The Circular Chromatic Number of the Mycielskian of *G*^d_k

Lingling Huang and Gerard J. Chang*

DEPARTMENT OF APPLIED MATHEMATICS NATIONAL CHIAO TUNG UNIVERSITY HSINCHU 30050, TAIWAN E-mail: Ilhuang,gjchang@math.nctu.edu.tw

Received February 2, 1998; revised November 23, 1998

Abstract: In a search for triangle-free graphs with arbitrarily large chromatic numbers, Mycielski developed a graph transformation that transforms a graph G into a new graph $\mu(G)$, we now call the Mycielskian of G, which has the same clique number as G and whose chromatic number equals $\chi(G) + 1$. Chang, Huang, and Zhu [G. J. Chang, L. Huang, & X. Zhu, Discrete Math, to appear] have investigated circular chromatic numbers of Mycielskians for several classes of graphs. In this article, we study circular chromatic numbers of Mycielskians for another class of graphs G_k^d . The main result is that $\chi_c(\mu(G_k^d)) = \chi(\mu(G_k^d))$, which settles a problem raised in [G. J. Chang, L. Huang, & X. Zhu, Discrete Math, to appear, and X. Zhu, to appear]. As $\chi_c(G_k^d) = \frac{k}{d}$ and $\chi(G_k^d) = \lceil \frac{k}{d} \rceil$, consequently, there exist graphs G such that $\chi_c(G)$ is as close to $\chi(G) - 1$ as you want, but $\chi_c(\mu(G)) = \chi(\mu(G))$. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 63–71, 1999

Keywords: chromatic number; circular chromatic number; color; Mycielskian; triangle; clique number

1. INTRODUCTION

In a search for triangle-free graphs with arbitrarily large chromatic numbers, Mycielski [9] developed an interesting graph transformation as follows. For graph

Contract grant no.: NSC87-2115-M009-007.

© 1999 John Wiley & Sons, Inc.

CCC 0364-9024/99/010063-09

^{*}*Correspondence to:* Gerard J. Chang

Contract grant sponsor: National Science Council.

G = (V, E) with vertex set V and edge set E, the *Mycielskian* of G is the graph $\mu(G)$ with vertex set $V \cup V' \cup \{u\}$, where $V' = \{x' : x \in V\}$, and edge set $E \cup \{xy' : xy \in E\} \cup \{y'u : y' \in V'\}$. For $k \ge 2$, let $\mu^k(G) = \mu(\mu^{k-1}(G))$.

Mycielski showed that $\chi(\mu(G)) = \chi(G) + 1$ for any graph G, and $\omega(\mu(G)) = \omega(G)$ for any graph G with at least one edge. Hence, $\mu^k(K_2)$ is a triangle-free graph of chromatic number k + 2. Besides the interesting properties involving their chromatic numbers and cliques numbers, Mycielski's graphs also have some other parameters that behave in a predictable way. For example, it was shown by Larsen, Propp, and Ullman [8] that $\chi_f(\mu(G)) = \chi_f(G) + \frac{1}{\chi_f(G)}$ for any graph G, where $\chi_f(G)$ is the fractional chromatic number of a graph. Mycielski's graphs were also used by Fisher [5] as examples of optimal fractional colorings that have large denominators. Many interesting properties for circular chromatic numbers of Mycielski's graphs were proved by Chang, Huang, and Zhu [4]. Yet more questions concerning this topic remain open. In this article, we investigate circular chromatic numbers of Mycielskians of the graphs G_k^d , to be defined below, and settle a problem raised in [4] (also see Problem 7.22 in [12]).

The circular chromatic number of a graph is a natural generalization of the chromatic number, introduced by Vince [10] under the name "star chromatic number." For a good survey, see [12]. Suppose k and d are positive integers such that $k \ge 2d$. A (k, d)-coloring of a graph G = (V, E) is a mapping ϕ from V to $\{0, 1, \ldots, k-1\}$ such that $d \le |\phi(x) - \phi(y)| \le k - d$ for any edge xy in E. In the definition, we call $\phi(x)$ the color of x. The circular chromatic number $\chi_c(G)$ of G is the infimum of the ratios $\frac{k}{d}$ for which there exists a (k, d)-coloring of G. Note that Vince [10] proved that the infimum is attained for some $k \le |V(G)|$.

Note that a (k, 1)-coloring of a graph G is just an ordinary k-coloring of G. It follows that $\chi_c(G) \leq \chi(G)$ for any graph G. On the other hand, it has been shown [1, 10, 11] that $\chi(G) - 1 < \chi_c(G)$. Therefore, $\chi(G) = \lceil \chi_c(G) \rceil$. However, two graphs with the same chromatic number may have different circular chromatic numbers. In some sense, $\chi_c(G)$ is a refinement of $\chi(G)$ and it contains more information about the graph.

It was shown [4] that $\chi_c(\mu(G)) = \chi(\mu(G))$ for several classes of graphs G, and also $\chi_c(\mu(H)) < \chi(\mu(H))$ for some classes of graphs H. However, it seems difficult to characterize those graphs G for which $\chi_c(\mu(G)) = \chi(\mu(G))$. For two positive integers k and d such that $k \ge 2d$, G_k^d is the graph with vertex set $\{0, 1, \ldots, k-1\}$ in which ij is an edge if and only if $d \le |i-j| \le k-d$. It is easy to see (also [1]) that a graph G is (k, d)-colorable if and only if there exists a homomorphism from G to G_k^d . Therefore, in the study of circular chromatic numbers, the graphs G_k^d play the same role that complete graphs K_n do in the study of chromatic numbers. It was shown in [4] that $\chi_c(\mu(K_n)) = \chi(\mu(K_n))$ for any $n \ge 3$. We consider the analogous problem: does $\chi_c(\mu(G_k^d)) = \chi(\mu(G_k^d))$?

The main result of this article is to give a positive answer to the above problem. Also, since $\chi_c(G_k^d) = \frac{k}{d}$ and $\chi(G_k^d) = \lceil \frac{k}{d} \rceil$ (see Vince [10]), a consequence is that there exist graphs G such that $\chi_c(G)$ is as close to $\chi(G) - 1$ as you want, but $\chi_c(\mu(G)) = \chi(\mu(G))$. Although it is still not known what determines $\chi_c(\mu(G)) = \chi(\mu(G))$. $\chi(\mu(G))$, the result shows that the circular chromatic number of a graph G does not determine if $\chi_c(\mu(G)) = \chi(\mu(G))$.

2. CIRCULAR CHROMATIC NUMBER OF $\mu(G_k^d)$

The main result of this article is the following.

Theorem 1. $\chi_c(\mu(G_k^d)) = \chi(\mu(G_k^d)) = \lceil \frac{k}{d} \rceil + 1$ for any positive integer k > 2d. Note that for k = 2d, we have $G_k^d \cong dK_2$ and $\mu(G_k^d)$ is the graph obtained from d copies of C_5 by identifying one vertex in each copy. Therefore, $\chi_c(\mu(G_k^d)) = 2.5 < 3 = \chi(\mu(G_k^d))$.

Also, since $\chi_c(G_k^d) = \frac{k}{d}$ and $\chi_c(\mu(G_k^d)) = \chi(\mu(G_k^d))$ for any positive integers k > 2d, we also have the following consequence.

Corollary 1. There exists a graph G such that $\chi_c(G)$ is as close to $\chi(G) - 1$ as you want, but $\chi_c(\mu(G)) = \chi(\mu(G))$.

In the remaining of this section, we shall prove Theorem 1. The following lemma was proved in [4], which takes care of a special case of the main theorem.

Lemma 1. If $\chi(G) = 3$, then $\chi_c(\mu(G)) = \chi(\mu(G)) = 4$.

For an *n*-coloring $c: V(G) \mapsto \{0, 1, \ldots, n-1\}$ of G = (V, E), we denote by $D_c(G)$ the directed graph with vertex set V such that there exists an arc from x to y if and only if $xy \in E$ and $c(x) + 1 \equiv c(y) \pmod{n}$. It was shown in [6] that an *n*-chromatic graph G satisfies $\chi_c(G) < n$ if and only if G has an *n*-coloring c for which $D_c(G)$ is acyclic. This result was refined [4] to the following lemma, which is useful for studying circular chromatic numbers of Mycielski's graphs.

Lemma 2. If $\chi_c(\mu(G)) < \chi(\mu(G)) = n$, then there exists an n-coloring c of $\mu(G)$ such that $D_c(\mu(G))$ is acyclic, c(u) = 1, and $c(x') \notin \{0,1\}$ for all $x' \in V'$. Moreover, for any such coloring c, there is an edge $xy \in E(G)$ such that $\{c(x), c(y)\} = \{0, 1\}$ and c(x') = c(y').

Write k = dr + i, where $d \ge 2$ and $1 \le i \le d$. Note that $\mu(G_{dr+1}^d)$ is a subgraph of $\mu(G_{dr+i}^d)$. If Theorem 1 holds for the special case when i = 1, then $r + 2 \le \chi_c(\mu(G_{dr+1}^d)) \le \chi_c(\mu(G_{dr+i}^d)) \le \chi(\mu(G_{dr+i}^d)) = r + 2$ and so the general case follows. Hence, it remains to prove Theorem 1 for the special case when k = dr + 1.

For clarity of notation, we consider G_{dr+1}^d as the graph with vertex set $V = \{x_0, x_1, \ldots, x_{dr}\}$ and edge set $E = \{x_i x_j : d \leq |i - j| \leq (dr + 1) - d\}$; and the Mycielskian $\mu(G_{dr+1}^d)$ as the graph with vertex set $V \cup V' \cup \{u\}$, where $V' = \{x'_i : x_i \in V\}$, and edge set $E \cup \{x_i x'_j : x_i x_j \in E\} \cup \{x'_j u : x'_j \in V'\}$. Indices of the vertices x_i and x'_i are taken modulo dr + 1, if arithmetic operations are performed on them. Let $V_{i,j} = \{x_i, x_{i+1}, \ldots, x_j\}$ and $V'_{i,j} = \{x'_i, x'_{i+1}, \ldots, x'_j\}$. Note that $V_{i,j}$ and $V'_{i,j}$ are of size j - i + 1 for $i \leq j$, and of size dr + 1 + j - i + 1 for i > j.

66 JOURNAL OF GRAPH THEORY

It is known that $\chi_c(G_{dr+1}^d) = r + \frac{1}{d}$ (see Vince [10]), $\chi(G_{dr+1}^d) = r + 1$, and $\chi(\mu(G_{dr+1}^d)) = r + 2$. We now show the case of k = dr + 1 for Theorem 1.

Theorem 2. $\chi_c(\mu(G_{dr+1}^d)) = \chi(\mu(G_{dr+1}^d)) = r + 2$ for any positive integer $r \ge 2$.

Proof. Note that G_{2d+1}^d is, in fact, the odd cycle C_{2d+1} . According to Lemma 1, the theorem holds for r = 2. So, we may assume that $r \ge 3$. Let G = (V, E) be the graph G_{dr+1}^d .

Suppose that the theorem does not hold, i.e., $\chi_c(\mu(G)) < \chi(\mu(G)) = r + 2$. Then, by Lemma 2, there exists an (r+2)-coloring c such that $D_c(\mu(G))$ is acyclic, c(u) = 1, and $c(x'_i) \notin \{0, 1\}$ for all $x'_i \in V'$. Note that, if x_i is a vertex of V such that $c(x_i) \notin \{0, 1\}$ and $c(x_i) \neq c(x'_i)$, then we can replace the color of x'_i with $c(x_i)$ and still preserve $D_c(\mu(G))$ being acyclic. Hence, we may assume that $c(x_i) = c(x'_i)$ for each $x_i \in V$ with $c(x_i) \notin \{0, 1\}$.

Moreover, by Lemma 2, there exists an edge $x_a x_b \in E$ such that $\{c(x_a), c(x_b)\} = \{0, 1\}$ and $c(x'_a) = c(x'_b) = t \notin \{0, 1\}$. It is clear that $|V_{a,b}| \ge d + 1$, since $x_a x_b$ is an edge. Without loss of generality, we may assume that $x_a x_b$ is chosen to satisfy the property that $|V_{a,b}|$ is minimum and, under this condition, $|c(V_{a,b})|$ is also minimum. Finally, we may also assume that $c(x_a) = 0$ and $0 = a < d \le b \le \frac{dr+1}{2}$.

Let $A_i = \{x_{i+dj} : 0 \le j \le r\}$ for $0 \le i \le dr$. It is clear that any two vertices of A_i , except the pair (x_i, x_{i-1}) , are adjacent and, hence, have different colors. Note that $x_{i-1} = x_{i+dr}$.

Claim 1. If x_i and $x_j \in A_i \setminus \{x_i, x_{i-1}\}$ are vertices such that $2 \leq |c(x_i) - c(x_{i-1})| \leq r$ and $2 \leq |c(x_j) - c(x'_j)| \leq r$, then $A_i \cup \{x'_j\}$ induces a directed cycle in $D_c(\mu(G))$.

Proof of Claim 1. Since $x_j \in A_i \setminus \{x_i, x_{i-1}\}$, any two vertices of $A_i \cup \{x'_j\}$ are adjacent, except the two pairs (x_i, x_{i-1}) and (x_j, x'_j) . Also, $c(x_i) \neq c(x_{i-1})$ and $c(x_j) \neq c(x'_j)$ imply $|c(A_i \cup \{x'_j\})| = r + 2$. Since any two vertices of $A_i \cup \{x'_j\}$ with consecutive colors are adjacent, $A_i \cup \{x'_j\}$ induces a directed cycle in $D_c(\mu(G))$.

For any color $k \in c(V)$, let $V_{f(k),e(k)}$ be the $V_{i,j}$ of smallest size including $c^{-1}(k)$ as a subset. It is clear that $c(x_{f(k)}) = c(x_{e(k)}) = k$, but $c(x_{f(k)-1}) \neq k$ and $c(x_{e(k)+1}) \neq k$. Also, $V_{f(k),e(k)}$ has a size at most d, since any two vertices in it are nonadjacent. Moreover, $V = \bigcup_{k \in c(V)} V_{f(k),e(k)}$ implies that $r+1 \leq |c(V)| \leq r+2$. **Claim 2.** |c(V)| = r + 2.

Proof of Claim 2. Suppose to the contrary that |c(V)| = r + 1, say $p \notin c(V)$ for some p with $2 \le p \le r + 1$. Let

$$S = \{x_i \in V : 2 \le |c(x_i) - c(x_{i-1})| \le r \text{ or } 2 \le |c(x_i) - c(x_{i+1})| \le r\}.$$

Suppose that $p-1 \notin c(S)$. Then, $c(x_{f(p-1)}) = c(x_{e(p-1)}) = p-1$ imply $x_{f(p-1)} \notin S$ and $x_{e(p-1)} \notin S$. Therefore, $c(x_{f(p-1)-1})$ and $c(x_{e(p-1)+1})$ are in $\{p-2, p-1\}$.

However, $c(x_{f(p-1)-1}) \neq p-1$ and $c(x_{e(p-1)+1}) \neq p-1$ by the definition of $V_{f(p-1),e(p-1)}$. Hence, $c(x_{f(p-1)-1}) = c(x_{e(p-1)+1}) = p-2$, and so $V_{f(p-1),e(p-1)}$ is a subset of $V_{f(p-2),e(p-2)}$. Then, V is the union of r sets $V_{f(k),e(k)}$, each of size at most d, for $k \in \{0, 1, \ldots, r+1\} \setminus \{p-1, p\}$, a contradiction to the fact that |V| = dr + 1. This proves that $p-1 \in c(S)$. Similarly, $p+1 \in c(S)$.

We then choose a vertex $x_i \in S$ such that $c(x_i) = 1$, when p = 2 and $c(x_i) = p + 1$ otherwise. For the case of $2 \leq |c(x_i) - c(x_{i-1})| \leq r, c(A_i) = c(V)$ and $\{c(x_i), c(x_{i-1})\} \neq \{0, 1\}$. Then, there exists a vertex $x_j \in A_i \setminus \{x_i, x_{i-1}\}$ of color 0 or 1. Since x'_j is adjacent to all vertices of $A_i \setminus \{x_j\}$, the color of x'_j must be $c(x_j)$ or p. However, a vertex in V' cannot be colored by 0 or 1, hence we have $c(x'_j) = p$. Recall that $2 \leq p \leq r + 1$ and $c(x_j) \in \{0, 1\}$. If $|c(x_j) - c(x'_j)| \in \{0, 1, r + 1\}$, then either $c(x_j) = 0, p = r + 1$, or $c(x_j) = 1, p = 2$. Both cases lead to $c(x_j) = c(x_i)$, a contradiction to the fact that x_i and x_j are adjacent. Hence, $2 \leq |c(x_j) - c(x'_j)| \leq r$. According to Claim 1, $A_i \cup \{x'_j\}$ induces a directed cycle in $D_c(\mu(G))$, a contradiction. Similar arguments also lead to a contradiction for the case of $2 \leq |c(x_i) - c(x_{i+1})| \leq r$. Therefore, |c(V)| = r + 2.

According to Claim 2, $t \in c(V)$. Since $c(x'_0) = c(x'_b) = t$, we have $V_{f(t),e(t)} \subseteq V_{-d+1,d-1} \cap V_{b-d+1,b+d-1}$, and so $d \leq b \leq 2d-2$ and $V_{f(t),e(t)} \subseteq V_{b-d+1,d-1} \subset V_{0,b}$. Therefore, $\{0, 1, t\} \subseteq c(V_{0,b})$.

Claim 3. For any vertex $x_j \in V_{0,b}$ colored by $t, \{c(x_{j-1}), c(x_{j+1})\} \subseteq \{0, 1, t\}$.

Proof of Claim 3. Suppose to the contrary that there exist vertices $x_i, x_{i+1} \in V_{0,b}$ such that $\{c(x_i), c(x_{i+1})\} = \{t, q\}$ for some $q \notin \{0, 1, t\}$. Then $b \le i+d$; and both $c(x'_{i-d}) = \ell$ and $c(x'_{i+1+d}) = m$ are not in $\{t, q\}$. If $r \ge 4$, we must have $\ell \ne m$. Otherwise, since every vertex of V is adjacent to at least one of x'_{i-d}, x'_{i+1+d} , we would have $\ell \notin c(V)$, contrary to Claim 2. Hence, none of the vertices of $V_{i+1+2d,i-2d}$ can be colored by $0, 1, t, q, \ell, m$. This implies that the dr + 1 - 4d vertices of $V_{i+1+2d,i-2d}$ must be colored by only r - 4 colors, a contradiction (see Fig. 1). If r = 3, then $|V_{i+1+d,i-d}| = dr+1-2d = d+1$ and $\ell = m$ as there are only five colors to be used. Therefore, $c(x_{i+1+d}) = 1, c(x_{i-d}) = 0$, and $c(V_{i+1+d,i-d}) = \{0, 1, \ell\}$. It follows that $x_{i+1+d}x_{i-d}$ is an edge with $\{c(x_{i+1+d}), c(x_{i-d})\} = \{0, 1\}$ and $c(x'_{i+1+d}) = c(x'_{i-d})$, but $|V_{i+1+d,i-d}| = d+1 \le |V_{0,b}|$ and $|c(V_{i+1+d,i-d})| < |c(V_{0,b})|$, a contradiction to the choice of x_0x_b . Hence, Claim 3 holds.

Proof of Claim 4. Suppose to the contrary that there exists a color $p \in c(V_{0,b}) \setminus \{0, 1, t\}$. Choose any $x_j \in V_{0,b}$ such that $c(x_j) = t$. By Claim 3, $c(x_{j-1}) \neq p$ and $c(x_{j+1}) \neq p$. If there exists some vertex in $V_{1,j-2}$ colored by p, then choose the largest integer $i \leq j - 1$ such that $c(x_i) \in \{0, p\}$ and $c(x'_i) = p$. We now consider the following three cases according to the color of x_{i+1} .

Case 1:. $c(x_{i+1}) = 0$.

By the choice of *i*, we have $c(x'_{i+1}) \neq p$. Suppose that $c(x_{i+1+d}) \neq 1$. Then $c(x_{i+1+d}) = q$ for some $q \notin \{0, 1, p, t\}$, since x_{i+1+d} is adjacent to x_0, x'_0 , and x'_i .

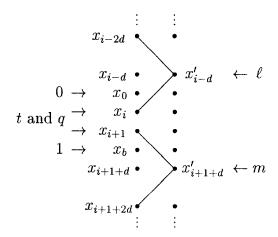


FIGURE 1. Vertex colors near $V_{0,b}$ (for Claim 3).

If $r \geq 4$, then $c(x'_{i+1+2d}) = m$ for some $m \notin \{0, 1, p, t, q\}$. Hence, the dr + 1 - 4d vertices of $V_{i+1+3d,i-d}$ are colored by r - 4 colors, a contradiction (see Fig. 2). If r = 3, then $x_{i+1+2d} = x_{i-d}$. Hence, $c(x_{i-d}) = 1$ and $c(x'_{i-d}) = p$. Therefore, $c(x_i) = 0$ and b > i + 1 + d. Since $t, q \notin c(V_{i-d,i})$, we have that $x_{i-d}x_i$ is an edge with $\{c(x_{i-d}), c(x_i)\} = \{0, 1\}$ and $c(x'_{i-d}) = c(x'_i)$, but $|V_{i-d,i}| = d + 1 \leq |V_{0,b}|$ and $|c(V_{i-d,i})| < |c(V_{0,b})|$, a contradiction to the choice of x_0x_b . Hence, $c(x_{i+1+d}) = 1$.

We now consider the set $c(V'_{i+1,i+1+d})$. If $q \in c(V'_{i+1,i+1+d})$ for some $q \notin \{0, 1, p, t\}$, then the dr + 1 - 3d vertices of $V_{i+1+2d,i-d}$ are colored by $r + 2 - |\{0, 1, p, t, q\}| = r - 3$ colors, a contradiction. Hence, $c(x'_{i+1}) = c(x'_{i+1+d}) = t$ by Claim 2; and moreover, $c(V_{i+1,i+1+d}) \subseteq \{0, 1, t, p\}$.

FIGURE 2. Vertex colors near $V_{0,b}$ (for the first paragraph of Case 1).

If $p \in c(V_{i+1,i+1+d})$, then $p \in c(V_{j+2,i+1+d})$, since *i* is maximal and since $c(x_{j+1}) \neq p$. By the assumption that $p \in V_{1,j-2}$, we have $c(x'_{j-d}), c(x'_{j+d}) \notin \{0,1,p,t\}$, say $c(x'_{j-d}) = \ell$ and $c(x'_{j+d}) = m$. If $r \geq 4$, then $\ell \neq m$ by Claim 2. Therefore, the dr + 1 - (4d - 1) vertices of $V_{j+2d,j-2d}$ must be colored by r - 4 colors, a contradiction (see Fig. 3). If r = 3, then $\ell = m$ by Claim 2 and $|V_{j+d,j-d}| = (dr + 1) - (2d - 1) = d + 2$. Since all vertices of $V'_{j+d,j-d}$ are colored by $\ell = m$, we have that $c(x_{j+d}) = c(x_{j+d+1}) = 1, c(x_{j-d}) = c(x_{j-d-1}) = 0$, and $c(V_{j+d,j-d}) = \{0,1,l\}$. Hence, $x_{j+d}x_{j-d-1}$ is an edge with $\{c(x_{j+d}), c(x_{j-d-1})\} = \{0,1\}$ and $c(x'_{j+d}) = c(x'_{j-d-1})$, but $|V_{j+d,j-d-1}| = d + 1 \leq |V_{0,b}|$ and $|c(V_{j+d,j-d-1})| < |c(V_{0,b})|$, a contradiction to the choice of x_0x_b . Therefore, $c(V_{i+1,i+1+d}) = \{0,1,t\}$, which also implies that $x_{i+1}x_{i+1+d}$ is an edge with $\{c(x_{i+1}), c(x_{i+1+d})\} = \{0,1\}$ and $c(x'_{i+1}) = c(x'_{i+1+d})$, but $|V_{i+1,i+1+d}| = d + 1 \leq |V_{0,b}|$ and $|c(V_{i+1,i+1+d})| < |c(V_{0,b})|$, again a contradiction to the choice of x_0x_b .

Case 2:. $c(x_{i+1}) = 1$.

If $c(x_i) = p$, then $c(x'_{i-d}) \notin \{p, t\}$, say $c(x'_{i-d}) = \ell$. Therefore, the dr + 1 - 3d vertices of $V_{i+1+d,i-2d}$ are colored by $r + 2 - |\{0, 1, p, t, \ell\}| = r - 3$ colors, a contradiction.

If $c(x_i) = 0$, then since $c(x'_i) = p$, the dr + 1 - 2d vertices of $V_{i+1+d,i-d}$ are colored by r - 2 colors, also a contradiction.

Case 3:. $c(x_{i+1}) \notin \{0, 1, p\}.$

If $c(x_{i+1}) = t$, then $c(x_i) = 0$ and $c(x'_i) = p$. Since some vertex of $V_{1,j-2}$ is colored by p, we have $c(x'_{i+1+d}) \notin \{p,t\}$, say $c(x'_{i+1+d}) = m$. Therefore, the dr + 1 - 3d vertices of $V_{i+1+2d,i-d}$ are colored by r - 3 colors, a contradiction.

If $c(x_{i+1}) = q$ for some $q \notin \{0, 1, p, t\}$, then $c(x'_{j+d}) \notin \{0, 1, p, q, t\}$, say $c(x'_{j+d}) = m$. Then we have $r \geq 4$. If $c(x_i) = 0$, then, since $c(x'_i) = p$, the vertices of $V_{j+2d,i-d}$ are colored by r - 4 colors, a contradiction to $|V_{j+2d,i-d}| = 1$

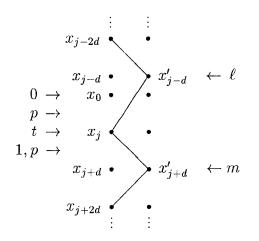


FIGURE 3. Vertex colors near $V_{0,b}$ (for the last paragraph of Case 1).

 $\begin{aligned} dr+1-3d-(j-i-1)>dr+1-4d. \text{ If } c(x_i)=p, \text{ then } c(x'_{i-d}) \text{ cannot be} \\ \text{colored by } 0,1,p,q,t, \text{ say } c(x'_{i-d})=\ell. \text{ Note that } 0>j-d>i-d,b< j+d, \\ \text{and } j<d. \text{ If } r\geq 5, \text{ then } |V_{j+2d,i-2d}|>dr+1-5d \text{ and } \ell\neq m, \text{ i.e., at} \\ \text{least } dr+1-5d \text{ vertices of } V \text{ are colored by } r-5 \text{ colors, a contradiction (see} \\ \text{Fig. 4). If } r=4, \text{ then } \ell=m \text{ and } |V_{j+d,i-d}|>dr+1-3d=d+1. \text{ It is clear that} \\ c(x_{i-d})=0. \text{ Since } x_{i-2d} \in V_{j+d,i-d}, \text{ we have that } c(x_{i-2d})=1 \text{ and } c(V_{j+d,i-d})= \\ \{0,1,\ell\}. \text{ Therefore, } x_{i-2d}x_{i-d} \text{ is an edge with } \{c(x_{i-2d}),c(x_{i-d})\}=\{0,1\} \text{ and} \\ c(x'_{i-2d})=c(x'_{i-d}), \text{ but } |V_{i-2d,i-d}|=d+1\leq |V_{0,b}| \text{ and } |c(V_{i-2d,i-d})|<|c(V_{0,b})|, \\ \text{ a contradiction to the choice of } x_0x_b. \end{aligned}$

By the three cases above, we conclude that no vertex of $V_{1,j-2}$ can be colored by p. A similar argument shows that no vertex of $V_{j+2,b-1}$ can be colored by p. Hence, $c(V_{0,b}) = \{0, 1, t\}$. This completes the proof of Claim 4.

Having proved the claims, we are now ready to prove the theorem. Suppose $3 \le t \le r$. Since $t \notin c(V \setminus V_{0,b})$, there exists an integer *i* such that $c(x_i), c(x_{i-1}) \notin \{0, 1, t\}$ and $2 \le |c(x_i) - c(x_{i-1})| \le r$. Since $c(A_i) = r + 1$, there must be some vertex $x_j \in A_i \setminus \{x_i, x_{i-1}\}$ such that $c(x_j) \in \{0, 1\}$. Assume that $c(x_j) = 0$ (the case of $c(x_j) = 1$ is similar). Since the color of x'_j say q, cannot belong to $c(A_i)$, i.e., q is the only color not in $c(A_i)$ and $q \notin \{0, 1\}$. Hence, $1 \in c(A_i)$, some vertex $x_{j'} \in A_i \setminus \{x_i, x_{i-1}, x_j\}$ is colored by 1, and $c(x'_{j'}) = q$ is clear. It follows that either $2 \le |c(x_j) - c(x'_j)| \le r$ or $2 \le |c(x_{j'}) - c(x'_{j'})| \le r$. By Claim 1, there is a directed cycle in $D_c(\mu(G))$, a contradiction. Therefore, $t \in \{2, r+1\}$.

Assume that t = 2 (the case of t = r + 1 is similar). Let *i* be the smallest integer such that $c(x_i) = 2$; and let *j* be the largest integer such that $c(x_j) = 1$ and $i \leq j \leq i + d$. Such a *j* exists. In fact, one may take j = b if there is no larger value.

For the case of j = i + d, $c(x_{i+d}) = 1$ implies $c(x_{i-1}) \neq 1$. By the definition of $x_i, c(x_{i-1}) \neq 2$. Hence, by Claim 4, $c(x_{i-1}) = 0$. Also, $c(x_i) = 2$ implies

FIGURE 4. Vertex colors near $V_{0,b}$ (for Case 3).

 $c(x'_{i+d}) \neq 2$. By Claim 1, $A_i \cup \{x'_{i+d}\}$ induces a directed cycle of $D_c(\mu(G))$, a contradiction.

For the case of j < i+d, $c(x_{j+1}) \neq 1$ by the choice of x_j ; and $c(x_{j+1}) \notin \{0, 2\}$, since j+1 > b and $c(x_0) = 0$ and $c(x'_0) = 2$. According to $0 \le b-d \le j-d < i$, we have $c(x_{j-d}) \neq 2$ by the choice of x_i , and $c(x_{j-d}) \neq 1$ as $c(x_j) = 1$. Hence, by Claim 4, $c(x_{j-d}) = 0$. We conclude that $c(x'_{j-d}) = 2$. By Claim 1, $A_{j+1} \cup \{x'_{j-d}\}$ induces a directed cycle of $D_c(\mu(G))$, a contradiction.

Therefore, $\chi_c(\mu(G_{dr+1}^d)) = \chi(\mu(G_{dr+1}^d)) = r+2$. This completes the proof of the theorem.

ACKNOWLEDGMENTS

The authors thank the referees for many constructive suggestions.

References

- [1] J. A. Bondy and P. Hell, A note on the star chromatic number, J Graph Theory 14 (1990), 479–482.
- [2] G. J. Chang and L. Huang, Circular chromatic numbers of distance graphs with distance sets missing multiples, Eur J Combin, to appear.
- [3] G. J. Chang, L. Huang, and X. Zhu, Circular chromatic numbers and fractional chromatic numbers of distance graphs, Eur J Combin 19 (1998), 423–431.
- [4] G. J. Chang, L. Huang, and X. Zhu, Circular chromatic numbers of Mycielski's graphs, Discrete Math, to appear.
- [5] D. C. Fisher, Fractional colorings with large denominators, J Graph Theory 20 (1995), 403–409.
- [6] D. R. Guichard, Acyclic graph coloring and the complexity of the star chromatic number, J Graph Theory 17 (1993), 129–134.
- [7] L. Huang, Circular chromatic numbers of graphs, Ph.D. thesis, Dept Applied Math, Nat Chiao Tung Univ, Hsinchu, Taiwan, June, 1998.
- [8] M. Larsen, J. Propp, and D. Ullman, The fractional chromatic number of Mycielski's graphs, J Graph Theory 19 (1995), 411–416.
- [9] J. Mycielski, Sur le coloriage des graphes, Colloq Math. 3 (1955), 161–162.
- [10] A. Vince, Star chromatic number, J Graph Theory 12 (1988), 551–559.
- [11] X. Zhu, Star chromatic numbers and products of graphs, J Graph Theory 16 (1992), 557–569.
- [12] X. Zhu, Circular chromatic number: a survey, to appear.