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ON FINITE CYLINDRICAL DOMAINS
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(Communicated by Barbara L. Keyfitz)

Abstract. We study the existence and multiplicity of asymmetric positive solu-

tions of a semilinear elliptic equation on finite cylinders with mixed type bound-

ary conditions. By using a Nehari-type variational method, we prove that the

numbers of asymmetric positive solutions are increasing without bound when

the lengths of cylinders are increasing. On the contrary, by using the blow up

technique, we obtain an a priori bound for positive solutions and then prove that

all positive solutions must be symmetric when the cylinders are short enough.

1. INTRODUCTION

Let co be a bounded smooth domain in W, n > 1, a > 0, and Qa =

(-a, a) x co be a finite cylindrical domain in K"+1 = {(x, y) : x € E1 and

y e W}. In this paper, we shall study the existence and multiplicity of positive

solutions of the following semilinear elliptic equation with mixed type boundary

conditions

(1.1) Au + f{u) = 0   inQa,

(1.2) u = 0   on[-a, a]xdco,

(1.3) — = 0   on {-a, a} x co,

where / satisfies the following conditions:

(H-0) feCl(Rl), f{u)>0 for w>0,
(H-l) /(0) = 0 and /'(0) = 0,
(H-2) there exists a > 0 such that uf'(u) > (1 + a)f(u) for all u > 0,

(H-3) f(u) < C(up + 1) for some C > 0 and all u > 0, where  1 < p <
(n + 3)/(« - 1) if n > 2 and 1 < p < oo if n = 1 .

A solution u € C2(£la) of (1.1)-(1.3) is said to be symmetric (with respect

to the x-axis) if u is constant along the x-axis, i.e., u = u(y) and satisfies

(1.4) Au + f(u) = 0   in co,

(1.5) u = 0   on dco.
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Otherwise, u is called an asymmetric solution. The following problem was

posed by Berestycki:

,p.        For /(«) = up , taking the length a as a bifurcation parameter,

^  '       is there symmetry-breaking for (1.1)-(1.3)?

Previously, it has been known that there is an asymmetric solution when a is

large enough. In this paper, we answer the problem (P) partially, and hope

it will lead to more complete results of the problem. The main results are as

follows.

Theorem 1.1. Assume conditions (H-0)-(H-3) are satisfied. Then there exists

an increasing sequence ak — ak(co, a) —► oo as k —> oo, such that for each

k > 1 and a e (ak , oo), (1.1)—(1.3) have at least k-many asymmetric positive

solutions.

On the contrary, for short cylinders we have

Theorem 1.2. Assume f satisfies (H-0)-(H-2) and
(H-3)' lim^oo f(u)/uP = C > 0 for 1 < p < (n + 3)/(« - 1) if n>2 and

1 < p < oo if n = 1. Then there exists <z» = a*(co, p) > 0 such that for any

ae(0,fl,), every positive solution o/(l.l)-(1.3) is symmetric.

The last two theorems indicate that there are asymmetric bifurcations at

certain critical numbers a*., aj-»oo as k —> oc, and the bifurcation branches

will go to the direction of increasing a . However, we still need more rigorous

justifications.

To prove Theorem 1.1, we need to study the problems of asymmetric insta-

bility of symmetric positive solutions and then use a Nehari-type variational

method to prove that there exist asymmetric positive solutions when all sym-
metric positive solutions are unstable with respect to certain asymmetric mode.

To prove Theorem 1.2, we need to obtain some a priori bounds for posi-

tive solutions of (1.1)—(1.3) and then prove that asymmetric positive solutions

cannot exist when the cylinders are short enough.

As for the related problems, the problems of symmetry-breaking of positive

radial solutions on a ball were studied in [4, 6, 15-17], on annular domains in

[3, 5, 8-11, 18, 19], and on sectorial domains in [2, 12].
The paper is organized as follows. In §2 we study the linear eigenvalue prob-

lems and obtain some asymmetric instability results for symmetric positive so-

lutions for long cylinders. In §3 we prove the existence of asymmetric positive

solutions for long cylinders. In §4 we prove the nonexistence of asymmetric

positive solutions for short cylinders.

2. Linearized eigenvalue problems

Let g e C(co). Consider the following linear eigenvalue problem:

(2.1) Av + g(y)v = -vv    ina;,

(2.2) v = 0        on dco.

Then there is the sequence {v\,v2,...} = {v\ {g), v2{g), ...} of eigenvalues

of (2.1) and (2.2) satisfying v\ < v2 < 1/3 < •• • , where each distinct eigenvalue
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is repeated according to its multiplicity. By separation of variables, the linear

eigenvalue problem

(2.3) Aw + g(y)w = -Xw   in ila,

(2.4) w = 0 on [-a, a] x dco,

(2.5) -£— = 0 on {-a, a} x co,

is equivalent to the problems

(2.6) Av + g(y)v = - (A + p)v   m co,

(2.7) v = 0 on dco,

and

(2.8) <p"{x) = n<p{x),       x£(-a,a),

(2.9) <p'(-a) = 0 = <p'(a),

with w(x, y) = cp(x)v{y). It is clear that the eigenvalues of (2.8) and (2.9) are

given by

(2.10) fik(a) = -(kn/2a)2,

k = 0, 1,2, ... , and the associated eigenfunctions are

sin —x    if k is odd,
(2.11) <Pk(x)={        H

cos -r— x   if k is even.
*>       2a

Therefore, X is an eigenvalue of (2.3)—(2.5) if and only if X-\-fik = v\ for some

k and /. Hence, we denote

(2.12) h,i=h,i{g,a) = vt-nk = vt{g)+ l-^J

where k = 0, 1, 2, ...   and / = 1,2,....  Note that when k = 0 it corre-
sponds to symmetric modes and k > 1 to asymmetric modes.

Let Mo be any symmetric positive solution and v\ = u\(uo) be the least

eigenvalue of (2.1) and (2.2) with g(y) = f'(uo(y)). Then we have the following

estimate for ^i(wn).

Lemma 2.1. Assume condition (H-2) is satisfied. Then for any symmetric positive
solution uq we have

(2.13) "i(«o) < -ov\ ,

where V\ = u\{co) > 0 is the least eigenvalue of the Laplacian -A on co with

Dirichlet boundary conditions.

Proof. It is well known that v\(uo) can be characterized by

vx = inf \Q{v)l j v2 : v e 7/0V)\{0} J ,

where

Q(v)= f \Vv\2-f'(u0)v2.
J O)
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Since Uq is a solution of (1.4) and (1.5), we have

/ |Vwo|2 = / u0f{u0).
Jw Jw

Hence, by (H-2), we have

Q{u0) =  / |Vw0|2 - f'(u0)ul = / u0f{u0) - f'(u0)ul
Jw J(0

< - a / u0f(u0) = -o / |V«o|2-
Jco Jw

Therefore, by using the Poincare inequality, (2.13) follows. The proof is com-

plete.

Note that the upper bound -avx of vx(uq) is independent of symmetric

positive solutions «o ■

A consequence of Lemma 2.1 is the following asymmetric instability results

for long cylinders.

Theorem 2.2. Assume condition (H-2) is satisfied. For each k > 1, let

(2.14) a* = ^W"1/2.

Then for any a e (ak , oo) and any symmetric positive solution uq we have

4,i("o, a) < 0.

Proof. By(2.12), Xk \{u$, a) = v\{u0) + fik(a); the result follows from Lemma

2.1.

Remark 2.3. Assume conditions (H-0)-(H-3) are satisfied.

(i) If u e C2(fta)nC°(fia) is a solution of (1.1)-(1.3), then u is positive in

Q. Indeed, by (H-0) and the maximum principle, the minimum of u in Q.a is

achieved on dQa ■ On the other hand, by (1.3) and the strong maximum prin-

ciple, the minimum cannot be achieved on {-a, a) xco. Hence the minimum

will be achieved on [-a, a] x dco, which implies u is positive in Qa.

(ii) There exist positive solutions of (1.1)—(1.3) and (1.4) and (1.5), respec-

tively, see, e.g., [1, 14].

3. Long cylinders

In this section, we shall prove that if the cylinders are long enough, a > ak ,

then there exist at least /c-many asymmetric positive solutions. We shall use a

Nehari-type variational method.

For any function u defined on Q.a , it can be extended to u on £1^ =

(-oo, oo) x co. In fact, we first define

u(x, y) — u(2a - x, y)   for x e (a, 3a) and y £ co,

a reflection with respect to x - a. Then « is extended to the whole of Q^o

by 4a periodically along x-axis. Due to the Neumann boundary conditions

on {-a, a] x co, the eigenfunctions wkj and solutions of (1.1)—(1.3) can be

extended smoothly on ^lx in this way.
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We need some notation. Let V — {u e Hl(Cla) : u = 0 on [-a, a] x dco}.

Define the functional

J(u)= f  Uvu\2-F{u)   and   M(u) = f  \Vu\2-uf(u)

on V , where F(u) = /„" /(/) dt.
For each k > 1, the submanifolds Vk and Foo of V are defined by

^ = ̂ t,« = <"€K:fifjc + -^,yJ =u{x,y)

for (x, y) € Qoo and M(u) = 0 >

and
Foo = {W€/f0'(w):M(M) = 0}.

Let

Ik = Ik{a) = inf{/(w) : u £ Vk},        /<*, = /^(a) = inf{/(w) : u 6 K^}.

Let «o be a symmetric positive solution, and wq = i>i(y) > 0 and wk =

<pk{x)v\(y) be eigenfunctions with respect to eigenvalues Ao,i = Xoy\{uo,a)

and Afc>i = Afc)1(«o, a) with /fi ty^ = fa w\ = 1. Note that for k > 1, we

have

(3.1) f  wk=0.

Then we have the following results concerning the change of J(u) along the

direction of asymmetric mode wk .

Lemma 3.1. Assume conditions (H-0)-(H-2) are satisfied. Then there exist e > 0

and a smooth function 6: (-e, e) -» R1 w/?/z r5(0) = S'{0) = 0 5mc/z that

(3.2) M(M0 + <5(0^o + ^t) = 0

/or a// t e (—e , e). Furthermore, we have

(3.3) /(ao + <$(Ot"o + ftofc) = J(u0) + \X0JS(t)2 + {XkAt2 + 0(t4),

as t ~ 0.

Proof. The proofs are similar to Lemmas 6.1 and 6.2 in [11]. (3.2) is proved

by using the Implicit Function Theorem and (3.3) is proved by straightforward

computations; the details are omitted. Note that (3.1) is used repeatedly in the

proofs.

To prove Theorem 1.1, we need the following result, which indicates that

asymmetric minimizers are different for different modes.

Lemma 3.2. Assume conditions (H-0)-(H-3) are satisfied. If Ikm < /^ then

h < hm for k = 1 > 2, ...  and m = 2, 3, ... .

Proof. Under the assumptions of (H-0)-(H-3), it is rather standard to verify

that the Palais-Smale condition holds, see, e.g., [1, 14]. Therefore, the mini-

mizers of Ik and /oo are achieved by some functions uk e Vk and «o € K»

for all k.
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Let m(x, y) be a minimizer of J(u) on Vkm . Since Ikm < 1^ ,

(3.4) du/dx^O   onQfl.

Let

u (— , y J for x e (-a, a) when km is odd,

f(*»)0 = <     (x + a     \
u   -, y ]    for x e (-a, a) when /cm is even.

(    \  m       J
Then for km odd we have

(3.5) v(x + f,y^=u^ + ^,y^=u(^,y)=v(x,y).

Furthermore, we have

(36) L}^--LLW)+{^2}dxdy

--mLlZ{X)1+(v'u]1)dxdy<Lml-

Similarly, if km is even then (3.5) and (3.6) can also be proved. Since u and

v are periodic in x of periods km and k, respectively, it can be proved that

(3.7) /  vf(v) = f  uf(u)   and     /  F(v) = I  F(u).
Jo.a Jna Jiia Jaa

Therefore, (3.6) and (3.7) imply M(v) < 0. Since f'(0) = 0, we have M(tv) >
0 for t > 0 and sufficiently small. This implies that there exists a t\ e (0, 1)

such that M(tiv) = 0.
Now, by (H-2), we have

j-t ^tuf(tu) - F(tu)} = \{tuf'{tu) - /(/«)} > 0

for m > 0. Therefore, we have

Ik<J{t\v)= f   l-t2\Vv\2-F(tiv)
jQa   l

=  /   \txvf(txv)-F(txv)< f   Lf(v)-F(v)

=  /   ^uf(u)-F(u) = Ikm.

The proof is complete.

Proof of Theorem 1.1. For each k > 1 and a e (ak, oo), ak given by (2.14),

the minimizers of Ij(a) and /oo(a) are achieved by some functions Uj e Vj

and Mo e Foo , ;' = 1, ... , k . By (3.3), /,-(a) < /^(a), ;'= 1,..., k.
Now let 1 < i < j < k and / be the least common multiple of i and j. If

j = I then, by Lemma 3.2, m, and Uj are different. If j < I then VjDVj — Vj.

If m, = Uj■■ = u € ^/ then

(3.8) // < J(&) = I, < /oo.
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By (3.8) and Lemma 3.2, we obtain /,(a) < //(a), a contradiction to (3.8).

Hence, m, and Uj are different. The proof is complete.

4. Short cylinders

In this section, we shall prove that there is no asymmetric positive solution

of (1.1)—(1.3) when the cylinders are short enough.

We need the following a priori estimates.

Lemma 4.1. Assume conditions (H-0)-(H-3)' are satisfied. Then there exists a

constant C = C(co) > 0 such that for any a > 0 and any positive solution ua

o/(l.l)-(1.3), we have

(4.1) II"alloc = max{|Ma(x)| : x e fia} < C.

Proof. Since the extension ua of ua is smooth in Qoo , i.e., ua e C2(Qoo), the

boundary {-a, a} x co is now an interior part of Qoo • Since ua > 0 in Q^o

and satisfies
Aua + f{ua) = 0   in Qoo,

ua = 0   on <9Qoo ,

by using the technique of "blow up" as in [7], we can prove (4.1). The details

are omitted.

Proof of Theorem 1.2. For a > 0, if ua is an asymmetric positive solution of

(l.l)-( 1.3), then

(4.2) wa = dua/dx £ 0

and wa satisfies

(4.3) Awa + f'(ua)wa = 0   inQa,

(4.4) wa = 0   on <9Qa.

Let Ai(a) > 0 be the least eigenvalue of the Laplacian -A on Qa with

Dirichlet boundary condition. Then it is easy to verify that

(4.5) lim Ai(a) = oo.
a—>0+

On the other hand, the least eigenvalue t]{ (a) of the linearized eigenvalue

problem

Aw + f'{ua)w — -nw   inQa,

w = 0 on <9Qj

can be characterized by

nx{a) = inf [qM/J  v2 : v e //0'(Qfl)\{0}} ,

where

Q(v)= f  \Vv\2-f'(ua)v2.

By Lemma 4.1, there exists a constant Cx > 0 such that

(4.6) \\f(Ua)\\oo < C,.
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By the Poincare inequality, we have

(4.7) /   |Vu|2 >A,(a) /  v2

for all v e H^(£la). Hence, by (4.5), (4.6), and (4.7), there exists a* > 0 such

that

(4.8) m(a)>0

for all a e (0, a*). Therefore, (4.2), (4.3), (4.4), and (4.8) imply that there is
no asymmetric positive solution for a 6 (0, a*). The proof is complete.

Remark 4.2. The results are still valid if f(u) is replaced by f(y, u), which

satisfies similar conditions as (H-0)-(H-3) and (H-3)'.
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