we would prefer that attribute instances from di�erent
regions are independent and the partition is the ®nest one.

De®nition. A feasible partition of an attribute dependence graph is a partition of the nodes of
the attribute dependence graph that satis®es the following condition: Let X.a and Y.b be two
attribute instances in the attribute dependence graph. If there is a dependence relation X.a 4
Y.b in the dependence graph, the two nodes X.a and Y.b are in the same partition block.

For instance, the partition {ha, b, e, f, ji, hc, d, g, h, ki} is a feasible partition of the
attribute instances in Fig. 7(a) (the notation ha, b, e, f, ji means that ha, b, e, f, ji is a block
of the partition). So is the partition {ha, b, e, f, j, c, d, g, h, ki}. Note that some partitions
are not feasible. For instance, the partition {ha, b, e, fi, hc, d, g, h, j, ki} is not a feasible
one for the attribute dependence graph in Fig. 7(a). There is a straightforward algorithm to
partition a graph: the ®nest feasible partition of an attribute dependence graph is the
re¯exive, symmetric, transitive closure of the graph, which is an equivalence relation or,
equivalently, a partition.
An attribute dependence graph is partitioned into independent regions by a feasible

partition. Attributes in di�erent regions can be evaluated by di�erent processes on di�erent
processors concurrently. There is no need for synchronizing the evaluation processes.

De®nition. Let p be a feasible partition of the attribute dependence graph of an attributed
syntax tree T. Let X be an instance of a nonterminal in T (i.e. an internal node in T). The
projection of p onto X's attribute instances is a feasible partition of X's attributes.

A nonterminal X may appear in T more than once. Though di�erent instances of X have the
same attribute instances, their attribute instances may be partitioned in di�erent ways. All
these partitions of X's attributes are feasible partitions. For instance, in Fig. 7(a), the set of

W. Yang / Computer Languages 25 (1999) 145±164150

attributes of nonterminal X is partitioned as {ha, bi, hc, di} whereas it is partitioned as {ha, b,
c, di} in Fig. 7(b). Both are feasible partitions. Note that some partitions are not feasible. For
instance, consider the grammar in Fig. 1. The partition {hai, hb, c, di} of X's attributes is not
feasible because it is not a partition of the attribute instances of any instance of X in any
syntax tree.
Because a nonterminal can carry only a ®nite number of attributes, the number of feasible

partitions of a nonterminal's attributes is also ®nite. The PartitionAG algorithm in this section
computes all the feasible partitions of a nonterminal's attributes. The evaluation algorithm in
the next section attempts to ®nd a feasible partition of the attribute dependence graph of a
syntax tree by selecting a feasible partition for each production instance in the syntax tree and
gluing together these feasible partitions.

De®nition. Let p be a feasible partition of the attribute dependence graph of an attributed
syntax tree T. Let q be an instance of a production in T. The projection of p onto q's attribute
instances is a feasible partition of q's attribute occurrences.

Similarly, a production q may appear in T more than once. Though di�erent instances of q
have the same attribute instances, their attribute instances may be partitioned in di�erent ways.
All these partitions of q's attribute occurrences are feasible partitions. For instance, in Fig. 7(a),
the set of attribute instances of production P0 is partitioned as {ha, b, ji, hc, d, ki} whereas it is
partitioned as {ha, b, c, d, j, ki} in Fig. 7(b).
The PartitionAG algorithm also computes all the feasible partitions of the attribute

occurrences in every production. In computing the feasible partitions, we need to make use of
certain re®nements of the feasible partitions, which is de®ned as follows. Let X be a
nonterminal node in a syntax tree T. Let TX be the subtree of T rooted at X. Let G be the
attribute dependence graph of T. The attribute dependence graph GX corresponding to TX is a
sub-graph of G that contains a node for each attribute instance of symbols in TX and all the
edges of G of which both end points are attribute instances of symbols in TX. Note that GX

does not contain the upward transitive dependencies (to be discussed later in this section)
among X's attribute instances.

De®nition. Let X be a nonterminal node in a syntax tree T. Let TX be the subtree of T rooted
at X. Let GX be the attribute dependence graph corresponding to TX. The partition based on
the projection of GX onto X's attributes is called a plausible partition of X's attributes.

Obviously, a plausible partition of X's attributes is a re®nement of a feasible partition of X's
attributes. For instance, from Fig. 7(b), we know that {he, hi, hf, gi} is a plausible partition,
which is a re®nement of the feasible partition {he, f, g, hi}. We may de®ne the plausible
partitions of attribute occurrences of a production in a similar way.

De®nition. Let X be a nonterminal node in a syntax tree T. Let q be the production applied at
X in T. Let TX be the subtree of T rooted at X. Let GX be the attribute dependence graph
corresponding to TX. The partition based on the projection of GX onto the attribute
occurrences of q is called a plausible partition of the attribute occurrences of q.

W. Yang / Computer Languages 25 (1999) 145±164 151

Similarly, a plausible partition of the attribute occurrences of a production is a re®nement of
a feasible partition of the attribute occurrences of the production.
In the rest of this paper, we will use the Greek letter s to denote a partition of a

nonterminal's attributes and the Greek letter p to denote a partition of the attribute
occurrences in a production.
A syntax tree is made up of many instances of productions. An instance of a production in a

syntax tree is surrounded by the subtrees rooted at the nonterminals on the right-hand side of
the production and the context to which the instance of the production is adjoined. Fig. 2
shows a syntax tree that contains an instance of production p. The three subtrees and the
context of the instance of production p are also annotated in the ®gure.
In order to partition the dependence graph of a production p, three kinds of dependencies

must be taken into consideration: (1) the dependencies due to attribution equations in
production p; (2) the dependencies due to the context of an instance of p in a syntax tree; and
(3) the dependencies due to the subtrees rooted at the nonterminals on the right-hand side of
production p. The ®rst kind of dependence, which is called the base dependence, occurs among
attribute occurrences in p. The second kind of dependence, which is called the upward transitive
dependence, occurs among attribute occurrences of the left-hand side nonterminal. The third
kind of dependence, which is called the downward transitive dependence, occurs among attribute
occurrences of individual nonterminals on the right-hand side of p. Di�erent instances of
production p in a syntax tree carry the same base dependencies but possibly di�erent upward
and downward transitive dependencies. For this reason, a production may have more than one
feasible partition on its attribute occurrences. A key observation of the PartitionAG algorithm
is that the upward and downward transitive dependencies of an instance of a production are
independent. (This is due to the fact that the context and the subtrees of a production instance
do not overlap.) The two kinds of transitive dependencies may be computed separately.

De®nition. The base partition pq, for each production q, is the partition of attribute occurrences
in q based solely on the dependences induced by the attribution equations in production q.

Fig. 2. The context and the subtrees of an instance of a production.

W. Yang / Computer Languages 25 (1999) 145±164152

The base partition pq may be computed from the dependence graph DP(q) of production q.
Note that the base partition pq must be a re®nement of every feasible and every plausible
partition of q's attribute instances.
The PartitionAG algorithm in Figs. 3 and 4 computes all the feasible partitions of the

attribute occurrences of the productions. The algorithm consists of two passes. Each pass
is a repeat loop that examines the productions repeatedly. In the ®rst pass, PartitionAG
computes all the plausible partitions of the attributes of individual nonterminals. In the
second pass, the algorithm ®nds all feasible partitions of the attribute occurrences in
individual productions.
In the ®rst pass, the algorithm considers both the base dependencies and the downward

transitive dependencies. For each production q: X0 4 a0X1a1X2a2 . . .Xkak, the PartitionAG
algorithm determines a plausible partition of X0's attributes by merging the base partition of q
and a plausible partition of Xi's attributes, where i = 1, 2, . . . , k, and then projecting the
resultant partition onto X0's attributes. The feasible partitions computed during the ®rst pass
are stored as the S(qvs1, s2, . . . , sk) function, which maps a combination of plausible partitions
of Xi's attributes, where i=1, 2, . . . , k, to a plausible partition of X0's attributes.
All the plausible partitions of the attributes of nonterminals are also collected in the X

function. When the repeat loop of the ®rst pass completes, X(S), where S is the start symbol of
the grammar, is a set of plausible partitions of the attributes of S.
Because we assume that the start symbol S of the grammar does not appear on the right-

hand side of any production, S is always located on the root of a syntax tree. Note that there
is no upward transitive dependence among the attributes of the start symbol. By the de®nition
of plausible and feasible partitions, a plausible partition of the attributes of S is also a feasible
partition of the attributes of S. Therefore, X(S) is also the set of feasible partitions of the
attributes of S. The PartitionAG algorithm uses the Y function to collect feasible partitions of
attributes of nonterminals. Hence, we have Y(S)=X(S).
In the second pass, the algorithm considers all three kinds of dependencies. For each

production q: X0 4 a0X1a1X2a2 . . .Xkak , the PartitionAG algorithm determines a feasible
partition of the attribute occurrences in production q by merging the base partition of q, a
feasible partition of X0's attributes (called s0), and a plausible partition of Xi's attributes
(called si), where i = 1, 2, . . . , k. The result of merging, called p, is a feasible partition of the
attribute occurrences of production q. The partition p is stored as P(qvs0, s1, . . . , sk). The P
function will be used in the evaluation of attributes.
In addition to constructing the P function in the second pass, the PartitionAG algorithm

also ®nds feasible partitions of attributes of nonterminals. Note that the projection of p onto
the attributes of Xi, for i = 1, 2, . . . , k, is a feasible partition of the attributes of Xi. This
feasible partition is stored as F(q, p, i). When a new feasible partition of the attributes of a
nonterminal, say X, is found, it is used to compute new feasible partitions of the attribute
occurrences of productions whose left-hand sides are the nonterminal X. The repeat loop of the
second pass completes when no more new feasible partitions of attributes of nonterminals can
be found.
There is a slight ambiguity in the above discussion. In the S and P functions, k denotes the

number of nonterminals on the right-hand side of a production. Obviously, k is probably
di�erent for di�erent productions. This ambiguity can be remedied by adding an extra level of

W. Yang / Computer Languages 25 (1999) 145±164 153

Fig. 3. The PartitionAG algorithm.

W. Yang / Computer Languages 25 (1999) 145±164154

subscripts. We determined to leave the ambiguity in the algorithm in order to simplify the
presentation of the PartitionAG algorithm.

The PartitionAG algorithm may be applied at the same time when evaluation plans are
generated.

Example. We will use the example in Fig. 1 to illustrate the PartitionAG algorithm. There are
three nonterminals S, X, and Y in the grammar. Initially,
X(S)=X(X)=X(Y)=Y(S)=Y(X)=Y(Y)=;. The base partitions of the productions are as
follows: pP0={hai, hb, ji, hci, hd, ki}, pP1={ha, ei, hb, fi, hc, gi, hd, hi}, pP2={ha, ei, hb, d, f, hi,
hc, gi}, pP3={he, fi, hg, hi}, and pP4={he, hi, hf, gi}.

In the ®rst iteration of the ®rst repeat loop, the algorithm considers only productions P3 and
P4 because the right-hand sides of the two productions do not contain any nonterminal

Fig. 4. The project and merge functions.

W. Yang / Computer Languages 25 (1999) 145±164 155

symbols. Let s1=pP3 and s2=pP4. At the end of the ®rst iteration of the ®rst repeat loop, we
have S(P3)=s1, S(P4)=s2, and X(Y)={s1, s2}. Note that there are two partitions of Y's
attributes, i.e. s1 and s2.
During the second iteration of the ®rst repeat loop, the algorithm considers the four

productions: P1, P2, P3, and P4. Let s3={ha, bi, hc, di}, s4={ha, di, hb, ci}, and s5={ha, b, c,
di}. At the end of the second iteration of the ®rst repeat loop, we have S(P1vs1)=s3,
S(P1vs2)=s4, S�P2vs1)=s5, S�P2vs2)=s5, and X�X �={s3, s4, s5}. Note that there are three
partitions of X's attributes, i.e. s3, s4, and s5. There is no change concerning productions P3
and P4 and the nonterminal Y.
During the third iteration of the ®rst repeat loop, the algorithm considers all ®ve

productions. Let s6={hji, hki}, and s7={hj, ki}. At the end of the third iteration of the ®rst
repeat loop, we have S(P0vs3)=s6, S�P0vs4)=s6, S�P0vs5)=s7, and X(S �={s6, s7}. There is
no change concerning productions P1, P2, P3, and P4 and the nonterminals X and Y.
After three iterations, no more change will occur and hence the ®rst repeat loop terminates.

At the beginning of the second repeat loop, Y(S)=X(S).
In the ®rst iteration of the second repeat loop, the algorithm ®rst considers production P0.

Let p1 � fha; b, ji, hc, d, kig: Because merge�merge�pP0, s6�, s3� � p1, P�P0 j s6, s3� � p1:
Because project�p1, X's attributes� � fha; bi, hc, dig � s3, F�P0, p1, 1� � s3: Similarly, we may
compute the P and F functions. The various functions are summarized in Fig. 5. In Fig. 5,
p1={ha, b, ji, hc, d, ki}, p2={ha, d, ki, hb, c, ji}, p3={ha, b, c, d, j, ki}, p4={ha, b, e, fi, hc, d,
g, hi}, p5={ha, b, c, d, e, f, g, hi}, s8={he, f, g, hi}, p6={ha, d, e, hi, hb, c, f, gi}, p7={he, fi,
hg, hi}=s1, and p8={he, f, g, hi}=s8. q
The results computed by the PartitionAG algorithm will be used by the EvaluateAttributes

algorithm (to be presented in the next section) when the attributes of a syntax tree are
evaluated. After presenting the EvaluateAttributes algorithm, we will prove, in Section 5, that
the two algorithms are correct in the sense that the two algorithms together discover the ®nest
partitioning of the attribute instances of a syntax tree.

4. Selecting feasible partitions

The PartitionAG algorithm in the previous section computes all feasible partitions of the
attribute occurrences of productions. After a syntax tree is built up by the parser, the
EvaluateAttributes algorithm in Fig. 6 chooses a feasible partition for every production instance
in the syntax tree. The EvaluateAttributes algorithm consists of two passes. During the ®rst
pass, the algorithm traverses the syntax tree bottom up. A plausible partition of the attribute
instances of every nonterminal node X is chosen. The choice is based on the plausible
partitions of the attribute instances of the nonterminal children of X. The necessary
information for selecting plausible partitions is encoded in the S function, which is constructed
by the PartitionAG algorithm. At the end of the ®rst pass, a plausible partition of the attribute
instances of the root of the syntax tree has been chosen.
Because the context of the root node is a (trivial) empty graph, no additional constraints will

be imposed by the context of the root. Therefore, the plausible partition of the attribute
instances of the root is also a feasible partition.

W. Yang / Computer Languages 25 (1999) 145±164156

During the second pass, which is a top-down traversal of the syntax tree, the
EvaluateAttributes algorithm makes use of the P function to select a feasible partition for each
production instance in the syntax tree. For each production instance, the selection is based on
the feasible partition of the attribute instances of the left-hand-side nonterminal and the
plausible partitions of the attribute instances of the right-hand-side nonterminals. After a
feasible partition for a production instance is selected, the EvaluateAttributes algorithm makes
use of the F function to select a feasible partition of the attribute instances for every
nonterminal on the right-hand side of the production. The selected feasible partition of a
nonterminal's attributes will be used to determine a feasible partition of the child production.
After the second pass completes, a feasible partition has been selected for every production

instance in the syntax tree. Gluing together these feasible partitions will result in a feasible
partition of the whole syntax tree. Note that no merging or partitioning is needed during
evaluation.
After the attribute dependence graph of the syntax tree is partitioned into independent

Fig. 5. The P and F functions for the example in Fig. 1.

W. Yang / Computer Languages 25 (1999) 145±164 157

regions, the attribute instances in di�erent regions may be evaluated concurrently, possibly by
independent evaluators.

Example. Fig. 7 shows two syntax trees based on the attribute grammar in Fig. 1. The ®rst
syntax tree is made up of three productions: P0, P1, and P3. In the bottom-up pass of the
EvaluateAttributes algorithm, a plausible partition is chosen for each nonterminal node. The
partition chosen for the Y node is S(P3), which is s1; the partition chosen for the X node is
S(P1vs1), which is s3; and the partition chosen for the S node is S(P0vs3), which is s6. During
the top-down pass, the EvaluateAttributes algorithm chooses a partition for each production
instance in the syntax tree. The partition chosen for P0 is P(P0vs6, s3), which is p1. Because
F(P0, p1, 1)=s3, the partition chosen for P1 is P(P1vs3, s1), which is p4. Because F(P1, p4,

Fig. 6. The EvaluateAttributes algorithm.

W. Yang / Computer Languages 25 (1999) 145±164158

1)=s1, the partition chosen for P3 is P(P3vs1), which is p7; The attribute instances in the
syntax tree is thus partitioned into two independent regions by p1, p4, and p7: {hj, a, b, e, fi, hk,
c, d, g, hi}.

The second syntax tree is made up of three productions: P0, P2, and P4. In the bottom-up
pass of the EvaluateAttributes algorithm, a partition is chosen for each nonterminal node. The
partition chosen for the Y node is S(P4), which is s2; the partition chosen for the X node is
S(P2vs2), which is s5; and the partition chosen for the S node is S(P0vs5), which is s7. During
the top-down pass, the EvaluateAttributes algorithm chooses a partition for each production
instance in the syntax tree. The partition chosen for P0 is P(P0vs7, s5), which is p3. Because
F(P0, p3, 1)=s5, the partition chosen for P1 is P(P1vs5, s2), which is p5. Because F(P1, p5,
1)=s8, the partition chosen for P3 is P(P3vs8), which is p8; The attribute instances in the
syntax tree is thus partitioned into a single region by p3, p5, and p8: {hj, k, a, b, c, d, e, f, g, hi}.
q

5. The ®nest partition property

There may be more than one feasible partition on the attribute dependence graph of a
syntax tree. These feasible partitions may be organized as a lattice by the re®nement relation.
In this section, we show that the partition found by the PartitionAG and EvaluateAttributes
algorithms is the ®nest one, i.e. it is the re®nement of all feasible partitions. We will need a
new de®nition.

Fig. 7. Two syntax trees.

W. Yang / Computer Languages 25 (1999) 145±164 159

De®nition. Let G be the attribute dependence graph of a syntax tree and a and b be two
attribute instances (i.e. two nodes) in G. We say that a and b are related in G, denoted by a2
b, if and only if one of the following four conditions holds: (1) a and b are the same attribute
instance; (2) a is dependent on b in G; (3) b is dependent on a in G; or (4) there is an attribute
instance c in G such that c is related to both a and b.

In short, the2 relation is the re¯exive, symmetric, and transitive closure of the dependence
relation. The following theorem is an immediate corollary to the above de®nition.

Theorem. Let G be the attribute dependence graph of a syntax tree. A partition p on G is a
feasible partition if and only if related attribute instances are in the same partition block in p.

We need to prove the following theorem.

Theorem. Let G be the attribute dependence graph of the syntax tree T. Let a and b be two
attribute instances (nodes) in G. Let p be the partition of G computed by the PartitionAG and
EvaluateAttributes algorithms. a2b if and only if a and b belong to the same partition block
in p.

Proof. First suppose that a 2 b. By the de®nition of the 2 relation, there is a sequence of
attribute instances m1, m2, . . . , mj, where m1=a and mj=b, of attribute instances in G such that
there is a dependence relation between every pair of adjacent attribute instances in the
sequence. Consider an arbitrary pair mi and mi + 1, where i = 1, 2, . . . , j ÿ 1, of attribute
instances in the sequence. Let q be the production instance in which the dependence relation
between mi and mi + 1 occurs. Because there is a dependence relation between mi and mi + 1, mi

and mi + 1 must be in the same block in the base partition of production q. Since the base
partition of the production q is always a re®nement of every partition recorded in the P(qv . . .)
function, mi and mi + 1 must be in the same block in the partition p, which is computed by the
PartitionAG and EvaluateAttributes algorithms.

Because every pair of adjacent attribute instances in m1, m2, . . . , mj belong to the same
partition block in p, a and b must belong to the same partition block in p.
Next, suppose that a and b belong to the same block in p. We need to show that a2b. Let

Xa be the nonterminal instance in T to which a belongs. Similarly, let Xb be the nonterminal
instance in T to which b belongs. Because T is a tree, there is a unique path between Xa and
Xb in T. There are four cases to consider: (1) Xa is an ancestor of Xb in T; (2) Xb is an ancestor
of Xa in T; (3) Xa and Xb are the same nonterminal instance; or (4) Xa and Xb are distinct
nonterminal instances in T and neither is an ancestor of the other. We will prove the theorem
for case (1) above; the other three cases can be proved similarly.

We may label the production instances from Xa to Xb as p1, p2, . . . , pl, which are shown in
Fig. 8. Let pi be the partition chosen for the production instance pi, for i = 1, 2, . . . , l, by the
EvaluateAttributes algorithm. The partition p of G is the combination of p1, p2 , . . . , pl, and
partitions for other production instances in T.

Let Y1, Y2, . . . , Yk be the nonterminal children of Xa in T. Assume without loss of generality

W. Yang / Computer Languages 25 (1999) 145±164160

that Y2 is on the path from Xa to Xb. We show that c2a in G for every attribute instance c of
Y2 that is in the same partition block as a in the partition p1.
Note that the partition p1 is selected by the EvaluateAttributes algorithm as P(p1vs0, s1, . . . ,

sk), where s0 is the feasible partitions chosen for the node Xa and s1, s2, . . . , sk are the
plausible partitions chosen for the nodes Y1, Y2, . . . , Yk, respectively. p1 is actually the merging
of the base partition of production p1 and s0, s1, . . . , sk. Without a detailed proof, we claim
that there must be an attribute instance d of Xa and an attribute instance e of Y2 such that a2
d (due to s0), e 2 c (due to s2), and there is a dependence relation between d and e in
production p1 (due to the base partition of production p1).
We also need to show that there is at least one attribute instance c of Y2 that is in the same

partition block as a in the partition p1. This claim is quite obvious because the two partitions
p1 and p2 are glued together by at least one common attribute instance of Y2.
At this point, we have shown that c2a in G for every attribute instance c of Y2 that is in

the same partition block as a in the partition p1. By the same argument, we can show that d2

Fig. 8. The Xa node is an ancestor of Xb in T.

W. Yang / Computer Languages 25 (1999) 145±164 161

c in G for every attribute instance d of X3 that is in the same partition block as c in the
partition p2 (where X3 is a child of Y2 and is on the path from Y2 to Xb). Repeating the same
argument, we can show that a2b and a and b are in the same block in the partition p. This
completes the proof. q

6. Simple strictness analysis

The partitioning technique can be applied to strictness analysis for languages without higher-
order functions, i.e. functions cannot be passed as parameters or returned as function results.
Consider a simple programming language that does not include higher-order functions.

There are a few primitive operators, such as +, ÿ, =, ifthenelse, etc. The ifthenelse operator,
which takes three parameters, is the only non-strict operator. All other operators are assumed

Fig. 9. A sample program and its attribute grammar.

W. Yang / Computer Languages 25 (1999) 145±164162

to be strict, i.e. all the operands are always fully evaluated. New functions may be de®ned in
this programming language. Mutually recursive functions are allowed. A program is a
collection of functions. A sample program is shown in Fig. 9(a).
In order to know whether a parameter of a function is strict, we ®rst translate the collection

of functions into an attribute grammar. There is one nonterminal representing each primitive
operator and each user-de®ned function. There are two terminals denoted as true and false.
Each user-de®ned function is translated into a production in which the left-hand-side
nonterminal is the function being de®ned. The right-hand-side nonterminals are the functions
and primitive operators applied in the function body. For each strict primitive operator op, an
E production is added: op 4 E. For the ifthenelse operator, two productions are added: one is
ifthenelse4 true, the other is ifthenelse4 false.
Each nonterminal has an attribute for every operand and an additional attribute that

represents the result of function (or operator) application. The dependence relation among
attributes in a production is derived from the de®nition of the function or operator. Note that,
in the ifthenelse 4 true production, the attribute representing the third parameter is useless Ð
the result of the ifthenelse operator does not depend on the third parameter when the ®rst
parameter has a true value. Similarly, in the ifthenelse 4 false production, the attribute
representing the second parameter is useless. Fig. 9(b) shows the dependence graphs of the
attribute grammar corresponding to the program in Fig. 9(a). Note that, in Fig. 9(b), each
operator and the user-de®ned function f have an additional attribute, denoted by r, which
represents the result of the operator or function application.
We may apply the partitioning technique discussed in this paper to the resulting grammar.

For a given function f, if there is a feasible partition of f's attributes that contains two or more
blocks (i.e. a member of the set Y(f), then f is not strict in each attribute that is not in the
same block as the result of f.
The essence of the above simple strictness analysis lies in that the ifthenelse is treated as an

operator. The ifthenelse operator is equipped with two feasible partitions, as implied by the
productions P4 and P5 in Fig. 9. All strict operator comes with only one feasible partition.
This analysis technique can be easily generalized to other non-strict operators.

7. Conclusion

We have proposed an algorithm for partitioning the attribute dependence graph of a syntax
tree. It is a static algorithm in that partitioning is done on the grammar, rather than on
individual syntax trees. It produces the ®nest partition for every syntax tree. The partition
algorithm, when combined with visit-oriented evaluation algorithm in [3] is applicable to all
non-circular attribute grammars.

References

[1] Knuth DE. Semantics of context-free languages. Mathematical System Theory 1968;2(2):127±45; Correction
1971;5(1):95±6.

W. Yang / Computer Languages 25 (1999) 145±164 163

[2] Paakki J. Attribute grammar paradigms Ð A high-level methodology in language implementation. ACM
Computing Surveys 1995;27(2):196±255.

[3] Yang W, A classi®cation of non-circular attribute grammars based on the look-ahead behavior. IEEE Trans.
Software Engineering 2000; (in press).

[4] Klein E. Parallel ordered attribute grammars. In: Proceedings of the 1992 International Conference on

Computer Languages, 1992. p. 106±16.
[5] Klaiber A, Gokhale M. Parallel evaluation of attribute grammars. IEEE Trans Parallel and Distributed

Systems 1992;3(2):206±20.

[6] Katayama T. Translation of attribute grammars into procedures. ACM Trans Programming Languages and
Systems 1984;6(3):345±69.

[7] Reps T. Scan grammars: parallel attribute evaluation via data parallelism. TR-1120. Madison, WI: Computer

Sciences Department, University of Wisconsin, 1992.
[8] Boehm H-J, Zwaenepoel W. Parallel attribute grammar evaluation. In: Proceedings of the 7th International

Conference on Distributed Computing Systems. IEEE; 1987; 347±354.
[9] Jourdan M A survey of parallel attribute evaluation methods. In: Proceedings of the International Summer

School SAGA, (Prague, Czechoslovakia, June 1991), 1991. 545. p. 234±55. Lecture Notes in Computer Science.
[10] Kuiper MF, Swierstra SD Parallel attribute evaluation: Structure of evaluators and detection of parallelism. In:

Proceedings of the International Summer School SAGA, (Prague, Czechoslovakia, June 1991), 1991. 545. p.

61±75. Lecture Notes in Computer Science.
[11] Zaring AK 1990. Parallel evaluation in attribute grammar-based systems. Ph.D. dissertation, Department of

Computer Science, Cornell University, Ithaca, NY.

[12] Kastens U. Ordered attribute grammars. Acta Informatica 1980;13:229±56.

Wuu Yang received his B.S. degree in computer science from the National Taiwan University in 1982 and the M.S. and Ph.D.

degrees in computer science from the University of Wisconsin Ð Madison in 1987 and 1990, respectively. Currently he is an

associate professor in the National Chiao-Tung University, Taiwan, Republic of China. Dr Yang's research interests include

programming languages and compilers, attribute grammars, and parallel and distributed computing. He is also very interested in

the study of human languages and human intelligence.

W. Yang / Computer Languages 25 (1999) 145±164164

