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Abstract 

Call Admission Control (CAC) has been accepted as a potential solution for supporting diverse, heterogeneous traffic sources demanding 
different Quality of Services (QOSs) in ATM networks. Also, CAC is required to consume a minimum of time and space to make call 
acceptance decisions. In this paper, we present an efficient neutral-network-based CAC (NNCAC) mechanism for ATM networks with 
heterogeneous arrivals. All heterogeneous traffic calls are initially categorized into various classes. Based on the number of calls in each 
class, NNCAC efficiently and accurately estimates the cell delay and cell loss ratio of each class in real time by means of a pre-trained neutral 
network. According to our decent study which exhibits the superiority of the employment of analysis-based training data over simulation- 
based data, we particularly construct the training data from a heterogeneous-arrival dual-class queueing model M’N1l +I”v’l/DIIIK, where M 
and I represent the Bernoulli and interrupted Bernoulli processes, and NI and Nz represent the corresponding numbers of calls, respectively. 
Analytic results of the queueing model are confirmed by simulation results. Finally, we demonstrate the profound agreement of our neural- 
network-based estimated results with analytic results, justifying the viability of our NNCAC mechanism. 0 1997 Elsevier Science B.V. 

Keywords: Call Admission Control (CAC); Quality of Service (QOS); Neutral network; Cell delay; Cell loss ratio; Heterogeneous-arrival 
queueing model 

1. Introduction 

Asynchronous Transfer Mode (ATM) networks [ 1,2] are 
expected to fully utilize network resources while retaining 
satisfactory Quality of Service (QOS) for each user in 
broadband-ISDNs (B-ISDNs) [3]. To satisfy this require- 
ment, Call Admission Control (CAC) [4] is one of the 
potential solutions. Essentially, CAC is required to consume 
a minimum of time and space to make call acceptance deci- 
sions based on various QOS requirements. Numerous CAC 
mechanisms, which have been proposed, fall into one of 
three main categories: delay-based [5], loss-based [6- 121, 
or delay-and-loss-based [ 13,141. 

Generally, the mechanisms of the first two categories take 
only the delay or loss QOS into consideration. On the other 
hand, the mechanisms of the last category offer preferable 
CAC by considering both delay and loss QOSs, at the 
expense, however, of an increase in the time and space 
complexity. To cope with the problem, neural network esti- 
mation methods [15-l 81 have emerged and have been 
shown to be promising for the efficient operation of CAC 
in ATM networks. Furthermore, most of the existing neural- 
network-based CAC mechanisms, shown to exhibit various 
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performance merits, perform the off-lined training of neural 
networks via simulation data. Despite the fact that the 
amount of training time is disregarded, owing to the off- 
line nature of the training, the determination of whether the 
simulation has converged to steady state, as will be shown, 
is always non-trivial especially under low-loss conditions of 
networks. 

The major goal of the paper is to propose a highly effi- 
cient neural-network-based CAC (NNCAC) mechanism for 
ATM networks with heterogeneous arrivals. All heteroge- 
neous traffic calls are initially categorized into various 
classes. Based on the number of calls in each class, 
NNCAC efficiently and accurately estimates the cell delay 
(CD) and cell loss ratio (CLR) of each class in real time by 
means of a pre-trained neural network. The second goal of 
the paper is to examine the superiority of the employment of 
analysis-based training data over simulation-based data. As 
a result, we particularly construct the training data from a 
heterogeneous-arrival dual-class queueing model, 
IW’~~’ + I’N~‘IDIIIK w h ere M and I represent the Bernoulli 
process and the interrupted Bernoulli process (IBP), and NI 
and N2 represent the corresponding numbers of calls, 
respectively. Analysis results of the queueing model are 
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confirmed by simulation results. Finally, we demonstrate 
the profound agreement of our neural-network-based esti- 
mated results with analytic results, justifying the viability of 
our NNCAC mechanism. 

The rest of the paper is organized as follows. Section 2 
first presents the analysis of the CD and CLR for the queue- 
ing system, MrN1 I + I’N’l/D/lIK. Simulation results are pro- 
vided to confirm the accuracy of the analysis. Section 3 then 
proposes the NNCAC mechanism in which the training data 
of the neural network are collected from the results obtained 
from Section 2. Comparisons between the NNCAC results 
and analytic results are also drawn. Finally, Section 4 con- 
cludes the paper. 

2. Queueing model and analysis 

All traffic source streams (calls) are categorized into 
various classes based on the mean cell arrival rate and 
mean burst length. That is, streams of the same class have 
the same mean cell arrival rate and mean burst length. In 
addition, any non-bursty source stream (such as files or any 
stream output from a traffic shaper [19] is modelled as a 
Bernoulli process (called the M-stream), whereas any bursty 
source stream (such as voice, video) is modelled as an IBP 
(called the Z-stream) [20,21]. For simplicity, we consider the 
analysis of the system with one M-stream class (referred to 
as class-u) and one Z-stream class (referred to as class-b). 
It is worth noting that the following dual-class analysis 
can be easily expanded and applied to any number of classes 
in the system [22]. This fact renders the employment of 
analysis-based training data feasible under diverse traffic 
loads. 

For class-u, we further assume that there are N, M- 
streams. These M-stream cells are referred to as M-cells. 
The observed M-cell is denoted as MO-cell. Let a be the 
number of M-cells arriving in a slot time (where slots are 
fixed in length), and R the mean cell arrival rate (cells/slot 
time), then the probability mass function m(j) of n becomes 

m(j) = Prob[Q = j] = 
N, 

( ) 

.A’.(1 - R)No-j, 0 % j 5 1,. 

j 

For class-b, we assume that there are Nb Z-streams. These Z- 
stream cells are referred to as Z-cells. The observed Z-cell is 
denoted as IO-cell. In addition, any Z-stream is modelled by a 
two-state IBP switching from ON to OFF and OFF to ON 

with probability 1 - CY and 1 - 0 per slot, respectively. That 
is, the mean time duration of an Z-stream being in the ON 
and OFF states are l/(1 - cu) and l/( 1 - p), respectively. 
Also, each Z-stream generates X cells/slot time in the ON 
state and generates no cell in the OFF state. Let i” be the 
number of Z-streams being in the ON state in the nth slot 
time, and Bi” the number of Z-cells arriving in the nth slot 
time given i” Z-streams in the ON state. The probability mass 
function biJ8(j) of BitI thus becomes 

.n 1 
bj. (j) = Prob[B,) = j] = 

0 

.Aj.(l _ A);” -j, 

j 

Consequently, the transition probability that the number of 
Z-streams in the ON state changes from in- ’ to i”, pi,, - I, isI, 
can be given as 

()~i”_i<Nb-ijn-‘, (1) 

where i is the number of Z-streams still staying in the ON 
state and i” - i is the number of Z-streams switching from 
the OFF to the ON state. The steady state probability of j Z- 
streams in the ON state, denoted as 4(j), can be directly 
computed by 

4(j) = 2 6(i).p;,j, 0 sj 5 Nb, (2) 
i=O 

where pl,j is the transition probability defined in Eq. (1). 
Moreover, an ATM switch is assumed to employ the out- 

put buffer (buffer size = ZQ mechanism and the FCFS 
(first come first served) service discipline. Simultaneously- 
arriving cells are served on a random basis. Each 
output buffer of a switch thus becomes a discrete-time 
single-server buffer-size-K queueing system, namely 
M’N1l +Z’N”IDIIIK. During the operation of the system, 
three events occur at the beginning and end of each slot 
time, as shown in Fig. 1. In Event 1, the number of Z-streams 
in the ON state is changed from in- ’ to i”. In Event 2, new 
cells arrive and are queued in the buffer. Finally, during 
Event 3, a cell (if any) departs and the first cell in the 
queue begins to be served. 

(n-l)st slot time I nth slot time (n+l)st slot time 

4 
II I 

Event 1 Event 2 Event 3 
(P-I-S i”) (cells arrive) (a cell departs) 

Fig. I. Three events and system lengths. 

time 
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In what follows, we first derive the system length distri- 
bution of the MIN1’ + I’N’lIDIIIK system. Based on the sys- 
tem length distribution, we then compute two performance 
metrics (the CD and CLR) which serve as the training data 
of the neural network presented below. 

2.1. System length distribution 

The system length distribution is examined at each slot 
time. Let ii,! and & be the system lengths (with i” Z-streams 
in the ON state) observed at the nth slot time after the 
occurrence of Events 1 and 3, respectively. After Event 1 
has occurred, the number of I-streams in the ON state is 
changed from i"- ’ to i” but the system length remains the 
same. Accordingly, 

$p,=Si,S-~, OSi”-’ <Nb, O<i”sNb. (3) 

After Event 2 occurs, the system length is incremented by 
the number of newly-arriving M-cells and I-cells but only up 
to the maximum system length, K + 1. Moreover, owing to 
the departure of a cell after the occurrence of Event 3, the 
system length is decremented by 1 until zero. Thus, 

S,,=MAX(MIN(~,,,+n+B,,,K+l)-l,O),O~i”~N,, 

(4) 

where MAX and MIN are the maximum and minimum 
functions, respectively. 

Let S,(j) and Si*t(j) be the probability mass functions of 
ji,! and S,#, respectively. From Eq. (3), grq(j) is related to 
siS1-~(j), 0 5 in-’ % Nh, by 

N/J 
S,,,(j)= x pi,~-~,i,,.s,.-l(j), 0 YS i” I Nb, 0 Sj 5 K, 

p I = () 

(5) 

where prl - I, itr is the transition probability defined in Eq. (1). 
From Eq. (4), since the probability mass function of the sum 
of two independent random variables is the convolution of the 
individual probability mass functions, si” (j) can be given as 

si,S(j)=a,(7rK+‘(ipJ(j+1)*m(j+1)*br1(j+1))), 

Osi”sNb, O<jsK, (6) 

where * is a convolution operator, and a, and rk+’ are the 
MAX and MIN functions, respectively, defined as 

I 0 j<l 

XI (f(j)) = f(O) +f( 1) j = 1 and pK+ ‘(f(j)> = 

f(j) j>l 

(f(j) j<K+l 

g f(i) j=K+l 
i=K+l 

j>K+l 

AS a result, from Eq. (5) and Eq. (6), we can obtain si( j), the 

(7) 

limiting distribution of s,.(j), by 

Si(j) = &“p~(j), OliiN,, Osj<K, 

with initial condition 

2 T.s,)(j)=l. 
i”_oj=O 

2.2. CD and CLR 

Having derived system length distribution xi(j), we are 
now at the stage of computing three performance metrics, 
namely the system time distribution, CD and CLR, for M- 
cells and Z-cells. 

2.2.1. M-cells 
Let Q, denote a positive number of M-cells arriving in a 

slot time. Thus, the probability mass function ma(j), (j > 0) 
of fin becomes ma(j) = m( j)l( 1 - m(O)), 1 5 j 5 N,. 
Furthermore, let k,(j) be the probability mass function of 
a positive number of M-cells including the MO-cell arriving 
in a slot time. From the renewal theory [23], fro(j) is given 
as &,(j) =j.,o(j)/E[Qo], 1 5 j 5 N,. Thus, with the MO- 

cell included, the probability of a total number of h M- 
cells and Z-cells, given i Z-streams in the ON state, arriving 
in a slot time becomes {MO(~) * b,(h)}. Owing to the fact 
that the probability of the MO-cell being servedjth among h 
cells is l/h, the probability mass function YM,i(j) of the MO- 

cell being served jth among h cells becomes 

TM,;(j)= x 
N”+Nb {ho(h) * b,(h)), 

h=J h 

Now, notice that the system time for the MO-cell is the sum of 
the time serving simultaneously-arriving but served-before- 
hand cells, and the time serving those cells already in the 
queue. The former term has just been derived in Eq. (8). The 
latter term is now derived. Due to the memoryless property of 
M-streams, the system length distribution possessed by the 
MO-cell is thus identical to the general system length distri- 
bution, namely s;(j), which was previously derived in Eq. (7). 
Again, since the probability mass function of the sum of two 
independent random variables is the convolution of the indi- 
vidual probability mass function, the system time distribution 
s,,,(j) for M-cells is given as 

Nh 
sM(j)= x~~(j)*r,,;(j), 1 rjsK+N,+N,. (9) 

1=0 

On account of the maximum system length of K + 1 for M- 
cells, the CLR for M-cells (LM) is acquired as 

K+N,+N, 

LM = x s;(j) * rh.f.0. (10) 

j=K+2 
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Finally, the CD for M-cells (DM) can be simply expressed as 

K+’ j.s,(j) 
D,= x ~ 

j= I t1 -L,Vl)’ 
(11) 

where s,,,(j) is normalized by 1 - L,, namely the probabil- 
ity of successfully-delivered M-cells. 

2.2.2. Z-cells 
The system time for the I’-cell is also determined by the 

sum of the time serving simultaneously-arriving but served- 
beforehand cells, and the time serving those cells already in 
the queue. The former term can be similarly derived as 

NtJ+Nf’ {m(h) * b;j(h)} 
r/.;(j) = x 

h 
, O<Nb, 05irNb, 

h=j 

1 ‘jSN,+N,. (12) 

However, due to the inapplicability of the memoryless prop- 
erty to Z-streams, the system length distribution possessed 
by the IO-cell, denoted as ii(j), is no longer the same as the 
general system length distribution s;(j) given in Eq. (7). To 
derive S;(j), let @p, be a positive number of I-streams in the 
ON state, and &,(i) (i > 0) be the probability mass function 
of 9,. Apparently, &,(i) = +(i)/( 1 - 4(O)), 1 5 i 5 N,,. 
Further, let &,(i) be the probability mass function of i I- 
streams (in which the source of IO-cell is included) being 
in the ON state. Again, from the renewal theory [23], &(i) is 
obtained as &o(i) = i.&(i)/E[@o], 1 5 i 5 N,,. Note that S;(j) 

is observed upon the arrivals of I-cells, and si( j) is observed 
at each slot time. That is, cy=a SJj) =&(i) and 
x:=0 si( j) = 4(i). Owing to the fact that, under j = a and 
i = b, the ratio of ?,(a) to sh(u) is equal to &(b)/4(b), S,(j) 
becomes 

G(j) = s,(j)&(i)@(i), lSi<N,, OljSK. (13) 

Hence, on the basis of Eq. (12) and Eq. (13), the system time 
distribution s,(j) for Z-cells is given as 

s,(j) = 2 Si(j) * rl, i( j), 1 sjSK+N,+N,,. (14) 
i = 0 

Furthermore, on account of the maximum system length of 
K + 1 for Z-cells, the CLR for I-cells (L,) is acquired as 

K+N,+N, 

4 = x 5(j) * b,,(j). (15) 

j=Kf2 

Finally, the CD for I-cells (0,) can be given by 

K+’ j.s,(j) 
D,= 1 ~ 

j=l C1 -L,) 
(16) 

where si(j) is normalized by 1 -L,, namely the probability 
of successfully-delivered I-cells. 

2.3. Conjirmation of analytic results 

To verify the accuracy of the analysis, we derived analy- 
tic results using MATLAB [24], and implemented the time- 
based simulation in the C language. Both the analytic 
computation and simulation were performed on a 586 PC 
with Intel Pentium-60 CPU. The program for analytic com- 
putation terminated when all entries of matrix 

]si,! (j) - siJZ - / (j) 1 dropped to lop6 and below. The simulation 
program terminated when a loss of 10” cells had been 
detected. The traffic classes and their corresponding para- 
meters used for both the analytic computation and simula- 
tion are summarized in Table 1. Fig. 2 and Fig. 3 depict the 
CD and CLR for MI&Z, and M&Z3 systems, respectively. 
Both figures demonstrate the profound agreement of analy- 
tic results with simulation results. 

Fig. 2 shows the CD and CLR of each indicated traffic 
class as the number of It-streams increases while retaining 
aggregate loads (p) of 0.7 and 0.8. Notice that the aggregate 
load is defined as the total traffic load from M-streams and I- 
streams. For example, under an aggregate load of 0.8 in 
Fig. 2, an increase in the number of I,-streams from 3 (0.1 
X 3) to 4 (0.1 X 4) results in a decrease in the number of 
MI-streams from 50 (0.01 X 50) to 40 (0.01 X 40). In 
addition, the figure shows that both the CD and CLR of 
each traffic class increase with the number of It-streams. 
This is because, under the same aggregate load, an increase 
in the number of I-streams (i.e., more high-burstiness traffic) 
results in a decrease in statistical multiplexing gain [4]. 
Fig. 3 displays the CD and CLR of each marked traffic 
class as a function of the aggregate load. The figure shows 
that both the CD and CLR increase with the aggregate load. 
Moreover, the figure also exhibits that the larger the number 
of Mz-streams (low-burstiness), the lower the CD and CLR. 

3. NNCAC mechanism 

3. I. Principles 

The NNCAC mechanism has been designed based on two 

Table I 
Traffic classes and parameters 

Class Parameter 

Ml R, = 0.01 

Mz Rz = 0.05 

M? Rj = 0.025 

II ON, = 5: OFF, = 45; h, = 1.0 

12 ON? = 5; OFF2 = 95; h? = I.0 

13 01%‘~ = 7.5; OFF? = 67.5; h, = I.0 

14 ONA = 2.5: OFF3 = 97.5: h, = I .O 

15 ON1 = 10; OFFS = 190; A? = 1.0 

R,: Mean cell arrival rate (cell/slot time) for a class-x stream. 
ON,: Mean ON length of an I,-stream. 

OFF,: Mean OFF length of an I,-stream. 

1,: Mean cell arrival rate of an /,-stream in the ON state. 
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= 20 
E -- :Simulation 
‘g t 8_ - :Analysis 

z 16- 
K=lOO 

40- 
--:Simulation 

35- 
-:Adysis 
K=lOO 

30- 

25- 

zo- 

15- 

10. 

Number of It-streams 

(a) Cell delay 

d 
Number of It-streams 

(b) Cell loss ratio 

Fig. 2. CD and CLR under two aggregate loads. 

principles. First, notice that to make a call acceptance deci- 
sion in real time the CAC mechanism requires a massive 
amount of data to be determined and saved in advance. 
Rather than directly save these data in storage, our 
NNCAC mechanism employs a neural network method 
which has been widely accepted as an effective method 
[ 17,18,25] of on-line decision making for ATM traffic con- 
trol. A brief overview of the neural network method will be 
described in the next subsection. 

The second design principle is that, instead of using 
simulation results as the off-line training data, we employ 
analytic results (obtained from the previous section) for the 
training of the neural network. The rationale behind this is 
that, despite the fact that the amount of training time is 
disregarded owing to the off-line nature of the training, 
the determination of whether the simulation has converged 
to steady state is non-trivial under low-loss conditions of 
networks. This is further justified in the following context. 

To compare the execution time of analytic computation 
and simulation until outputs converge to steady state, we 
performed an experiment on three desired ranges of CLRs, 
namely 10m4, lo-” and lo-‘, under three different numbers 
of I, and M2 streams. Experimental results are shown in 
Fig. 4 and summarized in Table 2. In Fig. 4, (a), (c) and 

3 
E 35- ‘;: -- :Simulation 

- 3 30- K=lOO :Analysis 
7 
2 

/ M2 4M2= 10; 

kI, (#M2=2) 
0:6 017 016 0.9 

(e) respectively depict three ranges of CLRs within a shorter 
time duration, 4000 seconds, whereas (b), (d) and (f) show 
CLRs within a much longer time duration, for instance, lo4 
of lo5 seconds. The figure clearly shows that the time to 
convergence via analytic computation is totally irrelevant to 
the CLR but is related to the total number of traffic streams. 
An increase in the number of streams yields a rise in time 
to convergence. On the contrary, the time to convergence 
via simulation is largely dependent on the CLR. In 
particular, the smaller the CLR the longer the time to con- 
vergence. This is owing to the fact that more samples are 
required to reach the steady state should the loss probability 
be smaller. For instance, we have observed that, to collected 
10000 cell losses in simulation, one has to perform the 
simulation for time periods of 1400, 47 000 and 2 300 000 
seconds in the cases of CLRs of 10P4, 10e5 and lo-‘, 
respectively. 

3.2. Neural network training method-an overview 

In the NNCAC mechanism, we employ the backpropaga- 
tion learning method [26] for the off-line training of the 
neural network. The method basically approximates an arbi- 
trary nonlinear function y being equal to f(x) by adjusting 

WO- 
-- :Simulation 

Aggregate load (p ) Aggregate load (p ) 

(a) Cell delay (b) Cell loss ratio 

Fig. 3. CD and CLR as a function of load. 
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Fig. 4. Comparisons of time to convergence between analytic computation and simulation. 
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Table 2 

Summary of the time to convergence 

CLR 1o-4 10-s IO-’ 

Analysis 

Simulation 
320 seconds 

11000 seconds 
180 seconds 

20000 seconds 
140 seconds 

> 400000 seconds 

x2(k) 

xp 

xq(k) 

Input 
Layer 
- 

Hidden 
Layer 

output 
Layer 

Desired 

output output 

~1 f) dt*) 

~2 - d2O’) 

y3 M-D d3@) 

Fig. 5. Backpropagation neural network. 

the weights in a backpropagation network according to all 
sampled (x,y) pairs. 

Fig. 5 shows an example of a backpropagation neural 
network with three layers: input layer, hidden layer, and 
output layer. Each layer has a number of processing ele- 
ments (or neurons) which are fully interconnected via adap- 
tive weights (wij), by which the output of the ith neuron is 
connected with the input to the jth neuron. The neurons on 
the input layer simply store input data. These data are in turn 
manipulated by hidden and output layer neurons to perform 
two subsequent operations-weighted summation and nor- 
malization, as given in Eq. (17) and Eq. (18), respectively: 

vj= ~ WijXi (17) 
i= I 

Oj = 
1 

1 +exp(- vj) 
(18) 

The backpropagation network learns by making changes in 
its weights in direction to minimize a given error function 
(E(X)) between its predictions and the training data set. That 
is, 

WX) 
Wi(t + 1) = Wi(t) - cp 

8Wi 
(19) 

Backpropagation 

where w;(t) is one of weights at cycle t, and c is the learning 
constant [26]. 

3.3. NNCAC system architecture 

The NNCAC mechanism is composed of two phases: the 
off-line training phase and the on-line operation phase. As 
shown in Fig. 6, in the off-line training phase, the number of 
calls in each class (inputs) and the analytic results of CDs 
and CLRs (desired outputs) are all normalized to the range 0 
to 1. All the weights are then learned at the end of the 
training phase. Based on the determined weights, during 
the on-line operation phase, the NNCAC mechanism then 
determines if a newly-arriving call of a class can be 
accepted by means of comparing the design CD or CLR 
output with the QOS threshold for such a class. 

3.4. Experimental results 

To demonstrate the viability of the NNCAC mechanism, 
we drew comparisons of the CD and CLR, in Fig. 7 and 
Fig. 8 respectively, between NNCAC results and analytic 
results under four cases. The call arrangement in each case 
is summarized as follows. First of all, for case 1, given 1 call 
of class Z2, 8 calls of class M2, and 2 calls of class 14, the 
number of calls of class Z5 alters from 3 to 8, resulting in an 
aggregate load of 0.65 to 0.90. In case 2, given 1 call of class 
Z2, 4 calls of class 14, and 8 calls of class 15, the number of 
calls of class M2 alters from 2 to 7, resulting in the same 
aggregate load of 0.65 to 0.90. As for case 3, given 8 calls of 
class Mz, and 2 calls of each class I4 and Ig, the number of 
calls of class I2 alters from 2 to 7; and for case 4, given 1 call 
of class I*, 8 calls of class M2, and 2 calls of class Ig, the 
number of calls of class I4 alters from all even numbers 
between 4 and 14 inclusive. 

As shown in Fig. 7 and Fig. 8, the CD and CLR increase 

Cell Loss Ratio 

Analytic Data 

Fig. 6. NNCAC architecture 
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Cell delay (slot time) 

34- -:Analysis-based results 
31- -- :NN-based results 

Ca.w 4: (I2,M2,Is.Is)=(1,8.x,2) 
19. 

16. 

0.70 0.75 oh0 oh5 0. 

Aggregate load 

Fig. 7. CD as a function of aggregate load. 

with the load of the network. In particular, traffic streams of 
high burstiness incur greater values of CD and CLR under 
any given aggregate load. For example, as shown in Fig. 7, 
case 1 traffic condition yields the highest CD owing to the 
dominance of the highest-burstiness call, Zs in this case. 
Finally, most significantly, both figures show that the neural 
network method yields high precision of the CD and CLR 
compared with analytic results. 

4. Conclusions 

The paper has proposed a highly efficient and precise 
neural-network-based call admission control (NNCAC) 
mechanism in ATM networks. We initially provided an 
analysis of the cell delay and cell loss ratio for each traffic 
call based on a queueing system with dual heterogeneous 
arrivals (Bernoulli and IBP). The model has been expanded 
into a four-class system. The resulting four-class analytic 
data were then employed as the training data of the neural 
network during the off-line training phase. In the on-line 
operation phase, the pre-trained neural network then esti- 
mated both the cell delay and cell loss ratio of each traffic 
class and in turn determined the acceptance or rejection of a 
newly-arriving call. Finally, numerical results showed 

Cell loss ratio (10-6) 

-:Analysis-based results 
-- :NN-based results 

Case 1: (I~.Mz,~,I~)=(~,S,~,X) 
Case 2: (Iz.M2.4,I5)=(l,x.4,8) 
Case 3: (bM~.~,I~)=(x,8,2,2) 
Case 4: (I+M.&)=(I .%x,2) 

Aggregate load 

Fig. 8. CLR as a function of aggregate load. 

that our NNCAC results agreed with analytic results with 
negligible discrepancy. 
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