
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 3, SEPTEMBER 1999 345

Cost-Effective VLSI Architectures and Buffer
Size Optimization for Full-Search Block

Matching Algorithms
Yuan-Hau Yeh and Chen-Yi Lee,Member, IEEE

Abstract—This paper presents two efficient very large scale
integration (VLSI) architectures and buffer size optimization for
full-search block matching algorithms. Starting from an over-
lapped data flow of search area, both systolic- and semisystolic-
array architectural solutions are derived. By means of exploiting
stream memory banks, not only input/output (I/O) bandwidth
can be minimized, but also processor element efficiency can be
improved. In addition, the controller structure for both solutions
are very straightforward, making them very suitable for VLSI
implementation to meet computational requirements. Moreover,
by exploring the dependency graph, we focus on the problem of
reducing the internal buffer size under minimal I/O bandwidth
constraint to derive guidelines on reducing redundant internal
buffer as well as to achieve area-efficient VLSI architectures.
Simulation results show that, forN = P = 16 (N is the reference
block size and P is the search range), I/O bandwidth can be
reduced by 2.4 times, while buffer size increases less than 38%.
Two prototype chips for N = P = 16 have been designed and
fabricated. Test results show that clock rate can be up to 90 MHz,
implying that more than 87.9-K motion vectors per second can
be achieved to meet real-time requirements specified in MPEG-2
MP@ML coding standard.

Index Terms—Block matching, computing architecture, full
search, integrated circuits, optimization.

I. INTRODUCTION

BLOCK matching algorithms (BMA’s) are often found in
image and video applications for pattern analysis, motion

detection, data compression, etc. Inherent computational com-
plexities in these algorithms often demand special hardware
to meet real-time performance. Due to algorithm regularity
and modularity, such algorithms are very suitable for very
large scale integration (VLSI) implementation. However, for
practical system design considerations, not only computational
requirements have to be coped with, but also memory band-
width has to be minimized to reduce input/output (I/O) pin
count and, hence, realization cost. In other words, the desired
hardware has to provide sufficient computational power to
meet algorithm complexity. Moreover, the large volumes of
image/video data have to be managed carefully to enhance
on-chip data reusability. From these viewpoints, a good (or

Manuscript received June 26, 1997; revised February 4, 1998 and July 19,
1998. This work was supported by the National Science Council under Grant
NSC86-2221-E-009-016.

The authors are with the Department of Electronics Engineering, National
Chiao Tung University, Hsinchu 300, Taiwan, R.O.C.

Publisher Item Identifier S 1063-8210(99)02611-6.

so-called cost-effective) VLSI architecture for a BMA is often
judged by the following issues:

1) internal storage space, which determines on-chip mem-
ory cost and bandwidth;

2) I/O pin count, which determines I/O bandwidth and
packaging cost;

3) processor element (PE) efficiency, which determines PE
structure and its utilization ratio for a given period.

These issues will be used as platform for performance compar-
ison in the following sections. Motion estimation (ME) based
on full-search BMA (FSBMA), one of the key techniques
in video coding to remove redundancy, is a good example
for illustration of such design complexity. Many research
results on VLSI architectures for FSBMA were proposed in
the past [1]–[11], [14], where research efforts have moved
from meeting computational requirements to reducing memory
bandwidth, as well as providing multifunctions specified in
standard [17]. This trend results from the consideration that,
as VLSI technology advances, more devices can be integrated
on-chip to cope with computational requirement, while cost of
chip I/O still remains very high. To cope with computational
complexity, systolic array (SA) architecture [12], [13] is often
exploited. The number of PE’s is dependent on the size of
reference block and search area. To reduce I/O bandwidth,
search data are often organized in a snakelike form to run
through a PE array, as found in [5]–[7], and [15], or in an
interlacing style, as in [8]. Although I/O pin count is reduced,
the time to initialize both reference and search data (i.e., before
a PE array can be fully operated) is too long and, hence, overall
performance becomes degraded. For example, for 1616
reference block and , search area, it may take more
than half of the total cycle count for data initialization [6],
[7]. In addition, for block matching at search boundary, some
PE’s may become idle because of pipeline filling [5], which
also leads to degraded system performance. Yeo and Hu [10]
have proven when the search range is set to half of the
macroblock size , significant reduction in I/O bandwidth
can be achieved without sacrificing performance. However, in
the case of , four cascadable chips are needed, resulting
in increasing the implementation cost for a large search area.

To cope with those above-mentioned problems, we have
already proposed a semisystolic array (SSA) architecture with
double stream memory banks [16]. Based on an overlapped
search data flow, we have reached 100% efficiency of a PE

1063–8210/99$10.00 1999 IEEE

346 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 3, SEPTEMBER 1999

Fig. 1. Image frame structure.

array with a minimum number of I/O pin count. The broad-
casting signals in search area requests a special memory design
[15] to speed up the motion vector (MV) search. Recently, we
have mapped the same data flow onto a pure SA architecture
where the merits obtained in SSA architecture still remain the
same. The only difference between these two architectures lies
in both stream memory size and PE structure. In this paper,
we will show the mapping process of these two architectures
to see how a common data flow can be mapped onto different
architectures. In addition, the proposed two architectures can
be scaled for large search area applications, making them
also suitable for scalable designs. Comparisons between them
and among the solutions found in the literature will also be
highlighted to show the benefits of the proposed architectures.

This paper is organized as follows. In Section II, we first
briefly discuss the algorithm fundamentals of FSBMA oper-
ations derived from dependency graph (DG). In Section III,
we present two efficient VLSI architectures to optimally
reach 100% PE efficiency. Emphasis will be on the mapping
procedure, stream memory bank, PE structure, and controller
complexity. In Section IV, we present a scalable solution
based on the proposed architectures, where the different size of
reference data and search area can be handled. In Section V,
we present optimal buffer size estimation from DG analysis.
Finally, we compare the results of these two proposed solutions
with other available solutions found in the literature.

II. DATA FLOW AND ALGORITHM MAPPING

The basic concept of full-search ME is illustrated in Fig. 1.
Usually, a picture frame is divided into many macroblocks,
each macroblock containing pixels. Assuming is
the frame’s width and is the frame’s height, a frame
is arranged as macroblocks; are the
horizontal and vertical macroblock indexes in one frame. For
one macroblock, there are candidates inside its search
area; are the horizontal and vertical candidate indexes
for one macroblock. Looking inside the macroblock,
are the horizontal and vertical pixels indexes in one mac-
roblock. To find the so-called minimum distortion, very often
mean absolute difference (MAD) is exploited as the matching
criterion because of simple operation. However, for typical

Fig. 2. Three-level loop algorithm for FBMA.

applications where 16 16 reference block and [16, 15]
search area are considered, at least 2MAD and accumulation
operations are needed for each reference block. Considering
a video sequence consisting of 30 frames, each of which has
several thousands of 16 16 reference blocks, more than 10
billion MAD and accumulation operations are needed. To meet
such a computational requirement, a two-dimensional (2-D) PE
array is often requested. However, how to organize reference
and search data in order to minimize memory bandwidth and
cycle count for MV search becomes an important issue in
enhancing performance of ME processor designs.

The matching criterion of the FBMA can be expressed as

(1)

where is a “reference block” and is a “search area.”
According to the formulas derived in [10],

(2)

A three-level loop algorithm can then be formulated, as
shown in Fig. 2. If we swap the direction of and ,
we can change the scan order of parametersand , and we
can then get four basic types of DG, as shown in Fig. 3.

Redrawing the DG of type II in Fig. 4, we set and
, respectively. The dashed lines present the schedule

vectors.1 If we assume that reference data are stored locally
(within each PE) and search data are pumped into a PE

1In this example, we partition the DG into three parts. Each part has its
own schedule vector.

YEH AND LEE: VLSI ARCHITECTURES AND BUFFER SIZE OPTIMIZATION FOR FULL-SEARCH BMA’S 347

Fig. 3. Four basic types of DG, from type I to IV.

Fig. 4. Partial DG for type II in Fig 3,N = 3 andP = 2:

array in parallel, all PE’s are working simultaneously to
compute distortion. However, as the boundary pixels are under
processing, part of the PE’s becomes idle because boundary
search data have to be pumped into a PE array for necessary
computations of integer candidates. This process continues
until the distortion computation of the boundary candidate

is finished, as shown in Fig. 5(a). The problem lies in that
these boundary search data are not fully repeatedly used for
times.Thus, if we organize search data in a partly overlapping
style, as shown in Fig. 5(b), we can make sure that all PE’s
work on correct data items when an MV search is started.
That is, without counting the delay in data initialization and
latency, the distortion of each candidate can be obtained within
one cycle. In other words, it takes cycles to find an
integer–pixel MV because there are integer candidates.

To further illustrate how data are processed in the PE
array, we use the example given in Fig. 6. It can be found
that without data overlapping, hardware efficiency of the
PE array is only about 50%. This low efficiency can be
overcome by preloading data onto the next row to PE’s
when boundary is detected. As shown in Fig. 7(a), when the
distortion calculation is done on the boundary, data of the
next row should be pumped into a PE array at the next
cycle. The mask region indicates that these data have to be
simultaneously pumped into the PE array. Fig. 7(b) illustrates
the process of distortion calculation at boundary. At cycle 4,
boundary is detected. Summation of the distortion values of
different candidates are performed respectively at ,

348 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 3, SEPTEMBER 1999

Fig. 5. Data flow and PE usage for FSBMA with reference data stored
locally. (a) Conventional data flow. (b) Overlapped data flow.

Fig. 6. Example of illustration forN = 3 andP = 2.

, 3. At cycle 5, the boundary block still needs the boundary
data , which should be pumped into and .
However, data of the next row is now pumped into

. At cycle 6, data items (and) are needed.
Distortion calculation of the candidate on the boundary is
achieved now in . In the meantime, distortion of the
candidates of the next row are also performed in and

. At cycle 7, only the data items from the same row are
needed. In summary, the first pixel of each row is read out
every th2 cycles with data overlapping of
cycles, as shown in Fig. 7(a).

In Section III, we’ll see how the overlapped search data
is achieved by means of stream memory banks and how the
FSMBA can be mapped onto both systolic and SSA structures.

III. T HE PROPOSEDVLSI ARCHITECTURES

To generate integer MV’s, we use the block diagram given
in Fig. 8, which mainly consists of the following four blocks:

1) stream memory bank;
2) 2-D PE array;
3) parallel adder tree;
4) compare–select unit.

2Here,k = 0; � � � ; 2P � 1 for every2P candidates.

The stream memory is designed to: 1) buffer the search data
to reduce I/O bandwidth and 2) to skew the search data to
meet requested data flow, as mentioned above. The PE array
is designed to provide sufficient computation capability for
calculating and accumulating MAD. The parallel adder tree
is designed to compute the total MAD for each candidate and
then sends it to compare–select unit to generate the MV. Since
stream memory bank and PE array are the two key modules
in ME processor design, they will be discussed in more detail
in the following subsections, which discuss systolic and SSA
solutions, respectively.

A. SA VLSI Architecture

From the derived overlapped data flow, it can be found that
search data from two different rows (or columns) are needed
as a boundary candidate is detected. This implies that two
input data buses are needed, where one is always busy and the
other is needed only when a boundary candidate is detected.
Therefore, how to schedule search data into the PE array so
that MAD at each PE can always be calculated becomes a
key issue in SA-based realization. This problem can easily
be solved by taking into account data flow needed in the PE
array. Fig. 9 shows the search data needed in each PE for the
first six cycles. The marked data items indicate they are from
a different row (or column) and, thus, two input buses are
requested. If we can map search data into the PE array in that
way, all PE’s are working on correct data items, resulting in

cycles in obtaining an MV. This also implies that the
search area should be partitioned into two regions, which are

and , respectively as shown in Fig. 10. Both regions
have the size of and ,
respectively. This partitioning method is very straightforward
because it is based on the reference block sizeonly. Thus,
all search data are only accessed once and then buffered in a
stream memory bank for other necessary computations. This
method is different from overlapped partitioned regions [7],
which may increase I/O bandwidth. The stream memory used
here can be either shifter register array or pointer addressable
memory (PAM) [15]. The overall SA-based architecture is
depicted in Fig. 11. Note that the required skew for search
data is achieved by both steam memory and PE array since
search data on the lower row is always one clock ahead of
its upper row. In that case, partial MAD’s of each candidate,
which are obtained row by row, can be matched.

1) PE Design: To meet real-time performance, very of-
ten a 2-D array structure is requested for an ME processor.
Based on the above description, we propose a double-port (
and) structure, as shown in Fig. 12. Here, search data run
horizontally and MAD and control signal “cmux” run verti-
cally. In the initialization phase, all internal registers, except
MAD accumulation register “acc,” are defined appropriately
through two data buses. The control register “sel” is used to
select either “ ” or “ ,” which should be accessed during
MAD computation.

2) Controller Design: It can be found that from Fig. 9,
the control signals needed for each PE are a stair-like wave-
form, which can easily be obtained by a ring counter, as

YEH AND LEE: VLSI ARCHITECTURES AND BUFFER SIZE OPTIMIZATION FOR FULL-SEARCH BMA’S 349

Fig. 7. An example, withN = 3 and P = 2 to demonstrate how overlapping strategy is exploited to enhance throughput. (a) Overlapped data flow.
(b) Data items within a PE array.

Fig. 8. Block diagram of the ME engine for integer MV search.

Fig. 9. An overlapped search data flow is developed to allow each PE handling correct data items based on SA architecture.

shown in Fig. 13. As an MV search is activated, this ring
counter generates the required control signals, which are then
connected to PE columns. Note that this ring counter
is reset every cycles.

3) Performance Evaluation:Here, we summarize the
performance of the SA-based ME architecture as follows,
where reference size of and search range of ,

are assumed.

1) Initialization phase: It takes cycles to
preload both reference data and search data.

2) Execution phase: It takes cycles to find one
MV, thus, the PE array efficiency3 becomes 68% for

.

3The efficiency can achieve 100% if double buffering is exploited, i.e., use
another buffer to preload next reference and search data. However, this needs
to revise PE structure and makes the controller more complex.

350 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 3, SEPTEMBER 1999

Fig. 10. Search area partitioned into two regions, namelyLS andRS, which
contain the sizes of(2P + N � 1) � 2P and (2P + N � 1) ((N � 1),
respectively.

Fig. 11. SA architecture for the FSBMA.

3) Stream memory size: It only needs
storage space to buffer part of the search area.4

4) Pipelinable design: A pipeline register can be directly
inserted to enhance clock rate.

B. SSA VLSI Architecture

Again, based on the overlapped data flow given in Fig. 2(b),
we can develop another VLSI architecture where search data
are broadcast to a PE array on the same row (or column).
The overall ME architecture is shown in Fig. 14. The search
data needed in the PE array (for ,) is shown
in Fig. 7(b). It can be found that PE’s on the same column
are computing partial MAD’s of the same candidate. These
partial MAD’s are then moved right for accumulation. This
is different from that of the SA version where PE’s of the
same row compute partial MAD’s of the same candidate. As
a boundary candidate is detected, we need to provide two
search data to the PE array to avoid idle operations. Thus,
two global buses are running through a PE array where each
PE selects the correct search data item. Since search data are
now stored in the stream memory, the required space becomes

To reduce memory area, a dedicated
PAM module was developed [15].

4Part of theRS andLS search area is buffered in the PE array.

Fig. 12. The structure of PE for SA-based architecture.

Fig. 13. Ring-counter-based controller for the PE array of SA architecture.
The size of this ring counter is equal toMAX(2P;N).

1) SSA-Based PE Design:The design of the PE is aimed
to select search data from two alternative buses (namely,

and) for computing partial MAD. Like SA-based PE
design, we have to select either or search data, which
are now from the two global buses. The selected data is stored
inside PE to compute local MAD, which is then accumulated
with the partial MAD obtained from previous PE’s. Thus, the
structure of the SSA-based PE, as shown in Fig. 15, is very
similar to that of SA-based PE, except the following: 1) global
buses are running through the PE, i.e.,, , andcmux, and
2) accumulation of the partial MAD is running in the same
direction as that of search data.

2) SSA-Based Control Generation:The required control
signals are very similar to those used SA-based architecture.
As the boundary candidate is detected, which occurs every
cycles, control signals for boundary search data are activated
and exists in cycles. The same control signals are
needed in the PE array to select the correct search data to
compute partial MAD. Since the required control signals are
the same as that discussed in SA-based architecture, a very
simple ring counter can be exploited here.

YEH AND LEE: VLSI ARCHITECTURES AND BUFFER SIZE OPTIMIZATION FOR FULL-SEARCH BMA’S 351

Fig. 14. SSA-based architecture for an FSBMA ME processor withN = 3; P = 2.

Fig. 15. The structure of PE for the SSA-based architecture.

3) Performance and Requirements:Here, we summarize
the features and hardware requirements for the SSA-based
architecture for an FSBMA ME processor.

1) Initialization phase: It takes cycles to
preload both search data and reference block through
two input buses.

2) Execution phase: It takes cycles to obtain one
MV.

3) Stream memory size: It needs
storage space to buffer search data so that I/O bandwidth
can be reduced.

4) Double buffering to improve performance: The initial-
ization phase takes more than 32% (for)
of the total cycle count. However, with another buffer,
this problem can be solved. In that case, we do not have
to modify the PE structure, except that input ports have
to be increased to meet the need of requested data rate.5

5This is not always true because for neighboring reference blocks, their
search area are partly overlapped. Thus, part of the desired search area for
initializing the next reference block can be directly obtained and, hence, the
I/O bandwidth can be reduced.

Fig. 16. Illustration of the scalable design based on the proposed architec-
tures.

5) Pipelining capability: The PE array can still be pipelined
to enhance clock rate if the access time of stream
memory can be matched.

IV. SCALABLE VLSI ARCHITECTURES

In this section, we present a scalable design based on the
two ME architectures proposed above. Since both of them have
same I/O terminals, we will use an abstract view to illustrate
how they can be cascaded (or combined) for a large reference
block and search area. We will directly use some examples to
show the mapping procedure. However, before doing that, we
will first modify the available ME structure so that scalability
is allowed.

A. Revising Overall ME Structure
We first assume that each ME processor can handle a

reference block of and search range of , .
To provide scalable capability, we have to take into account
both data communications and I/O pin count into account.
For example, both MAD and MV should be sent out when
search range increases; for large reference block size, partial
MAD has to be sent out. Based on these two considerations,
we have modified the structure of the parallel adder tree, as
shown in Fig. 16. The partial MAD from other ME processors

352 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 3, SEPTEMBER 1999

(a) (b)

Fig. 17. Scalable ME solutions for large reference block size(2N � 2N), where each MV can be obtained within(2P)2 cycles. (a) Two-processor
configuration. (b) Corresponding search area partition.

can be accumulated by the parallel adder tree and then sent
out for further accumulation. This ME processor can also be
used stand alone to find the MV and corresponding MAD by
simply setting themodeoption.

B. Case I: Increasing Reference Block Size

We assume that each ME processor can handle
reference block, search range of , and produce
one MV every cycles. If, for example, the reference
block becomes and search range remains the same,
we need two ME processors to produce one MV every
cycles. Fig. 17(a) shows the scalable design, where each ME
processor computes partial MAD for each block. The
partial MAD from PROC1 is then sent to PROC2 to find total
MAD of each candidate. MV and corresponding MAD are
then obtained from the compare–select unit in PROC2 every

cycles without counting latency. Note that to reach
the performance, search data has to be arranged as shown in
Fig. 17(b), which is again partitioned into and regions.
Once data are preloaded in cycles, MV’s
can be obtained every cycles.

C. Case II: Increasing Search Range

We assume that the search arrange is extended to ,
and MV still has to be located in cycles. Without

using multiple ME processors, it takes cycles to find one
MV. We thus partition the search area into four regions, each
of which will be handled by one ME processor. For example,
the search range from , is handled by ME PROC1,
as shown in Fig. 18(a). The search area is partitioned into
two regions with overlapped rows and columns, as
shown in Fig. 18(b). These four ME processors are executing
in parallel to compute local minimal MAD’s, which are then
further processed to find the final MV.

D. Memory Bandwidth Requirement

The required bandwidth6 for off-chip memory can be cal-
culated as follows:

(3)

Here, search area, reference block, and available cycle count
are given for reference block and , search
range. If each input sample is kbit wide, then the required

6Here, we assume that input rate from off-chip memory is equal to on-chip
clock rate.

(a) (b)

Fig. 18. Scalable ME solutions for large search range[�2P; 2P�1]; where
each MV can be obtained within(2P)2 cycles. (a) Cascadable structure. (b)
Partitioning of the search area.

Fig. 19. Illustration of an overlapped search area for neighboring reference
blocks.

bandwidth becomes

(4)

If the initialization delay of loading the search area is
to be avoided, i.e., one MV can be obtained every
cycles, the required memory bandwidth can still remain the
same. However, another buffer for both search data and
reference block should be provided. Note that for neighboring
reference blocks, the required memory bandwidth can be
reduced because of the overlapped search area, as shown
in Fig. 19. Therefore, part of the search area for the next
reference block can be directly obtained from the available

YEH AND LEE: VLSI ARCHITECTURES AND BUFFER SIZE OPTIMIZATION FOR FULL-SEARCH BMA’S 353

TABLE I
DEPENDENCY ARCS DERIVED FROM FIG. 3

search area. The required average memory bandwidth thus
becomes

(5)

For and , the required average
bandwidth is now reduced from 2.41 to 1.02 K.

V. OPTIMAL BUFFER SIZE ESTIMATION FROM DG ANALYSIS

Analyzing the DG’s shown in Fig. 3, we can extract the
dependency arc of all variables. Table I shows the depen-
dency arcs which are necessary to evaluate buffer size for
a given mapping strategy. is the reference block data,

is the distortion value of a candidate block, MV is
the MV of one macroblock, and is the search area data.
Data dependency in the search area are more complicated
than other variables. In Fig. 3, observing the DG of type I,
there are three types of relations in-variables which will
be discussed in detail in the following subsections. From this
table, we know that, for different mapping directions, we can
choose freely various dependency arcs unless they violate
the mapping constraints. With this table, we can evaluate
optimized memory size for different mapping directions under
I/O bandwidth constraint. Note that we withdraw types III
and IV from our discussion because they cannot be used
to generate cost-effective architecture mappings. Dependency
arcs can be mapped to PE array and a set of dependency edges
and delays are acquired in the following equation, which is
described in [12]:

(6)

is the delays on edge in the PE array, is the schedule
vector, and is the processor basis. According to delays of
each dependency edge, we can derive total memory size for
a giving mapping.

Memory elements can be classified as: 1) registers in each
PE and 2) memory banks outside the PE array. Our target is
to find the solution for the following equation:

(7)

Under the condition of minimum I/O bandwidth.
is the edge count of data dependencyFrom Fig. 3, we know
most existent architectures for FSBMA set their projection
direction to [1,0] or [0,1], in other word, most 2-D PE arrays

TABLE II
DELAYS ON DEPENDENCE EDGES

Fig. 20. Delay elements for dependency edge~eS2.

contain or PE’s. In Table II, we know for the four
conditions , , and are all equal to
one. These cause one or zero delay in each PE depending on
the projection direction. For example, in Type I(a),
does not result in any delay in each PE, while causes
one delay in each PE. Those delays mentioned above are
inevitable and, hence, the buffer minimization problem falls
on exploiting and . In following subsections,
we describe this problem of the four conditions, respectively,
focusing on the condition .

A. Type I(a)— , ,

First, from Table II, we know and
We can arrange PE’s as snakelike, as shown in

Fig. 20. Applying the mapping information shown in Table II,

354 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 3, SEPTEMBER 1999

(a) (b)

Fig. 21. (a) “Nonboundary” and “boundary” regions of one search area. (b) Buffer size reduction after “merging” procedure.

registers are needed between two adjacent
rows. However, there exists data dependency among the data
in registers, which can be easily read from
examining Fig. 3. We then apply a procedure called “merging”
in order to greatly reduce the register count. From the DG, we
know sometimes “nonboundary” and “boundary” data must
be passed to the same row, like , or , ,
etc. If we assume , the two following inequations are
acquired:

(8)

means only registers are sufficient
to buffer “boundary” data and means
at least (this value is right equal to , this is
the lower bound size to buffer “nonboundary” data) registers
are needed to buffer “nonboundary” data. After applying the
“merging” procedure, we can reduce the buffer size from

to , as shown in Fig. 21(b).
Next, another key point to reduce the I/O bandwidth is

to consider dependency arc ; also means the common
data of two adjacent search areas depicted in Fig. 3. Fig. 22
shows three conditions if we choose different. One idea
to reduce the buffer size is:the reusable data is passed to
the buffer for finding the next MV as late as possible.Thus,
condition III is a good choice. Thus, we get
and Observing the condition
III in Fig. 22, from to in the time axis,

registers are needed to buffer the data. Thus,
for , dependency edge results
in buffer size. According to the
above discussion, a formula for the buffer size estimation of
DG type I(a) is given as

(9)

B. Type — , ,

This case causes . Although
violates the constraint , appending two adjacent
search areas together, as shown in Fig. 23, is a special case
when . does not cost any buffer to hold data.

Fig. 22. Three conditions for dependency arcS3.

Let us just consider and . The
PE’s can be arranged as a snakelike form, as shown in

Fig. 24. At time , three pixels , , and are sent
to row concurrently. After the “merging” procedure, we can
reduce the buffer size from to
per row. The total buffer is given as

(10)

C. Type II(a)— , ,

In this case, the buffer size for is the same as DG type
I(a). From Table II, we know

. Applying the concept described in Section V-
A, the whole common data between two adjacent search
areas should be buffered, thus, the buffer size for is

YEH AND LEE: VLSI ARCHITECTURES AND BUFFER SIZE OPTIMIZATION FOR FULL-SEARCH BMA’S 355

Fig. 23. Partial DG between two search areas of Type I(a).

Fig. 24. PE array and buffer structure of DG type I(b).

The total buffer for DG type II(a) is

(11)

D. Type II(b)— , ,

In this case, the buffer size for is the same as DG
type I(b), which is described in Section V-B. Consider the
illustrated example shown in Fig. 25. At time to ,
the common data (i.e., , , and , the size is)
between two adjacent search areas should be stored in the
buffer every cycles. For , the buffer size
for is .
Thus, the total buffer size is given as

(12)

Fig. 25. Partial DG for Type II(b).

E. Mapped ME Architectures

According to the discussion in Section V-A, beside registers
in each PE, two extra buffers are used to buffer the data for

and ; theses two buffers are illustrated in Fig. 26 as
buffers I and II, respectively. The buffers can be implemented
as pointer address memory described in [15]. There are two
buses passing each row of the PE array, supplying “boundary”
and “nonboundary” data concurrently. In order to reduce I/O
bandwidth, the penalty paid is complex routing, and the data
broadcasting problem during changing to the next search area
should be carefully handled.

Also, according to the discussion in Section V-B, the
mapped architecture is shown in Fig. 27 and the size of
the PE array is . There are three buses passing each
row of the PE array. The reason is in the worst case, as three
pixels should be consumed at the same time.

VI. COMPARISON AND DISCUSSION

In this section, we first present a systematic procedure
for the design of cost-effective ME processors based on
the two proposed architectures described in Section III. We
then compare the achieved performances with available ME
solutions found in the literature.

A. A Systematic Design Procedure for FSBMA ME Processor

From the description of algorithm mapping and architecture
design, it can be found that good data partitioning may result
in reducing memory bandwidth and, hence, I/O pin count can
be minimized without degrading overall system performance.
Idle operations can be avoided if both initialization delay
and boundary search data are handled appropriately. Below,
we summarize the key procedures for designing scalable ME
processors based on FSBMA.

1) Search area partitioning: The first step is to partition
search area such that all PE’s work all the time once
an MV search is activated. This is often found in the
boundary candidate whose search data are reused less

356 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 3, SEPTEMBER 1999

Fig. 26. Mapped ME architecture for Type I(a).

Fig. 27. Mapped ME architecture for Type I(b).

than times. Therefore, these search data have to be
overlapped with other search data to ensure that all
PE’s are working on correct data items. In principle,
search area is partitioned into two regions whose size
are and ,
respectively, as shown in Fig. 10.

2) ME processor structure: The ME processor mainly con-
sists of four blocks, namely, stream memory bank,
PE array, parallel adder tree, and compare–select, as
shown in Fig. 8. If search data flow and partial MAD
accumulation is running in the same direction, the SSA
architecture solution is proposed. On the other hand, if
they run orthogonally, the SA architecture is proposed.
Total storage space7 needed for both the search area and
the reference block is .
Without counting the initialization delay, each MV can
be obtained every cycles. By setting mode lines,
we can use multiple ME processors to handle the large
reference block and search range where any MV can still
be obtained within cycles. As for the controller,
a ring-counter-based structure is proposed.

3) Data initialization phase: In practical applications, we
have to take the initialization delay into account because
only when both search and reference data are placed
appropriately can an MV search be activated. If the
initialization phase takes too many cycles, the overall

7The storage space includes registers within PE array and the stream
memory bank.

Fig. 28. Tradeoff diagram of processing time, internal memory size, and
I/O bandwidth.

performance becomes degraded. In our proposals, both
architectures need cycles to preload search
and reference data through two input buses. Thus, it
totally takes cycles to find
one MV. For , the PE array becomes
idle about one-third of the total cycle count. To solve
this initialization delay problem, a double buffering
scheme is suggested. Although this results in the need
of doubling storage space and three input buses, i.e.,
one for the reference block and the other two for the

YEH AND LEE: VLSI ARCHITECTURES AND BUFFER SIZE OPTIMIZATION FOR FULL-SEARCH BMA’S 357

TABLE III
PERFORMANCE COMPARISON BASED ON N = 16, P = 8, Sh = 720, Sv = 480, Fr = 30

TABLE IV
PERFORMANCE COMPARISON BASED ON N = 16, P = 16, Sh = 720, Sv = 480, Fr = 30

search area, the cycle count needed to obtain one MV
still remains cycles.

4) Tradeoff: From the above discussion, it can be found that
three factors may have influence on the ME processor
design. They are: 1) PE count; 2) internal memory size;
and 3) I/O bandwidth. We use Fig. 28 to illustrate the
relationship among these factors. Moving8 along axis ,
we can decrease/increase the processing time (cycles/per
MV), moving along axis , we can decrease/increase
the internal memory size, and moving along axis,
we can decrease/increase the I/O bandwidth. The area
enclosed by , , and indicates the I/O band-
width, the area enclosed by , , and indicates
the internal memory size, and the area enclosed by,

, and indicates the processing time. For example,
if we put our effect on reducing the processing time
(one way is to add the PE count), we may increase
the internal memory size or increase I/O bandwidth or
both. If the I/O bandwidth (implying the pin count or the
loading of the memory management unit) is critical, we
can increase (moving toward the original point) the
internal memory size or increase the processing time
(one way is to decrease PE count), if the requirement
is satisfied. The final item is to decrease the internal
memory size, we can increase the I/O bandwidth, or
increase the processing time.

B. Performance Comparison

Here, we make some comparisons among the proposed
architectures and other solutions found in the literature. The

8Moving outward direction indicates decrement.

comparisons are based on: 1) memory bandwidth; 2) I/O port
for both reference and search data; 3) internal storage space;
and 4) cycle count needed to produce one MV when data are
initialized appropriately. Note that for internal storage space,
we count both registers in the PE array and stream memory
in order to make the comparison more fair. We first define the
following parameters:

horizontal size of a frame;
vertical size of a frame;
frame size.

The architecture proposed by Hsieh and Lin [5] requires
the storage space of . However, it
takes cycles to find one MV. The architecture
proposed by Baeket al. [7] needs storage space of

. It needs
cycles to obtain one MV. In addition, memory bandwidth
is increased due to overlapped window size of .
The architecture proposed by Wanget al. [8] requires storage
space of . It takes
cycles to obtain one MV. However, it needs three I/O ports.
In addition, data flow for the search area becomes more
complex. Our approach I (SA-based) requires storage space of

. Our approach II (SSA-based)
requires storage space of .
Both takes cycles to compute one MV.

Table III shows the performance analysis of available
architectures found in the literature. All data are based on
the case of , , , , and

with a pipeline register inside each PE. If we consider
the above parameters for scalability, it can be found that
control becomes more complex in Wanget al. [8], which
needs counters. As for the architecture proposed by Yeo

358 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 3, SEPTEMBER 1999

and Hu [10], there is a comparator in the PE. Both above
architectures need -bit wordlength in each
PE. In our PE design, only bits in the worst
case are needed. If , our design can reduce 25%
wordlength of each PE compared to [8] and [10], making our
design more cost-effective in VLSI implementation. The data
in Table IV are based on the case of , ,

, , and . Our approach can provide
both scalable (our approach I-1, etc.) and single chip (our
approach I-2, etc.) solutions. On the other hand, applying the
buffer size optimization procedure described in Section V,
we can derive optimal buffer size under minimum I/O
bandwidth, as shown in Table IV, Type I Type II.

Two prototype chips for were de-
signed and fabricated using 0.8- and 0.6-m complimentary
metal–oxide–semiconductor (CMOS) technology, respec-
tively. Test results show that clock rate up to 90 MHz
can be achieved. This implies that the performance reaches
87.9K MV’s per second and 90M MAD operations, which is
sufficient to meet real-time requirements specified in MPEG-
2 MP@ML video coding standard. (Here, the following
are assumed: frame size is 720 pixels by 480 lines, frame
rate is 30 frames per second, and the search range is

15.5–16.5. In the worst case, we assume that all predicted
pictures are B-pictures, and the minimum clock rate is

MHz.

VII. CONCLUSION

In this paper, we have presented two cost-effective VLSI
architectures for ME processors. They both are derived from
a common data flow with differences in both PE structure and
stream memory bank. Results show that PE array efficiency
up to 100% can be achieved, where storage space and I/O
pin count can still compete with those solutions found in the
literature. In addition, the proposed architectures also allow
scalability for different sizes of reference block and search
range . Thus, they are very suitable for high-definition
video coding systems. Moreover, a guideline has also been
derived for the optimization of internal buffer size of an
FSBMA ME processor. Optimized buffer size helps greatly
reducing I/O bandwidth with little penalty of implementation
cost in application-specific integrated circuit (ASIC) design.
We are currently investigating the possibility of mapping a
hierarchical search algorithm onto these proposed architectures
for large search area applications.

ACKNOWLEDGMENT

The authors would like to thank M. C. Lu, G. L. Tzeng,
and H. Z. Huang for many helpful discussions in preparing
this manuscript. The multiple project chip (MPC) support from
NSC/CIC for two prototyping chips is also acknowledged.

REFERENCES

[1] L. K. Komarek and P. Pirsch, “Array architectures for block matching
algorithms,” IEEE Trans. Circuits Syst., vol. 36, pp. 1301–1308, Oct.
1989.

[2] R. C. Kim and S. U. Lee, “A VLSI architecture for a pel recursive
motion estimation algorithm,”IEEE Trans. Circuits Syst., vol. 36, pp.
1291–1300, Oct. 1989.

[3] L. De Vos and M. Stegherr, “Parameterizable VLSI architectures for the
full-search block matching algorithm,”IEEE Trans. Circuits Syst., vol.
36, pp. 1309–1316, Oct. 1989.

[4] K. M. Yang, M. T. Sun, and L. Wu, “A family of VLSI designs for the
motion compensated block-matching algorithm,”IEEE Trans. Circuits
Syst., vol. 36, pp. 1317–1325, Oct. 1989.

[5] C. H. Hsieh and T. P. Lin, “VLSI architecture for block-matching motion
estimation algorithm,”IEEE Trans. Circuits Syst. Video Technol., vol. 2,
pp. 169–175, June 1992.

[6] S. I. Uramoto, A. Takabatake, M. Suzuki, H. Sakurai, and M. Yoshimoto,
“A half-pel precision motion estimation processor for NTSC-resolution
video,” in IEEE Custom Integrated Circuits Conf., San Diego, CA, May
9–12, 1993, pp. 11.2.1–11.2.4.

[7] J. Baek, S. Nam, M. Lee, C. Oh, and K. Hwang, “A fast array
architecture for block matching algorithm,” inProc. ISCAS’94, London,
U.K., May 30–June 2, 1994, pp. 4.211–4.214.

[8] C. L. Wang, K. M. Chen, and J. M. Hsiung, “A high-throughput and
flexible VLSI architecture for motion estimation,” inProc. ICASSP’95,
Detroit, MI, May 8–12, 1995, pp. 3295–3298.

[9] S. Chang, J. H. Hwang, and C. W. Jen, “Scalable array architecture
design for full search block matching,”IEEE Trans. Circuits Syst. Video
Technol., vol. 5, pp. 332–343, Aug. 1995.

[10] H. Yeo and Y. H. Hu, “A novel modular systolic array architecture
for full-search block matching motion estimation,”IEEE Trans. Circuits
Syst. Video Technol., vol. 5, pp. 407–416, Oct. 1995.

[11] L. De Vos and M. Schobinger, “VLSI architecture for a flexible block
matching processor,”IEEE Trans. Circuits Syst. Video Technol., vol. 5,
pp. 417–428, Oct. 1995.

[12] H. T. Kung, “Why systolic architectures,”IEEE Trans. Comput., vol.
C-15, pp. 37–46, Jan. 1982.

[13] S. Y. Kung,VLSI Array Processors. Englewood Cliffs, NJ: Prentice-
Hall, 1988.

[14] K. Ishihara, S. Masuda, S. Hattori, H. Nishikawa, Y. Ajioka, T. Yamada,
H. Amishiro, and M. Yoshimoto, “A half-pel precision MPEG2 motion
estimation processor with concurrent three-vector search,” inProc.
ISSCC’95, Feb. 1995, pp. 288–289.

[15] G. L. Tzeng and C. Y. Lee, “An efficient memory architecture for
motion estimation processor design,” inProc. ISCAS’95, Seattle, WA,
Apr. 29–May 3, 1995.

[16] M. C. Lu and C. Y. Lee, “Semi-systolic array based motion estimation
processor design,” inProc. ICASSP’95, Detroit, MI, May 8–12, 1995.

[17] International Organization for Standardization Coding of Moving Pic-
tures and Associated Audio, ISO/IEC JTC1/SC29/WG11/N702, 1994.

Yuan-Hau Yeh received the B.S. and M.S. degrees
in electrical engineering from National Chiao Tung
University, Hsinchu Taiwan, R.O.C., in 1993 and
1990, respectively, and is currently working toward
the Ph.D. degree in electrical engineering at the
same university.

His research interests include VLSI algorithms
and architectures for multimedia systems (videos
and graphics), and memory optimization for mul-
timedia chips.

Chen-Yi Lee (S’89–M’90) received the B.S. de-
gree from National Chiao Tung University, Hsinchu
Taiwan, R.O.C., in 1982, and the M.S. and Ph.D.
degrees from Katholieke University Leuven (KUL),
Leuven, Belgium, in 1986 and 1990, respectively,
all in electrical engineering.

From 1986 to 1990, he was with IMEC/VSDM,
where he worked in the area of architecture synthe-
sis for digital signal processing (DSP). In February
1991, he joined the faculty of the Electronics Engi-
neering Department, National Chiao Tung Univer-

sity, where he is currently a Professor. His research interests mainly include
VLSI algorithms and architectures for high-throughput DSP applications. He
is also active in various aspects of very low bit coding, multimedia signal
processing, high-speed networking, and system-on-chip design technology.

