
channel estimation is used. The fdT of fading channels is 0.000723 
in this simulation. All receivers in this simulation adopt pilot sym- 
bols for channel estimation and a Rake structure for the multipath 
fading channel. The SRM receiver does not need an additional 
training sequence by setting the tap weight of a desired user to 1 
in the initial state. 

Fig. 3 shows a comparison of BER performance among three 
CDMA receivers, in which the MMSE receiver models the modi- 
fied MMSE receiver in [l] with a fractionally spaced filter with a 
tap spacing four times smaller than the chip duration. Setting EdNo 
to 15dB, the MMSE receiver achieves 5.8dB gain in BER over 
that of a conventional receiver (MF), while the SRM receiver has 
gain of 17.8dB. Another simulation result shows that the SRM 
receiver also outperforms other receivers in a lower signal-to-inter- 
ference ratio ( K  = 25). 

From the results, it is clear that the SRM receiver significantly 
outperforms all other MMSE receivers. A potential issue is that 
the SRM receiver requires a function-based base station structure, 
which needs a high-speed router to link between each functional 
module. 
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Transformation from 512-point transform 
coefficients to 256-point transform 
coefficients for Dolby AC-3 decoder 

Szu-Wei Lee and Chi-Min Liu 

The Dolby AC-3 standard defines 512-point and 256-point 
transforms to provide high audio quality when signals rapidly 
change in time. This authors provide theoretical derivations and 
proofs for the transformation from 512-point transform 
coefficients to 256-point transform coeficients. 

Introduction: The Dolby AC-3 is currently the HDTV audio 
standard and is widely used in DVD films [l]. While the AC-3 
draft has been frozen, the standard defines one 5 12-point (referred 
to as the long transform) and two 256-point transforms (referred 
to as the first and second short transforms) to improve coding 
quality for signals which rapidly change in time. However, since 
the transforms are of differing lengths, this increases the difficulty 
of implementing channel operations in the frequency domain. 
Channel operations, such as downmixing and channel reduction, 
are linear operations that mix numbers of channels to another 
channel. The objectives of performing channel operations in the 
frequency domain are frequency selection for flexible computa- 
tional complexity, and equalisation for sound enhancement. Since 
the transforms adopted in AC-3 can be 512-point or 256-point, 
channel operations cannot mix the channels encoded by the short 
transforms with those encoded by the long transform. This Letter 
develops a transform matrix, denoted by V,  to transform the coef- 
ficients of the long transform to those of the short transforms. As 
a result, the channels encoded by the long transform are pre-proc- 
essed by matrix Y so that channel operations can mix them with 
those encoded by the short transforms. 

Overview of AC-3 transform process: The long transform is the 
time domain aliasing cancellation (TDAC) filter bank proposed in 
[2], but the short transforms are slightly different. Fig. 1 outlines 
the AC-3 transform process. The transform process comprises four 
modules: overlapping-windowing (OW), forward modified discrete 
cosine transform (MDCT), backward MDCT and windowing 
overlapping-and-adding (WOLA). 

samples 

reconstructed 

audio 

Fig. 1 Transform process of AC-3 

For forward transforms, each audio block containing 512 over- 
lapping samples, which overlaps the second half of the previous 
audio block, is multiplied by analysis window h(n) to produce 512 
windowing samples. The 512 windowing samples can be trans- 
formed by either one 256 x 512 forward MDCT (hereafter referred 
to as L) for the long transform, or two 128 x 256 forward MDCTs 
(referred to as S1 and S,) for the short transforms. As a result, the 
forward transforms produce 256 frequency coeficients or two sets 
of 128 frequency coefficients. 

For backward transforms, the 256 frequency coefficients are 
transformed by a 512 x 256 backward MDCT (referred to as L+), 
or the two sets of 128 frequency coefficients are transformed by 
two 256 x 128 backward MDCTs (referred to as SI+ and S2+). The 
backward MDCTs result in 512 windowing samples. The 512 win- 
dowing samples are multiplied by synthesis window f ( n )  to pro- 
duce 512 overlapping samples. The first half of the 512 
overlapping samples are then overlapped and added to the second 
half of the previous 512 overlapping samples. Finally, the 256 time 
samples are reconstructed. 

Notation: L+ is a 512 x 256 matrix and each entry nk of L+ is 
defmed by 

7l 7r 
(L+)%k = cos(-(2n 1024 + 1)(2k + 1) + -(2k 4 + 1)) 

We further decompose L+ into two square matrices, i.e. 

L f  = [ 31 
where Ll+ and &+ are 256 x 256 matrices. S1+ and S2+ are 256 x 
128 matrices. Each entry nk of SI+ is defined by 

(S,f),k = cos -(2n + 1)(2k + 1)) ( 512 

and each entry nk of S2+ is defined by 

(S;)%k = c o s ( L ( 2 n  + 1)(2k + 1 )  + -(2k 7l + 1)) 512 2 

SI and S, are transpose matrices of SI+ and S2+, respectively, with 
dimensions 128 x 256. H and F are 512 x 512 diagonal matrices 
with entries (wnn = h(n) and (qnn =An). Also, partitioning matri- 
ces H and F into two parts yields 

is a 256 x 1 vector denoting the frequency coefficients of the 
long transform. y1. and Y2. are 128 x 1 vectors, where Ylf 
denotes the frequency coefficients of the first short transform, nf 
denotes the coefficients of the second_ short transform, and sub- 
script f is the block number. X, and X f  represent the original and 
reconstructed time domain signals, respectively. 

Derivation: Since the transforms adopted in the AC-3 satisfy the 
perfect reconstruction constraint, the original _time domain signal 
Xf can be obtained from the synthesis signal Xfi i.e. 
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and 

Fi . Lf . Yf + F 2  . S,’ . Y2(f-1) 

Fi . LF . Yf + F 2  . L t  ’ Yf-1) 
if previous block adopts short transforms 

if previous block adopts long transform 
(1) 

F 2  . L; . Yf + FI . ST . Yl(f+l) 

F 2  . L t  . Yf + F1 . L r  . Y(f+l) 

81, = 

if next block adopts short transforms 

if next block adopts long transform 
(2) 

Theorem (9: The following matrices, Z1, Z,, Z3 and Z4, are zero 
matrices, where Zl, Z2, Z3 and Z4 are defined by Zl = SI HI . F2 

’ H2 ’ F] ’ L1+. 
‘ S2+,  Z2 = SI . Hi . F2 &+, Z3 = S2 . H2 . FI SI+, and Z4 = S2 

Proof of theorem (i): Let zl(k1,kZ) be the entry of the matrix Zl, 
i.e. 

255 

zl(k1, k2) =~cos (&(4k l+2) (2n+l ) )h (n ) f (256+n)  
n=O 

x cos -(4k2 + 2)(2n + 1 + 256)) 
(1;24 (3) 

Since the analysis window h(n) and synthesis window An) are 
equal and have the symmetry property, eqn. 3 can be rewritten as 

zl(k1, k2) = 
255 

[h(n)h(256 - 1 - n) cos 
n=O 

X cos ( -(4b 1l24 + 2)(2n + 1 + 256))] (4) 

We now partition the summation term in eqn. 4 into two groups. 
Each has 128 terms. 

zl(k1, k2) = 
127 

{ h(n)h(256 - 1 - n)  cos -(4kl + 2)(2n + 1)) 
n=O (10x24 

X COS (1&4 -((4kz + 2)(2n + 1 + 256))) 
255 

+ { h(n)h(256-1%) cos( &(4k1+2)(21,+1)) 
n=128 

x cos( A ( 4 k 2  + 2)(2n + 1 + 256))) (5) 

Replacing the index n in the second group by (255-n), we obtain 

zl(k1, k2) = 
127 

{ h(n)h(256 - 1 - n) cos -(4kl + 2)(2n + 1)) 
n=O (1:24 

x cos( y ( 4 k 2  + 2)(2n + 1 + 256))) 
1024 

+?(h(n)h(256- 
n=O 

-1-n) COS (1orr24 -(4k1+2)(512-1- 

x cos - (4k2 + 2) (768 - 1 - 2n))) ( 1&4 

Since the cosine terms satisfy the following properties 

COS -(4ki f 2)(2n + 1)) = 
( 1 z 4  

+ 2)(512 - 1 - 2.)) 

cos L ( 4 k l  + 2)(2n + 1 + 256)) = 
(1024 

cos( &(4k2 + 2)(768 - 1 - (7) 

2, is a zero matrix. For Z2, Z3 and Z4 the proofs can be carried 
out similarly. 

Theorem (ii): The short transform coefficients can be obtained if 
the long transform coefficients are known. Specifically, the trans- 
form matrix from the coeficients of the long transform to those of 
the short transforms is described as follows 

Proof of theorem (ii); The short transform coefficients can be 
expressed as 

(9) 

Substituting eqns. 1 and 2 into eqn. 9 and applying theorem ( i )  
yields 

Conclusion: In this Letter, we have established the transform 
matrix that converts the coefficients of long transforms into those 
of the short transforms. This matrix makes possible the implemen- 
tation of channel operations in the frequency domain. This work 
has given the theorems and proofs that support derivation of this 
matrix. 
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Ultra-low nonlinearity low-loss pure silica 
core fibre for long-haul WDM transmission 

T. Kato,  M. Hirano, M. Onishi and M. Nishimura 

A new design of pure silica core fibre with an effective area > 
I10p2  and attenuation of 0.17ldBh at 1 . 5 5 ~  has been 
successfully developed. It exhibits ultra-low nonlinearity and 
excellent bending loss performance. 

Introduction: Recent investigation has shown that a combination 
of dispersion-unshifted singlemode fibres and dispersion-compen- 
sating fibres is one of the most promising transmission line config- 
urations for long-haul WDM (wavelength division multiplexing) 
transmission systems [l - 31. The former fibre, which has relatively 
large chromatic dispersion at 1 . 5 5 p ,  is effective for reducing 
fibre nonlinearity effects, such as four-wave mixing, while the lat- 
ter compensates for the accumulated dispersion. Since dispersion- 
compensating fibres tend to have slightly higher attenuation than 
standard fibres, use of low-loss pure silica core fibres (PSCFs) 
with an attenuation of 0.17-0.18dBh at 1 . 5 5 ~  instead of 
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