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Abstract

The effect of two-dimensional diatomic-island nucleation on the linear stability of the step morphology during molecular beam epitaxy is

investigated numerically via shooting methods. It is found that the effect of diatomic islands on the step morphological stability is signi®cant.

The greater the effects of diatomic islands, the more stable the step morphology. Increasing capture ef®ciency can decrease the critical

surface capillary length and shift the critical wave number toward short-wavelength regimes. The unstable region is shrunk with increasing

capture ef®ciency. Further, increasing ¯ux coverage and/or surface coverage can decrease the critical surface capillary length and shift the

critical wave number toward short-wavelength regimes. q 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

Many semiconductors are manufactured by molecular

beam epitaxy (MBE). The ability to grow crystals with

essentially monolayer composition in atom scales is consid-

erably important in the fabrication of devices [1]. Ideally, it

results in terraces separated by monoatomic straight steps

with atoms diffusing on the terraces and the morphology of

the terrace edges is not changing its shape by the advance-

ment of a uniform stable step train [2].

The problem of such a step ¯ow was discussed in a semi-

nal paper by Burton, Cabrera and Frank [3] (BCF).

However, as experimental studies have demonstrated, the

terrace edges of the straight step display quite often a wavy

nature [4]. It was shown by Bales and Zangwill [5] in 1990

from a linear stability analysis, taking into account Schwo-

bebel effect [6] and stationary condition, that a terrace edge

can undergo a morphological instability if a grow rate

exceeds a critical value. The stabilizing effect is due to

the line tension of the step that prevents short-wavelength

deformations. The instability mechanism is much like the

so-called Mullins-Sekerka instability [8]. As the straight

step becomes unstable, non-linear effects evolve quickly

in the growth dynamics. In 1993, Bena, Misbah, and

Valance [9] performed a weakly non-linear analysis of the

step ¯ow near the threshold of the instability for the `one-

sided' model (i.e. complete blocking from the upper

terrace). The result is a Kuramoto±Sivashinsky-type equa-

tion [10,11], which exhibits spatiotemporal chaos. More

kinetic instabilities of the step morphology under the lateral

and/or the longitudinal ¯uctuation with/without the

presence of the external direct electric ®eld have been inves-

tigated [12±28]. Although they have extended the ideal BCF

theory to MBE none has explicitly incorporated and deter-

mined the effects of two-dimensional cluster nucleation on

the terrace.

In the ideal BCF theory, linear-diffusion equation is used

to determine the step velocity and distribution of adsorbed

atoms (or adatoms, for short) on the terrace. To explain the

measurements of an oscillating RHEED (re¯ection high-

energy electron-diffraction) intensity during MBE growth,

Myers-Beaghton and Vvedensky [29±31] postulated that a

model for MBE must include both the migration of adatoms

on the substrate and the interaction among these adatoms in

the form of incipient cluster formation. They then intro-

duced a non-linear diffusion equation, an extension of the

linear BCF equation, by including a quadratic interaction as

a ®rst-order approximation to incipient cluster formation.

In this paper we study the effect of two-dimensional
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nucleation, due to the lateral adatom interactions in the form

of diatomic island formation on the terrace, on linear stabi-

lity in the step morphology of a terrace edge during MBE.

The non-linear diffusion equation and the one-sided model

of an isolated step are adopted to describing epitaxial

growth in MBE. The linear stability analysis is performed

numerically via shooting methods.

2. Formulation

Consider the mathematical formation of the original BCF

model [3], for a close-packed face of a crystal, growing from

a supersaturated mother medium. We concentrate on the

epitaxial growth mechanism characterized by the diffu-

sion-controlled propagation of a single atomic step, and

take account of the effect of incipient two-dimensional

diatomic-island nucleation, under the assumption of a

moderate supersaturation during MBE. A complete model

for MBE must include both the migration of adatoms on the

terrace and the lateral interactions among these adatoms for

incipient cluster formation [29±31]. The schematic view is

shown in Fig. 1. A ¯ux of atoms impinges upon the substrate

from a gas atmosphere with a frequency F per unit area and

time. Adatoms migrate on the facet with a diffusion constant

D, but after a lifetime t they are desorbed. During the

surface diffusion, adatoms collide to form two-dimensional

diatomic islands, which then form capture sites that compete

with the step edge as sinks for the migrating adatoms. Then,

a single atomic step on the crystal surface is advancing

slowly in the y direction at the expense of the gas atmo-

sphere. There is usually an asymmetry in the attachment

kinetics of adatoms at a step from the lower and from the

upper terraces, called the Ehrlich±Schwoebel effect [6,7]. It

is widely admitted that adatoms can be incorporated to the

step only from the terrace that is ahead (the lower one in Fig.

1) of the advancing step. This corresponds to the so-called

one-sided model [5,9]. It is the extreme case. We assume

that the growth is governed only by adatoms on that terrace,

and can proceed by two-dimensional diatomic-island

nucleation and step ¯ow simultaneously. For this simply

case of an isolated step in one-sided model, it is also

assumed that the steps, advancing very slowly without any

interactions between the step and its neighbors, are very far

apart. According to the works of Myers-Beaghton and

Vvedensky [29±31], the concentration of single adatoms

on the terrace C(x,y,t) satis®es the non-linear continuity

equation

2 C

2 t
� D

22C

2x2
1

22C

2y2

 !
2

C

t
1 F 2 R C�x; y; t�ÿ � �1�

where the function R(C(x,y,t)), which incorporates the

removal of two adatoms per diatomic-island cluster formed

on the terrace, is given by

R C�x; y; t�ÿ � � 2sDC2 1 2Fm
C

Ci

�2�

To be consistent, it is assumed that once an island is

formed, the emission of adatoms from cluster and step

edge is forbidden and the island is immobile. The ®rst

term on the right-hand side of Eq. (2) represents the rate

at which single migrating adatoms collide to form diatomic

islands and is proportional to D and to s , a capture ef®-

ciency of order one [29,32]. The second term accounts for

the direct collision of incoming atoms with adsorbed atoms

and is proportional to the total fraction of incoming adatoms

that arrive at island-forming sites, C/Ci, where Ci is the

concentration of lattice sites. The factor m is the number

of sites around a single adsorbed atom that will form a

diatomic island when ®lled. For a square lattice, m � 5,

corresponding to the four nearest neighbors and the site of

the adsorbed atom. The factors of two accounts for the fact

that two adatoms are lost for every diatomic island formed.

The problem is completely speci®ed by choice of the

boundary conditions for Eq. (1) and the requirement of

mass conservation at the step. Let y � f �x; t� denote the

trajectory of the step edge in the plane of the surface. The

amount by which each point on the step advances in the

normal direction is determined by the concentration gradi-

ent in the same direction. Precisely the normal velocity vn is

proportional to the normal derivative of concentration

VnV
21 � D

2C

2n
�3�

where V is the atomic area of the solid, we can write

V � 1=Ci. The step normal n̂ � �22f =2x; 1�=p�1 1
�2f =2x�2� is a unit out of the solid perpendicular to the

step riser. Since the basic state will be a straight step advan-

cing at a constant velocity v in the y direction. The normal

velocity takes the form

Vn � V 1 2f =2t���������������
1 1 �2f =2x�2p �4�

Then, the Eq. (3) will become

V 1
2f

2t

� �
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2
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2f
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� �
at y � f x; t� � �5�

Another boundary condition relates the concentration of

adatoms at the step edge, which is modi®ed to account for
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Fig. 1. Schematic view of a vicinal surface during step ¯ow with two-

dimensional diatomic-island nucleation on the terrace.



local step curvature using the Gibbs±Thompson equation

[5,9,14,24]

C ; Cstep � Ceq 1 2
gV

kBT

22f =2x2

1 1 2f =2x
ÿ �2h i3=2

264
375

at y � f x; t� � �6�
where Ceq is the equilibrium concentration of adatoms for a

straight step edge, g is the isotropic line tension of the step,

kB is the Boltzmann constant, and T is the ®xed substrate

temperature. We should mention that crystalline anisotropy

(which can enter the diffusion coef®cient and the line

tension) is not accounted for in the present work.

Finally, the concentration of adatoms far away from the

step (y! 1, i.e. for a distance larger than the surface diffu-

sion length to be introduced below) is maintained above the

equilibrium value Ceq through supersaturation for typical

MBE condition. And, it should reach a constant value

C1 . Ceq, which simply expresses the equilibrium among

deposition, evaporation and diatomic islands on the terrace.

At equilibrium, there is no time dependence and there are no

concentration gradients, so that C1 can be reduced from the

non-linear continuity Eq. (1), given by

C1 � 1

4sDtCi

�Ci 1 2mtF�2 1 8sDC2
i t

2F
h i1=2

2Ci 2 2mtF

� �
�7�

The set of Eqs. (1)±(7) completely describes the step

growth which occurs both through the adsorption of single

atoms onto the terrace and their subsequent diffusion into

the terrace edge as well as two-dimensional diatomic-island

nucleation through adatom collisions. Since the concentra-

tion of lattice sites Ci also can be written to 1/V , we intro-

duce a characteristic distance xs ;
p�Dt� (which we

usually call the surface diffusion length) and the equilibrium

¯ux Feq ; Ceq=t, and employ the following non-dimensio-

nalization

x � xs �x; y � xs �y; f � xs
�f ; t � t�t;V � xs

�V =t;C � Ceq
�C;

C1 � Ceq
�C1 �8�

then the above non-linear continuity Eq. (1) will become

(with overbars omitted, from now on, only dimensionless

variables)

2 C

2 t
� 22C
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1

22C

2y2
2 2s
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2�1 1 2ma�C 1 1 1 l
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Eqs. (5) and (6), the boundary conditions at the step, are

to be, respectively,
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C � 1 2 jl
22f =2x2

1 1 2f =2x
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and Eq. (7), the adatom concentration far away from the

step, can be rewritten as

C ; C1 � 1 1 l

4sab
�1 1 2ma�2 1 8sab
h i1=2

21 2 2ma

� �

as y! 1 �12�
where l ; �F 2 Feq�=Feq is the dimensionless relative

supersaturation ratio, providing the driving force, j ;
gV=�kBTxsl� is the dimensionless surface capillary length,

a ; VtF is the ¯ux coverage, and b ; xs
2=V is the surface

coverage. The non-dimensional l , j , a , b , s and m govern

the behavior of the system. It is noted that surface capillary

length j is the ratio of the step line tension to the thermal

excitation energy through supersaturation. The ¯ux cover-

age a is a small number, whereas the surface coverage b is

a large number for typical MBE condition, according to the

works of Myers-Beaghton and Vvedensky [29±31], for

1 . a . 1=b, adatoms interact to form diatomic islands

on their diffusion path to the step - that is, two-dimensional

nucleation competes with step ¯ow. While, in the case of

neglecting the effect of two-dimensional diatomic-islands

nucleation, as the capture ef®ciency s � 0 and the nuclea-

tion factor m � 0, the linear BCF equations is recovered.

The step is assumed to advance slowly and the adatoms

concentration relaxes so fast that the stationary condition

2C=2t � 0 is realized.

3. Basic state solution

We ®rst seek the basic state solution of the non-dimen-

sional Eqs. (9)±(12), i.e. the time derivative does not appear

in the equations and it is a function of y only. Let C0(y)

denote the corresponding concentration pro®le of the basic

state (a straight step, which we take at y � 0). Consequently,

the non-dimensional non-linear continuity Eq. (9) can be

reduced to

d2C0

dy2
2 2s

ab

1 1 l
C2

0 2 �1 1 2ma�C0 1 1 1 l � 0

for y . 0 �13�
Eqs. (10) and (11), the non-dimensional boundary condi-

tions at the step for the conservation of materials, will

become, respectively,
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V � a

1 1 l

dC0

dy
at y � 0 �14�

C0 � 1 at y � 0 �15�
Eq. (12), the equilibrium condition that is far away from

the step, is written to be

C0 � C1 as y! 1 �16�
Obviously, since it is very dif®cult to ®nd the solution of

Eqs. (13)±(16) by the analytical method, we proceed via

shooting methods numerically from y! 1 ; 5:0 to y � 0

by assuming a value for dC0=dy�y! 1� ! 0 with the start-

ing value of C0�y! 1� � C1, and iteratively performing

the Runge±Kutta integration to y � 0 until the assumed

value for dC0=dy�y! 1� ! 0 is one that yields

C0�0� � 1. Successive improved guesses of dC0=dy�y!
1� ! 0 are found using the half-interval method [33]; the

solution converges rapidly. Once the solution of basic state

concentration C0(y) is obtained, the dimensionless advan-

cing velocity v of the straight step can be calculated from

Eq. (14).

4. Linear stability analysis

The linear stability analysis is the ®rst step towards the

understanding of the mechanisms by which a new structure

can be formed. The main outcome of a linear stability analy-

sis is the determination of the critical condition of the onset

of the instability, and the range of wave numbers of those

perturbations that are likely to grow ®rst.

To study the roughness of the terrace edge in a linear-

theory way, following the works of Bena et al. [9], let us

consider a straight step with an extra small perturbation by

setting

C�x; y; t� � C0�y�1 C 0�x; y; t� �17�

f �x; t� � 0 1 f 0�x; t� �18�
where (C0(y),0) are the basic state solutions, and C'(x,y,t)

and f'(x,t) are small perturbations of the system. Substituting

Eqs. (17) and (18) into Eqs. (9)±(12) and linearizing the

resultant equations, a set of equations which control the

developing of small perturbation is derived as follows

22C 0

2x2
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2

2 C 0

2 t
2 4s
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2y
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d2y
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 !
at y � 0 �20�

dC0

dy
f 0 1 C 0 � 2jl

22f 0

22x
at y � 0 �21�

C 0 � 0; as y! 1 �22�
Then express the small perturbation by the normal mode

C 0�x; y; t� � C1�y�eiqx1vt �23�

f 0�x; t� � f1eiqx1vt �24�
where q is the wave number, v is the growth rate of the

perturbation amplitude, and C1 and f1 are small quantities.

Again, substituting Eqs. (23) and (24) into Eqs. (19)±(22)

and linearizing the resulting equations, we obtain the

following characteristic equation systems

d2C1

dy2
2 �v 1 q2 1 1 1 4s

ab

1 1 l
C0 1 2ma�C1 � 0

for y . 0 �25�

a

1 1 l

dC1

dy
� vf1 2

a

1 1 l

d2C0

dy2
f1 at y � 0 �26�

C1 � jlq2f1 2
dC0

dy
f1 at y � 0 �27�

C1 � 0 as y! 1 �28�
Eliminating from Eq. (26) by Eq. (27) gives the disper-
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Fig. 2. Flow chart of numerical analysis for dispersion relation via shooting

method.



sion relation

v � a

1 1 l

d2C0

dy2
�0�1

dC1

dy
�0�

C1�0� ljq2 2
dC0

dy
�0�

� �8>><>>:
9>>=>>; �29�

After the basic state solution C0(y) is obtained, the solu-

tion of Eqs. (25)±(28) can now be also evaluated by the

similar shooting methods in Section 3 via a starting value

at y! 1 ; 5:0 for C1�y! 1� ! 0 and dC1=dy�y! 1� !
0 with arbitrary wave number q and the guess value of

growth rate v . The values of C1(0) and dC1/dy(0) as well

as v must be satis®ed to the dispersion relation of Eq. (29).

It is noted that the Runge±Kutta integration and the half-

interval method are also used to solve the problem. The

procedure of shooting method is shown schematically in

Fig. 2.

The straight step is stable if v , 0 for all q's. Conversely

it is unstable if there exists at least one wave number q for

which v . 0. The critical condition is attained when v � 0

for a particular value of q, say qc, while it is negative for all

other q's. This occurs when the two conditions

v�qc� � 0; �2v=2q�q�qc
� 0 �30�

are met. These two equations determine the critical condi-

tion on the onset of instability and the wave number of the

bifurcating mode.

5. Results and discussion

The method to derive the basic-state solutions and their

linear stability has been described in Sections 3 and 4. Here

we show the results and discuss their characteristics. In case

of the dimensionless relative supersaturation ratio l � 2,

the ¯ux coverage a � 0:01, the surface coverage b � 100,

for simplicity, the solutions to C0(y) are shown in Fig. 3

without two-dimensional diatomic-island nucleation,

capture ef®ciency s! 0 and the nucleation factor m! 0,

and with two-dimensional diatomic-island nucleation for

the factor m � 5 and various capture ef®ciency s , respec-

tively. Because adatoms collide to form diatomic islands on

the terrace, it results in decreasing the adatom concentration

on the terrace. As shown in Fig. 3, the diatomic island effect

can depress the basic state of adatom concentration pro®le

along terrace. Furthermore, it is found that increasing s , i.e.

increasing the capture ef®ciency, makes the effects of

diatomic islands stronger, then gradually depresses the

pro®le of basic state of adatom concentration with increas-

ing s .

According to the results of Bena et al. [9] for the one-

sided model of an isolated step without two-dimensional

diatomic-island nucleation on the terrace, one can ®nd

from Eq. (30) that the bifurcation is characterized by only

dimensionless surface capillary length j in

qc � 0; j ;
�G

xsl
� jc � 1

2
�31�

where �G � gV=kBT incorporates the isotropic line tension

of the step (which has a dimension of a length), l � �F 2
Feq�=Feq is the dimensionless relative supersaturation ratio.

As mentioned in the above section, capillary length is the

ratio of the step line tension to the thermal excitation energy

through supersaturation. It expresses the competition

between line tension and the incident ¯ux as agents for

mass transport. It is observed that qc goes to zero abruptly

at some critical value j c and thus there is a crossover from

morphologically stable step (j . jc, v , 0) to morphologi-

cally unstable step (j , jc, v . 0) [5,9]. This means that

the ampli®cation rate v , 0 for all wave number q's if

capillary length j . 0:5. However, if capillary length

j , 0:5, there exists a band of wave numbers corresponding

to unstable modes. This instability is intrinsic; it is driven by

diffusion of atoms along the terrace. The step morphological

instability can thus take place only if the characteristic

surface diffusion length xs becomes smaller than the typical

capillary length determined by the ratio of the line tension to

the thermal excitation through supersaturation. The stabiliz-

ing effect is due to the line tension of the step, which

prevents short-wavelength deformations, and the thermal

excitation energy represents the destabilization of diffusion.

We can explain that a forward bulge in the terrace edge, in

the absence of line tension, steepens the concentration

gradient in the terrace ahead of it, which means that the

step ¯ows rapidly away from the surface and the bulge

grows unstably. Similarly, a depression like that at the

concave portion tends to hold the step back. With ®nite

step line tension, however, the curvatures in the terrace

edge are such that the concentration is reduced at the convex
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Fig. 3. Adatom concentration pro®le C0(y) along terrace for a basic state

(straight step).



portion and increased at the concave portion. The resulting

mass ¯ow from the concave portion to the convex portion

tends to restore the ¯atness of the terrace edge. It is the

competition between these two effects that determines the

sign of the perturbation ampli®cation rate v in the disper-

sion relation of Eq. (29), and thus the overall linear stability

of the morphology of a terrace edge in one-sided model for

an isolated step during molecular beam eptiaxy.

The growth rate of the perturbation amplitude v (q)

versus perturbation wave number q for typical values of

the model parameters in surface capillary length j � 0:03

with/without two-dimensional diatomic-island nucleation is

plotted in Fig. 4. A band of wave numbers corresponding to

unstable modes is shrunk with increasing capture ef®ciency

s . Also, the maximum value of the growth rate v is

decreased with increasing s . The effect of diatomic islands

on step morphology is to damp the effects of perturbations

from the ideal straight edge. Because the inclusion for

adatom clustering on the terrace implies decreasing propen-

sity for thermal promotion of adatoms, it corresponds to an

increasing the line tension of the step. For an initial curva-

ture-induced convex portion, the perturbation in the adatom

concentration adjacent to a terrace edge is an increase in the

local adatom concentration. The propensity to nucleate

diatomic islands would result in a decrease in the mobile

adatom population. Then, it results in a decrease in the ¯ux
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Fig. 4. Growth rate of the perturbation amplititude v versus wave number q

for typical values of the model parameters.

Fig. 5. Neutral stability curves of the step morphology of a terrace edge in

j±q plane for typical values of the model parameters.

Fig. 6. (a) The variations of critical surface capillary length j c with capture

ef®ciency s , (b) The variations of critical wave number qc with capture

ef®ciency s .



of mobile adatoms to the terrace edge, which decrease the

local velocity away from the step edge that tends to ¯atten

the convexity and diminish the perturbation. The greater is

the effect of two-dimensional diatomic-island nucleation,

the step morphology is more stable during MBE.

In Fig. 5, the neutral stability curve v�j; q� � 0, there is

shown the evidence that the effect of two-dimensional

diatomic-island nucleation is stabilizing effect. During

moderate supersaturation crystal-growth in MBE, the

unstable region is shrunkwith increasingcaptureef®ciencys .

Moreover, we show the critical surface capillary length

condition on the onset of instability and the critical wave

number of the bifurcating mode, (j c,qc), with the varying

capture ef®ciency s in Fig. 6a,b, respectively. It is found

that increasing capture ef®ciency s can decrease the critical

surface capillary length j c shift the critical wave number qc

toward short-wavelength regimes. In comparison with the

critical condition of no nucleation, �jc; qc� � �0:5; 0:0�, the

effect of two-dimensional diatomic-island nucleation is

apparent on the morphological instability of a terrace edge

during the moderate supersaturation crystal growth in MBE.

Also, the effects of the ¯ux coverage a on the critical

condition of the onset of instability with/without nucleation

are demonstrated in Fig. 7a,b. Without nucleation on the
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Fig. 7. (a) The variations of critical surface capillary length j c with ¯ux

coverage a , (b) The variations of critical wave number qc with ¯ux cover-

age a .

Fig. 8. (a) The variations of critical surface capillary length j c with surface

coverage b , (b): The variations of critical wave number qc with surface

coverage b .



terrace, the ¯ux coverage a does not affect the critical

condition of the onset of instability during MBE [9]. With

nucleation, the critical surface capillary length j c is

decreased with increasing ¯ux coverage a and the critical

wave number qc is shifted toward short-wavelength regimes

compared the point of qc � 0. That is, the unstable region is

shrunk with increasing ¯ux coverage.

Finally, in Fig. 8a,b, the effects of surface coverage b on

the critical condition with/without nucleation are investi-

gated. In case of no nucleation, the same as the ¯ux cover-

age, the critical condition of the onset of instability has

nothing to do with the surface coverage. While, with nuclea-

tion, increasing surface coverage b can decrease the critical

surface capillary length j c and shift the critical wave

number qc toward short-wavelength regimes.

6. Conclusion

The effect of two-dimensional diatomic-island nucleation

on the linear stability in the step morphology during mole-

cular beam epitaxy is investigated numerically via shooting

method. The non-linear-diffusion governing equation, due

to adatom interactions in the form of diatomic island forma-

tion, for one-sided model of an isolated step is adopted. It is

found that the effect of diatomic islands on the step morpho-

logical stability is signi®cant. The greater the effects of

diatomic islands, the more stable the step morphology.

Increasing capture ef®ciency s can decrease the critical

surface capillary length j c and shift the critical wave

number qc toward short-wavelength regimes. The unstable

region is shrunk with increasing capture ef®ciency s .

Further, increasing ¯ux coverage a and/or surface cover-

age b can decrease the critical surface capillary length j c

and shift the critical wave number qc toward short-wave-

length regimes.
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