
Pseudo-rate TCP: a congestion avoidance scheme with nearly optimized
fairness and throughput

J.-R. Chen, Y.-C. Chen*

Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu 30056, Taiwan

Received 23 February 1999; received in revised form 1 June 1999; accepted 1 June 1999

Abstract

As the bandwidth requirement on the Internet grows, the efficiency of networking protocol becomes an important concern. This paper
proposes a so-called pseudo-rate TCP, which features both better fairness and higher throughput than TCP Vegas by exponentially increasing
the window size to a derived bound. The pseudo-rate TCP avoids the typical problem that sources with shorter round-trip times always get
better chance in allocating the bandwidth. We discuss two key mechanisms designed for pseudo-rate TCP, and compare its performance with
TCP Vegas through system simulation.q 1999 Elsevier Science B.V. All rights reserved.

Keywords:Pseudo-rate TCP; Fairness; TCP Vegas

1. Introduction

Packet retransmission and congestion control are two
important mechanisms for TCP to provide reliable and effi-
cient data transport. Due to the popularity of TCP, a variety
of approaches have been proposed to improve TCP perfor-
mance. The SACK [1] is based on the improvement of TCP
retransmission mechanism to reduce bandwidth waste,
while most TCP related research focus on the congestion
control, so does this work. Our approach concerns the band-
width-sharing control, which provides fairness service
among sources with various round-trip times, and features
as well a significantly higher throughput and better fairness
than TCP Vegas.

The earlier congestion control improvement was imple-
mented on TCP Tahoe, which maintained a proper window
size to control the number of outstanding packets. Both
allocation of bandwidth and probing the available band-
width are accomplished by increasing the window size
gradually. Most of the window size adjustment schemes
that improve the TCP performance are based on this
approach. The reason to use such a window adjustment
approach is because of the simplicity in implementation.

Another class of congestion avoidance scheme, the rate-
based scheme [2–4,12], uses a detection mechanism to

estimate the allowed network service rate, in addition, it
uses the queue occupancy control to avoid the congestion.
This is similar to some of the window-based congestion
avoidance schemes in which the dependency between the
round-trip time and the window size is accounted, so that
periodic congestion can be avoided. Generally speaking,
rate-based congestion avoidance schemes not only avoid
the periodic congestion, but also improve throughput and
fairness. Therefore, we would take advantages of the rate-
based flow control to enhance the window-based congestion
avoidance scheme.

Existing schemes such as TCP Vegas try to linearly adjust
the window size based on the variation of transmission rates.
In contrast, pseudo-rate TCP uses the queuing delay to
derive the bound of window size and to exponentially fill-
up the gap, which is defined here as the difference between
the actual window size and its estimated bound. Setting the
window-size bound can prevent the traffic burst from gener-
ating congestion and keep the “self-clocked” characteristic
of TCP to smoothen the traffic. Exponentially filling-up the
window gap shortens the response time of pseudo-rate TCP.
By dealing with the window gap instead of the window size,
we are able to expand the window much faster with contin-
uous tracking of the available bandwidth.

The rest of this paper is organized as follows. Section 2
briefly describes current TCP flow control schemes. The
detailed pseudo-rate TCP scheme is discussed in Section
3. Simulation and performance comparison of different
TCP schemes is addressed in Section 4. Section 5 concludes
the work.

Computer Communications 22 (1999) 1493–1501

COMCOM 1621

0140-3664/99/$ - see front matterq 1999 Elsevier Science B.V. All rights reserved.
PII: S0140-3664(99)00103-6

* Corresponding author. Tel.:1 886-3-573-1864; fax:1 886-3-5727-
842.

E-mail addresses: jzchen@csie.nctu.edu.tw (J.-R. Chen), ycchen
@csie.nctu.edu.tw (Y.-C. Chen)



2. Current TCP flow control schemes

2.1. Pure window-based flow control schemes

In TCP Tahoe, the window increment process is
performed in two phases, slow-start and congestion avoid-
ance. The window size increases exponentially in the former
and linearly in the latter. A source maintains a threshold to
differentiate the two phases. Once the source detects a
packet loss, it sets the threshold to half of its current window
size, which is then reset to the initial value. Therefore, in
TCP Tahoe, a source continuously increases its window size
until a packet loss is encountered, then it resets the window
size. The periodic packet loss, the window size resetting,
and the rough threshold setting put quite a bit of restrictions
on the throughput of TCP Tahoe.

In TCP Reno the throughput is improved through the so-
called fast recovery algorithm [5], which modifies the
window size setting after a packet loss. Its window size
after congestion is set to the threshold value. Both TCP
Tahoe and TCP Reno use the segment loss to signal the
network congestion. Since the new window size reduces
to half of that before the packet loss, it concerns more the
safety than the adequacy. Here the window size after
congestion may not properly reflect the network status infor-
mation, and whether to increment window exponentially or
linearly is based upon the roughly estimated threshold
value. Without restricting the window size, the transmission
rate always tends to exceed the available bandwidth, which
then can be detected through the packet loss. Since each
source adjusts its window size every round-trip time,
sources with shorter round-trip times can acquire more
bandwidth and achieve higher throughput than those with
longer round-trip times. Therefore, the periodically occur-
ring congestion and the roughly estimated window size are
two factors that restrict both throughput and fairness.

2.2. Improved congestion avoidance schemes

Both TCP Tahoe and TCP Reno do not keep any informa-
tion regarding the network status, such as congestion. Thus,
to detect the available bandwidth, they continuously
increase the window size until congestion occurs. Although
such window size adjustment schemes avoid the occurrence
of further congestion, both schemes are unable to fully
utilize the available bandwidth. To overcome the periodic
congestion and inadequate window size selection, several
schemes based on the network status information have been
proposed.

When queue occupancies in intermediate nodes grow, the
round-trip times of the successfully acknowledged packets
increase as well. DUAL algorithm [6] is based on reacting to
such round-trip-time increment; the CARD [7] approach
uses the analytic derivation of an optimum window size
for a deterministic network; while the Tri-S scheme [8]

takes advantage of the fact that a network approaches
congestion through flattening the service rate.

TCP Vegas [9] is similar to Tri-S in dealing with changes
of the sending rate. TCP Vegas compares the sending rate
with the expected rate, which is calculated based on the
current window size. While the window size is adjusted
linearly when the difference between the expected rate
and the actual sending rate exceeds a defined threshold.
Besides, TCP Vegas increases its window size exponen-
tially every other round-trip time during the slow-start
phase, this is to ensure that the previous sending rate is
allowed before it continues the process.

2.3. Deficiency of TCP Vegas

Although TCP Vegas achieves pretty good performance,
its bandwidth allocation among sources with different
round-trip times are indeed not fair enough. The exponential
increase of window size every other round-trip time during
the slow-start phase restricts the throughput, so does the
linear increase during the congestion avoidance phase.
Further, the linear window size adjustment makes TCP
Vegas unable to quickly change the window size to a proper
value during the congestion avoidance phase.

TCP Vegas calculates the expected throughput based on
the previous window size, thus, the faster the window size
increases, the higher the throughput will be. Since a source
with shorter round-trip time always increases its window
size faster, and the window is stable when the actual rate
is close to the expected rate, it would experience a higher
throughput than sources with longer round-trip times.

3. Pseudo-rate TCP

Although TCP Vegas provides a good mechanism to
avoid periodic congestion, its throughput and fairness can
still be improved. Using the concept of rate-based flow
control, we design an advanced congestion avoidance
scheme called the pseudo-rate TCP to provide even higher
throughput and better fairness.

3.1. Throughput improvement

Under the same round-trip time, a source that acquires
bandwidth faster will eventually obtain a higher throughput.
In a window-based congestion avoidance scheme, more
bandwidth can be obtained through window size increment,
which should be as fast as possible for the sake of efficiency.
This is why most of TCP congestion avoidance schemes use
exponential window adjustment when the network is far
from congestion.

Tahoe, Reno and New-Reno try to avoid the frequent
periodic congestion by dividing the window increment
into the slow start phase and the congestion avoidance
phase. This process is performed through setting the thresh-
old value. However, it is only a rough threshold value,

J.-R. Chen, Y.-C. Chen / Computer Communications 22 (1999) 1493–15011494



which together with the continuous window increment is
unable to achieve the high throughput satisfactorily. Since
a proper and stable window size can avoid the potential self-
generated congestion, our main idea for congestion avoid-
ance is to approach a proper window size, then keep it
stable. There are two conditions in which we must adjust
the window size even if it is stable, these two conditions are
congestion caused by other sources and increment of the
available bandwidth. When the network becomes
congested, quickly decreasing the window reduces the
possibility of packet loss. In contrast, if the available band-
width increases, quickly enlarging the window can result in
better bandwidth utilization.

The behavior of window increment in pseudo-rate TCP is
shown in Fig. 1, in which the window bound is eight
segments during the first 8 s. The window size increases
exponentially from one segment to eight segments and
then constrained by the window bound. When the window
bound changes, the window increment portion changes
exponentially. In our example, the window bound changes
from eight segments at the eighth second to larger than 23
segments at 12th second. It is clear that the window
increases exponentially starting from the previous stable
point. As a sequel, in pseudo-rate TCP a stable window
size may change due to changing the window bound.

In pseudo-rate TCP, a window bound is set to restrict the
window increment. Therefore a stable window size will not
change unless the window bound is increased. This is differ-
ent from the threshold mechanism employed in TCP Tahoe
and Reno, in which a threshold is used to decide whether to
increase the window size or not. If a congestion avoidance
scheme does not increase its window size unrestrictedly, it

no longer needs the threshold setting. Thus pseudo-rate TCP
uses the queuing delay information for window increment,
and uses the window bound to keep the window stable.

An efficient way for window increment would be a
compromise between the linear and the exponential
approach. The window decrement would be a direct drop
in the measured window bound, because congestion avoid-
ance is required more than high throughput. The robustness
of our approach can be achieved by the window increment
policy, which is based on the window gap. The current
window increment portion will grow exponentially up to
the window gap. Therefore, only the gap is filled up expo-
nentially, while the window size variation is restricted
within several segments during the first several round-trip
times. This avoids both the linear increment of window,
which is slow, and the effect of large window variation
after a window bound change.

To exponentially fill-up the window gap, a window is
divided into two parts, the Base and the Offset. The window
size used to control the packet transmission, called
CONGESTION WINDOW (cwnd), is the sum of the Base
and the Offset. The former is calculated as the previous
cwnd minus one segment when cwnd equals the window
bound. The latter is set to at least one segment and it
increases exponentially every round-trip time.

The implementation, which adjusts the Offset exponen-
tially every round-trip time, is accomplished with an addi-
tional variable, the Offset Bound. This variable is reset to
zero periodically at every round-trip time. Whenever an
ACK packet is received, the first step is to check whether
the Offset is larger than the Offset Bound. If yes, the former
will be increased by one segment and the latter increased by
two segments. Following this way, the Offset value can be
kept at twice that of the previous value at every round-trip
time. Further, this method can avoid the possibility that the
number of received ACKs is larger than the Offset value.

Table 1 is an example that illustrates the behavior of
window size increment. Two parts of the window are called
Base and Offset respectively. The example in Fig. 1 is a
special case in whichk is set to 4. The window bound is
shown in the row named “Bound”.

The throughput improvement is achieved through
traditional exponential window increment and stable
window size. This window adjustment can improve both
the bandwidth utilization and the robustness of congestion
avoidance scheme. As a sequel, the rest of the work is
setting the window bound and offset bound to improve the
throughput.

J.-R. Chen, Y.-C. Chen / Computer Communications 22 (1999) 1493–1501 1495

0

5

10

15

20

25

0 2 4 6 8 10 12

time (second)

w
in

do
w

 s
iz

e 
(s

eg
m

en
t)

Fig. 1. Window increment behavior in pseudo-rate TCP.

Table 1
The window variation in pseudo-rate TCP

Round 0 1 2 … k k 1 1 k 1 2 k 1 3 … 2k 1 1 2k 1 2 2k 1 2 …

Base 0 0 0 … 0 2k 2 1 2k 2 1 2k 2 1 … 2k 2 1 2k 2 1 2k 2 1 …

Offset 1 2 4 … 2k 1 1 1 … 2 4 8 …

Bound 2k 2k 2k … 2k 2k 2k 2k 2k11 2k11 2k11 …

Window 1 2 4 … 2k 2k 2k 2k … 2k 1 1 2k 1 3 2k 1 7 …



3.2. Fairness improvement

Since a proper window size is determined through the
implicit rate calculation, our TCP congestion avoidance
scheme is therefore called pseudo-rate TCP. The fairness
of the pseudo-rate TCP can also be achieved through prop-
erly setting the window bound. The bandwidth sharing in a
common FIFO environment depends on the queue occu-
pancy ratio of each source, when every source keeps nearly
equal queue occupancy in the switch, the bandwidth sharing
will be fair. Also, the queue occupancy can be derived from
both queuing delay and service rate, these information are
used to calculate the proper window size, which is then used
to keep the queue occupancy at a predefined level, so that a
fair bandwidth sharing can be achieved.

Similar to TCP Vegas, which adjusts the window size
every round-trip time, pseudo-rate TCP adjusts its window
bound every round-trip time, and implements its congestion
avoidance mechanism at the source. Two variables are
required to calculate the window bound. The first one is
the network service rate. Since TCP uses a retransmission
mechanism, a source always keeps the packet size informa-
tion before it is acknowledged. Thus, upon receiving an
acknowledgement packet, the source is able to count the
total amount of data serviced by the network, and the
network service rate can be calculated based on the measur-
ing interval.

The second variable is the fixed delay, which contains the
propagation delay, the transmission delay, the store-and-
forward delay and the processing time. The processing
time in the destination is assumed fixed. Although the
fixed delay is hard to calculate, but the round-trip time is
detectable. Since the end-to-end delay consists of both fixed
delay and variable queuing delay in the network, we use the
lowest round-trip delay detected as the fixed delay. This
assumption has also been used in Refs. [4,9].

When both the network service rate and the fixed delay
are known, the allowed window size can be calculated as
follows:

1. Let RTT be the measured round-trip time.
2. Ndata is the number of segments serviced by the network

within the measured round-trip time.
3. Tsegmentis the time to service a segment, the value is RTT

divided byNdata.
4. m is the network service rate, which is the reciprocal of

Tsegment.
5. T is the fixed delay, which is the lowest RTT.
6. Nqueue is the control parameter setting. It represents the

proper number of packets stored in the switch.
7. The allowed round-trip time isT 1 NqueueTsegment:

8. The bound of the window size is derived from both the
allowed round-trip time and the network service rate, it is
m�T 1 NqueueTsegment�:
Since the window bound is set based on the fairness

consideration, the quick window adjustment proposed in

the previous section can reduce the time required to adjust
the actual window to the fairness window. Further, such
adjustment allows a few round-trip times during which
large window size variation as window bound re-calculation
will not occur.

3.3. Error recovery

Since the design goal of pseudo-rate TCP is to avoid the
self-generated packet loss and keep the fair bandwidth shar-
ing, the error recovery from the packet loss can follow the
matured fast recovery algorithm, New-Reno [10]. Unlike
the Reno algorithm used in TCP Vegas, the New-Reno
improvement successfully avoids the weakness of Reno
under the multiple-packet-loss situation.

The pseudo-rate TCP can avoid the periodic congestion
and the packet loss caused by this periodic congestion.
Therefore, the reason for packet loss is constrained to be
the channel error and other flow generated congestion.
When the packet loss is caused by the channel error,
New-Reno improvement can retransmit lost packet without
bandwidth waste. In contrast, if the packet loss is due to
congestion generated by other data flow, the New-Reno
improvement is able to recover the packet loss without
having to re-enter the fast recovery phase.

After the error recovery phase, the pseudo-rate TCP
maintains its window the same way as New-Reno does
and restarts the window bound calculation. Once a new
window bound is obtained, the window size adjustment
mechanism starts to grab the available bandwidth quickly,
as described in Section 3.1.

3.4. Pseudo-rate TCP mechanism

Pseudo-rate TCP consists of two processes, the window
size adjustment and the window bound setting. The former
is performed once every acknowledgement packet is
received. The window bound value is calculated at the
end of each cycle period, which starts from a packet trans-
mission and ends upon the reception of an acknowledge-
ment with sequence number larger than that of the first
packet in the same cycle. This is similar to TCP Vegas
that adjusts the window size every round-trip time.

To detect the cycle period, it must keep a packet under
monitoring. If there is no such packet, the packet to be
transmitted next will be used. Once a cycle period starts,
its transmission time can be recorded. Upon receiving the
acknowledgement of the monitored packet, the shortest
round-trip time will be updated, also the network service
rate during the past cycle period will be calculated as the
total acknowledged packet size divided by the cycle period.

There are two bound values for controlling the window
size, the window bound and the offset bound. The former is
the acceptable window size, which does not change upon the
reception ofpacketacknowledgement. The latter is for emulat-
ing the exponential adjustment of the window gap. The expo-
nential adjustment is similar to the TCP exponential

J.-R. Chen, Y.-C. Chen / Computer Communications 22 (1999) 1493–15011496



increment. It doubles the window size smoothly every cycle
period. As a result, the undesired traffic burst, which is
usually caused by sudden increase of the window size, can
be avoided.

The window bound is set every cycle period and its value
is calculated using the formulam�T 1 NqueueTsegment�; as
described previously. The window offset will be allowed
to increase only under two conditions. The first condition
is that the sum of base window and window offset is smaller
than the window bound. The second condition is that the
window offset is larger than the offset bound. Otherwise, the
base window is set to the window bound and the window
offset is set to zero.

We use both the window offset and the offset bound to
approximate the exponential increase of window offset. The
window offset will be increased by one segment and the
offset bound increased by two segments whenever the
condition allows and an acknowledgement packet arrives.
Therefore, the window offset increment is equal to the
window offset after the offset bound was set to zero. Since
the offset bound is set to zero in every cycle period, the
window offset can be doubled in every cycle period. As a
result, the window offset increases exponentially and
smoothly.

The algorithm of pseudo-rate TCP is presented as
follows:

1. Packet transmission:When the total size of unacknow-
ledged packets is smaller than the sum of the base
window and the window offset, more packets are allowed
to transmit. If there is no monitor packet for deciding the
cycle period, the next packet to be transmitted will be the
monitor packet and its transmission time will be
recorded.

2. Packet reception:Once the acknowledgement of a moni-
tor packet is received, the current cycle period ends, and
the following procedures are performed:

• The window bound is updated using the formula
m�T 1 NqueueTsegment�:

• The offset bound is set to zero.
• If the sum of the base window and the window offset

is larger than the window bound updated previously,
the base window and the window offset are set to
window bound and zero, respectively.

• If the sum of the base window and the window offset
is smaller than the updated bound, and also the
window offset is zero, the window offset will be set
to one segment. In case the offset bound is smaller
than the current window offset, the window offset and
its bound will be increased by one segment and two
segments, respectively.

Once the non-duplicate acknowledgement is received and
the window offset is smaller than the offset bound, the
window offset is increased by one segment and the offset
bound by two segments.

Once the duplicate acknowledgement is received the
error recovery procedure described in Section 3.3 is
initiated.

3.5. Comparison between TCP Vegas and pseudo-rate TCP

As TCP Vegas features higher performance than TCP
Reno [9], we compare the difference between TCP Vegas
and Pseudo-Rate TCP:

1. In the slow-start phase: As TCP Vegas increases its
window size every other round-trip time and pseudo-
rate TCP does that every round-trip time, pseudo-rate
TCP achieves better throughput in the slow-start phase.
Therefore, although the window size increment of TCP
Vegas and pseudo-rate TCP are all exponentially, TCP
Vegas requires twice the time period to reach the same
window size.

2. Increase of available bandwidth under a stable window:
As TCP Vegas adjusts its window linearly and pseudo-
rate TCP approaches the allowed window bound expo-
nentially, the latter features better throughput under a
stable window.

3. Decrease of available bandwidth under a stable window:
TCP Vegas still adjusts its window linearly and pseudo-
rate TCP reduces its window to a specified level directly,
pseudo-rate TCP features better chance to avoid the
occurrence of congestion.

4. Robustness: As the decision for window adjustment is
made every round-trip time, TCP Vegas and pseudo-rate
TCP both feature the same level of robustness in dealing
with the network congestion.

5. Fairness: Although the fairness has various definitions, in
this work it is the max–min fairness. When the transmis-
sion rates of all sources are limited by the congestion
control schemes, each source should achieve equal band-
width sharing. A source in TCP Vegas adjusts its window
size according to the previous transmission rate, and this
is a relative adjustment that cannot guarantee a correct
fair-share rate. While pseudo-rate TCP adjusts its
window according to the queuing delay, this is an abso-
lute adjustment which uses the queue occupancy ratio to
guarantee a fair bandwidth share. Therefore, pseudo-rate
TCP achieves better fairness in bandwidth sharing for
sources with different round-trip times.

According to the above comparison, it is obvious that the
proposed pseudo-rate TCP features higher throughput and
better fairness than TCP Vegas, the simulation result in the
following will verify our claims mentioned above.

4. Simulation and numerical results

4.1. Performance metrics

The performance of pseudo-rate TCP is measured
using two well-known performance metrics based on the

J.-R. Chen, Y.-C. Chen / Computer Communications 22 (1999) 1493–1501 1497



throughput and the fairness index. Jain’s fairness index [11]
is used to evaluate the fairness among sources with different
round-trip times, it is described as follows: given a set of
throughputs�x1; x2;…; xn�; the function below assigns a fair-
ness index to the set:

f �x1; x2;…; xn� �

Xn
i�1

xi

 !2

n
Xn
i�1

x2
i

:

As the throughput is non-negative, the fairness index
always results in values between 0 and 1. If the fairness
index has value 1, it represents that all links share the band-
width equally.

4.2. Network configuration for the simulation

The network topology for the simulation is a parking-lot
configuration, which is commonly used in literature to illus-
trate the fairness problem. The configuration used is shown
in Fig. 2. The intermediate switch uses a common-FIFO to
service all sources.

The transmission rates of all sources are only constrained
by the congestion avoidance schemes. The simulation time
is 1 s. Since we want to see the performance of the conges-
tion avoidance scheme during the ramp-up time, as well as
during the steady state, after 500 ms, sources 1 and 3 will

retransmit unacknowledged packets only. Following this
way, the allowed service rate for the remaining sources
increases, also the performance to acquire more bandwidth
and to avoid unfairness among sources with different round-
trip times are shown. The link error rate is assumed to be
ignored since the current transmission technology is able to
provide very low channel error rate.

We only compare pseudo-rate TCP with TCP Vegas
because the performance of TCP Vegas is much better
than TCP Reno [9]. The simulation parameters are shown
in Table 2.

The threshold in pseudo-rate TCP is the allowed queue
occupancy in the switch, it is used to calculate the window
bound.

4.3. Numerical results

The window size corresponds to the amount of data
allowed to transmit into the network without acknowledge-
ment. Therefore, the window size represents the product of
the allocated bandwidth and the round-trip time for a source.
Since Sources 1 and 3 cease the transmission of new packets
after 500 ms, the window size variation of Sources 2, 4 and
5 throughout the simulation period can be observed in Figs.
3 and 4.

Fig. 3 shows the window size variation of TCP Vegas,
which avoids periodic congestion effectively, thus TCP
Vegas performs better than TCP Reno. Since the window
size increases exponentially every other round-trip time in
slow start phase, the ramp-up time would be longer than that
in pure exponential increment. The gradual window adjust-
ment of TCP Vegas after steady state occurs at around
500 ms, this is because the window size changes linearly
after it enters the congestion avoidance phase. The gradual
window adjustment restricts the throughput slightly. Since
sources with shorter round-trip times still uses larger

J.-R. Chen, Y.-C. Chen / Computer Communications 22 (1999) 1493–15011498

Switch 1 Switch 2 Switch 3 Switch 4 Switch 5

Source 1 Source 5Source 4Source 3Source 2

1Km
100Mbps

100Km
100Mbps

100Km
100Mbps

100Km
100Mbps

100Km
100Mbps

100Km
100Mbps

1Km
100Mbps

1Km
100Mbps

1Km
100Mbps

Destination 1 Destination 2

Destination 3

Destination 4Destination 5

1Km
100Mbps

1Km
100Mbps

1Km
100Mbps

1Km
100Mbps

1Km
100Mbps

Fig. 2. Network configuration for the simulation.

Table 2
Simulation parameter values

Parameter Value

Segment 512 byte
TCP Vegasa 1
TCP Vegasb 3
Pseudo-rate TCP threshold 3
Switch per port buffer (packet) 128



J.-R. Chen, Y.-C. Chen / Computer Communications 22 (1999) 1493–1501 1499

0

10000

20000

30000

40000

0 100 200 300 400 500 600 700 800 900 1000

Time (ms)

W
in

do
w

 s
iz

e 
(b

yt
es

)

Source 2

Source 4

Source 5

Fig. 3. Window size variation of TCP Vegas.

0

10000

20000

30000

40000

0 100 200 300 400 500 600 700 800 900 1000

Time (ms)

W
in

do
w

 s
iz

e 
(b

yt
e s

Source 2

Source 4

Source 5

Fig. 4. Window size variation of pseudo-rate TCP.



window sizes than that with longer round-trip times, the
fairness of TCP Vegas is still not optimized.

The window size variation of pseudo-rate TCP is shown
in Fig. 4. Pseudo-rate TCP does not feature the periodic drop
of window size caused by self-generated congestion. Since
it increases the window size exponentially every round-trip
time, its ramp-up time is shorter than that in TCP Vegas.
Further, it exponentially fills up the window gap whenever
the window bound increases. Therefore, the throughput of
pseudo-rate TCP is better than TCP Vegas. Since the
window bound is affected by the network service rate, and
the switch provides a common-FIFO to all sources, the
window size fluctuates slightly around the window bound.
The fluctuation range is about 5% of the window size.

Observing the period between 0–20 and 500–520 ms, it
is clear that the window size increases exponentially regard-
less of the size of the previous stable window. After these
periods, sources with shorter round-trip times start to reduce
their window size, while other sources increase their
window size. Since the window size adjustment is a result
of compromise instead of greediness, the window size incre-
ment is no longer exponential.

Although under pseudo-rate TCP, sources with shorter

round-trip times increase their windows faster, the window
bound will restrict their window increment. While sources
with longer round-trip times increase their window size,
sources with shorter round-trip times reduce both their
window bound and their window sizes. Therefore, all of
the active sources can share the bandwidth much fairly
than TCP Vegas.

The performance of two congestion avoidance schemes is
discussed as follows. At the end of simulation, the through-
put is calculated based on the total throughput of five
sources, and the fairness index is based on the fairness
among three sources with same simulation condition. The
performance comparison is shown in Table 3.

Under our simulation environment, the throughput of
pseudo-rate TCP is 3% higher, and the fairness is 10% better
than TCP Vegas.

The TCP throughput in the simulation is shown in Fig. 5.
Since TCP Vegas successfully avoids the periodic conges-
tion, its performance is much better than TCP Reno [9], thus
there is not much space left for us to improve the total
throughput. However, pseudo-rate TCP not only success-
fully avoids the periodic congestion but also utilizes the
unused window with exponential growth, its throughput is
even better than TCP Vegas according to our simulation.

Fig. 6 shows the fairness index during the simulation.
TCP Vegas does not restrict the window increment for
sources with shorter round-trip times. Therefore, the fair-
ness among sources with different round-trip times is still
low because sources with shorter round-trip times increase
their window size faster. Thus, the fairness of TCP Vegas is

J.-R. Chen, Y.-C. Chen / Computer Communications 22 (1999) 1493–15011500

Table 3
Performance comparison

Throughput (%) Fairness index

TCP Vegas 95 0.889
Pseudo-rate TCP 98 0.993

0

2000000

4000000

6000000

8000000

10000000

12000000

0 100 200 300 400 500 600 700 800 900 1000

Time (ms)

T
h

ro
u

gh
p
u

t 
(b

yt
es

)

Vegas

Pseudo Rate

Fig. 5. Throughput comparison of congestion avoidance schemes.



not good enough. In contrast, the fairness in pseudo-rate
TCP is much better than TCP Vegas because its mechanism
successfully constrains the window size used by sources
with shorter round-trip times.

5. Conclusion

Pseudo-rate TCP is designed based on the rate-based
congestion avoidance scheme, with conversion of the
window size into the rate information. Therefore, neither
precise timing information nor rate-based transmission is
required. Further, it retains the advantage of self-clocked
characteristic of acknowledgement and achieves a stable
and fair window size. The exponential window adjustment
shortens the time to reach the allowed window size, this
increases the throughput of pseudo-rate TCP, while the
fair window-bound setting guarantees the fairness among
sources with different round-trip times. Overall, it features
simpler implementation with better performance compared
to TCP Vegas.

References

[1] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, Sun Microsystems,
TCP Selective Acknowledgement Options, RFC2018, October 1996.

[2] R.F. Chang, L. Huynh, J. Gray, Adaptive rate-based congestion
control versus TCP-SS: a performance comparison, International
Conference on Network Protocols, 1993, pp. 186–197.

[3] J.R. Chen, Y.C. Chen, C.T. Chan, A distributed end-to-end rate
control scheme for ABR service, IEEE GLOBECOM98, 1998, p.
s1008.

[4] S. Keshav, A control-theoretic approach to flow control, ACM
SIGCOMM, August 1991, pp. 189–201.

[5] W. Stevens, TCP slow start, congestion avoidance, fast retransmit,
and fast recovery algorithms, RFC2001, January 1997.

[6] Z. Wang, J. Crowcroft, Eliminating periodic packet loss in 4.3-Tahoe
BSD TCP congestion control algorithm, ACM Computer Communi-
cation Review 22 (2) (1992) 9–16.

[7] R. Jain, A delay-based approach for congestion avoidance in inter-
connected heterogeneous computer networks, ACM Computer
Communication Review 19 (5) (1989) 56–71.

[8] Z. Wang, J. Crowcroft, A new congestion control scheme: slow start
and search (Tri-s), ACM Computer Communication Review 21 (1)
(1991) 32–43.

[9] L.S. Brakmo, L.L. Peterson, TCP Vegas: end to end congestion avoid-
ance on a global Internet, IEEE Journal on Selected Areas in Commu-
nications 13 (8) (1995) 1465–1480.

[10] S. Floyd, T. Henderson, The NewReno modification to TCP’s fast
recovery algorithm, RFC2582, April 1999.

[11] R. Jain, The Art of Computer Systems Performance Analysis: Tech-
niques for Experimental Design, Measurement, Simulation, and
Modeling, Wiley, New York, 1991.

[12] L. Huynh, R.F. Chang, W. Chou, Performance comparison between
TCP slow-start and a new adaptive rate-based congestion avoidance
scheme, MASCOTS’94, 1994, pp. 300–307.

J.-R. Chen, Y.-C. Chen / Computer Communications 22 (1999) 1493–1501 1501

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000

ms

F
a
ir

n
es

s 
in

d
ex

Vegas

Psuedo Rate

Fig. 6. Fairness index of congestion avoidance schemes.


