
Instruction cache prefetching directed by branch
prediction

J.-C.Chiu, R.-M.Shiu, S.-A.Chi and C.-P.Chung

Abstract: As the gap between processor speed and memory speed grow, so the performance
penalty of instruction cache misses gets higher. Instruction cache prefetching is a technique to
reduce this penalty. The prefetching methods determine the target line to be prefetched generally
based on the current fetched line address. However, as the cache line becomes wider, it may
contain multiple branches. This is a hurdle which must be overcome. The authors have developed
a new instruction cache prefetching method in which the prefetch is directed by the prediction on
branches, called branch instruction based (BIB) prefetching; in which the prefetch information is
recorded in an extended BTB. Simulation results show that for commercial benchmarks, BIB
prefetching outperforms traditional sequential prefetching by 7% and other prediction table based
prefetching methods by 17% on average. As BTB designs become more sophisticated and achieve
higher hit and accuracy ratios, BIB prefetching can achieve a higher level of performance.

1 Introduction

As the gap between processor speed and memory speed
grows, the performance penalty of instruction cache misses
gets higher. Furthermore, modem microprocessor designs
increase the instruction issue rate by employing techniques
such as superscalar processing and superpipelining. The
performance degradation caused by instruction cache
misses becomes more vital. To achieve a high clock rate,
the on-chip instruction cache usually has a limited size,
ranging from 4Kbytes to 32Kbytes, and low associativity.
This increases the cache miss rate.

Instruction cache prefetching is one of the methods that
significantly reduces the penalty caused by instruction
cache misses. The method attempts to prefetch an absent
line that the CPU may use in the near future, from the
lower memory hierarchy. Prefetching can be done simulta-
neously with normal program execution, avoiding unneces-
sary idling of the CPU [l].

Several instruction cache prefetching techniques have
been proposed in the past. Smith [l] explored sequential
prefetching, which prefetches the sequentially next line of
the current instruction. Smith and Hsu [2] proposed target
prefetching, which prefetches the line predicted by a target
line prediction table. They further proposed a combined
form of sequential prefetching and target prefetching
known as hybrid prefetching, which prefetches both the
sequential line and the target line predicted by the target
line prediction table. Park and his colleagues [3] extended
hybrid prefetching to become PBN prefetching by introdu-
cing a non-referenced prefetch (NRP) cache to buffer the

0 IEE, 1999
ZEE Proceedings online no 19990310

Paper first received 19th May 1998 and in revised form 18th January 1999
The authors are with the Institute of Computer Science and Information
Engineenng, National Chiao Tung University, Hsinchu, Taiwan 30050,
R O C
E-mail cpchung@arch3 csie nctu edu tw

IEE Pmc -Computers & Digital Techniques, Vol 146, No 5, September 1999

DOI 10 1049iIP-CDT 19990310

prefetched lines that were not referenced by the CPU.
Target prefetching, hybrid prefetching, and PBN prefetch-
ing all use a target line prediction table. They can be
categorised as prediction table based prefetching methods.
Chen and his colleagues [4] had proposed the BP-based
prefetching scheme which uses the program counter of a
branch instruction to predict the target line. The BP-based
prefetching scheme is similar to the prediction-table-based
prefetching methods, but uses the branch predictor to
compute the target line address.

The prediction-table-based prefetching methods deter-
mine the target line to be prefetched based on the current
line address. However, as the cache line becomes wider,
there may be multiple branches, confusing the decision
made by the prediction-table-based prefetching methods
and leading to heavy hardware complexity when seeking
the branch instruction. In this paper, we develop a different
instruction cache prefetching method in which the prefetch
is directed by the prediction of the branches. We call it
branch instruction based (BIB) prefetching. BIB prefetch-
ing works according to the prefetch information saved in
an extended branch target buffer (EBTB). Simulation
results show that, even with the traditional small cache
line size, BIB prefetching achieves higher performance
than sequential prefetching and other prediction-table-
based-prefetching methods.

2 Previous research

Sequential prefetching prefetches the sequentially next
cache line upon the first reference to the current line. It
exploits the code sequentiality, which has been found to be
an important characteristic of typical programs [l]. To
prevent the cache from being polluted by the prefetched
line, which may never be referenced, a stream buffer [5]
can be introduced to buffer the lines prefetched on a cache
miss. The stream buffer works as a FIFO queue. When a
miss occurs, the lines next to the missed line are prefetched
and placed in the stream buffer until the stream buffer is
full or another miss occurs. Upon fetching an instruction,

24 1

only the tag in the first entry of the buffer need be
compared against the fetch address. A miss will cause
the buffer to be flushed even if the requested line is already
present in the stream buffer, and the prefetching will be
restarted at the miss address.

Target prefetching overcomes the inability of sequential
prefetching, i.e. only the sequentially-next line can be
prefetched. It uses a target line prediction table to predict
the address of the target line to be prefetched [2]. The table
contains two fields: the current line address, and the target
line address. The target line address field stores the fetch
address to be used in the next cycle, which was the
previous next line address of the current line. When the
program counter changes to a new line, the line address of
the program counter is used to search the table. If an entry
matches, the target line address of the entry is used for
prefetching. No prefetching request will be issued if the
search is a miss.

In hybrid prefetching [2], both the target line and the
sequentially-next line are prefetched, providing better
protection against a cache line miss. Hybrid prefetching
increases memory traffic because it has two candidate lines
to prefetch.

Park and his colleagues [3] extended hybrid prefetching
to PBN prefetching by adding a non-referenced prefetch
(NRP) cache to store the prefetched lines that were not
referenced by the CPU. Because these prefetched lines may
be referenced by the CPU later, storing these lines in the
NRF’ cache can reduce both later possible cache misses and
memory traffic. As in hybrid prefetching, PBN prefetching
prefetches both the target line and the sequentially-next
line. Moreover, it considers both the line next to the
sequentially next line, and the line preceding the target
line, as candidate lines. According to an additional history
bit in the target line prediction table, these four candidate
lines may be prefetched according to priority.

In PBN prefetching, the stream buffer is extended to
become a prefetch buffer. Every line coming from the
lower level memory is placed in the prefetch buffer first,
regardless of whether or not it is a prefetched line. Upon an
instruction fetch, the tags of all entries in the prefetch
buffer are compared against the fetch address. If there is a
hit, the hit line can be supplied by the prefetch buffer
without delay and then transferred to the instruction cache
in the next cycle. A line can be present in either the cache
or the prefetch buffer but not both. A T bit is appended to
each entry to determine if the corresponding prefetch
buffer entry is to be transferred to the NRF’ cache.

tag

3 Branch instruction based (BIB) prefetching

taken prefetch line
address address

The prediction-table-based prefetching, such as target,
hybrid or PBN prefetching, has two significant drawbacks.
Firstly, it uses the cache line as a whole to predict the next
accessed line, thus incorrect prediction may be made when
there is more than one control transfer instruction in a
single cache line. Secondly, it requires significant addi-
tional die size to accommodate the target line prediction
table. To overcome these drawbacks, we develop a new
prefetching method, called branch instruction based (BIB)
prefetching.

The block diagram showing the implementation of BIB
prefetching is shown in Fig. 1. A traditional branch target
buffer (BTB) [6] is extended to provide additional
prefetching information, and is known as extended BTB
(EBTB). Similar to BTB, EBTB is associated with the
instruction fetch stage, and is searched with the addresses

242

-

information

data bus

I I

Fig. 1 Block diagram for implementing BIB preftching

of the instructions fetched each cycle to ensure the fetched
instruction is a branch. If it is, it will predict the instruction
to fetch in the next cycle. Moreover, if the search is a hit,
the prefetching information of the hit entry will be used for
choosing the candidate instruction line to be prefetched. If
the search is a miss, then the sequentially-next instruction
line will be chosen as the prefetch candidate. An optional
prefetch buffer, which is similar to that in PBN prefetching
[3], can be added to avoid pollution of the instruction
cache by the prefetched lines. The T bit in the prefetch
buffer of PBN prefetching is not needed here because there
is no NRP

3.1 Extended BTB
BIB prefetching uses the information of previous branch
history stored in EBTB. The organisation of EBTB is
shown in Fig. 2. The prefetch line address in EBTB is
recorded according to the previous execution trace of this
branch instruction.

This may be designed to prefetch the dth line ahead
which is expected to be referenced by the CPU. d is the
degree of lookahead prefetching. We apply this concept to
BIB prefetching with some modification and call the result
lookahead basic-block prefetching. Lookahead basic-block
prefetching prefetches the first line of the basic block
previously executed following the EBTB predicted basic
block. We do not prefetch the first line of the EBTB
predicted basic block because this prefetch is often unne-
cessary and the performance gain is too small. We do not
prefetch the first line of the third or further, basic block
either, as those prefetched lines are not often used.

In Fig. 3, a binary-tree-like structure gives an abstract
representation of a program execution flow. Each square in
this figure stands for a basic block. Inside each square,
‘Branch x’ stands for the last, control transfer instruction of
the basic block, and ‘inst n’ stands for the first instruction
of that basic block. When branch A hits an entry in EBTB,
the actions that the EBTB takes are similar to those of a
conventional BTB, except that it will start to prefetch
according to the line address contained in the prefetch
line address field. Suppose that branch A is taken, and the
execution result of branch B will determine which of the
two instructions, inst 1 or inst 2, will be executed next. The
result of branch B will write a line address-the line address

I I I

Fig. 2 EBTB of BIB prefetching

IEE Proc.-Computers & Digital Techniques, Vol. 146, No. S, September 1999

index appended
into oriainal BTB entrv field

1 fill in

/ \ k a k e n I

Fig. 3
affects the EBTB

Abstract representation of a pmgram execution frow and how it

&
Fig. 4 Flowchart of BIB prefetching

of either inst 1 or inst 2-into the prefetch line address field
of the EBTB entry of branch A . If branch A does not hit an
entry in EBTB, BIB prefetching uses the next sequential
line address instead.

In BIB prefetching, because there are two instruction
storage areas: the instruction cache and the prefetch buffer,
prefetching is invoked only when the requested line does
not exist in either of the two storage areas. One machine
cycle is assumed for EBTB and on-chip storage lookup.
The BIB prefetching flow chart is shown in Fig. 4.
Prefetching is initiated when an instruction hits an entry
in EBTB, or when a new line is used by the fetch unit.
There is only one prefetching candidate in each case. The
target line has higher priority over the sequentially-next
line.

3.2 Maintaining pre fetch ing information
We use a two-entry FIFO queue mechanism to implement
the lookahead basic-block prefetching nature of BIB
prefetching. In the instruction decode stage; if an instruc-
tion is a branch, its EBTB index value is inserted into the
FIFO queue. After the execution stage of the branch
instruction, the line address of the upcoming basic-block
will be written into the EBTB entry indexed by the top
entry of the FIFO queue. To simplify the two-entry FIFO
queue design, a modified maintaining mechanism of the
FIFO queue is shown in Fig. 5. The T and T' bits are
toggles. The value of T' is the inverse of T. C is a check bit
that can be set to 1 or reset to 0. 'EBTB index 0' and
'EBTB index 1 ' are the two entries of the FIFO queue.

IEE Pr0c.-Computers & Digital Techniques, Vol. 146, No. 5, September 1999

-
0:old index T,T:toggle bits
1 :older index 0 EBTB index 0

EBTB index 1:FIFO entries
hit

new EBTB index

Fig. 5
FIFO queue

Maintaining mechanism of the target line address with modified

The prefetch line address of the EBTB entry of a
previous branch instruction is updated only when the
target address of the current branch instruction is known.
Whenever a branch instruction is recognised, the index
value of the corresponding EBTB entry is inserted in the
FIFO queue entry selected by the T bit, which is the
inserted entry of the FIFO queue, if the check bit C is
set. Each time a new EBTB index value is inserted into a
FIFO entry, the check bit is reset. The check bit is used to
prevent the FIFO queue from being written by the second
or further BTB index values. There will not be a serious
performance loss when two or more branch instructions
appear in a row, because there is high possibility that these
instructions reside on the same cache line. Prefetching
according to the first branch instruction will also bring
the other contiguous branch instructions into the on-chip
storage.

After the execution stage of the current branch instruc-
tion, the next instruction address of the current branch
instruction is known. The index value selected by the T'
bit, which is in the top entry of the FIFO queue, is then
used to update the prefetch line address of the previous
branch instruction. After this update, the two toggle bits, T
and T', are toggled, and the check bit C is set.

4 Experiments

To study the efficiency of the various instruction cache
prefetching methods, we have built a trace-driven simulator
for experiments.

4.1 Simulation method
A trace-driven simulator on DEC-station 5 133 was built to
evaluate the performance of the various instruction cache
prefetching methods. The benchmark program traces are
generated by the pixie utility on the DEC-station [SI.

Six benchmark programs are selected from the SPEC95
integer benchmarks. Table 1 lists these benchmark
programs. For each benchmark trace, only the first
twenty millon instructions are used to measure the perfor-
mance of each prefetching method. This is a feasible
reduction in workload: the performance behavior of
every prefetching method reaches a stable state at an
instruction count of twenty million.

The most frequently used instruction cache performance
metric is the miss ratio. However, it is not suitable for
instruction cache prefetching studies [3]. If a line to be
prefetched cannot be returned from lower level memory
before it is needed by the CPU, it is a miss, but a few cycles
are saved due to this prefetching request. The miss ratio

243

Table 1 : Benchmark programs

IF

Benchmark Short description

90
gcc
compress compress and decompress file
Ii LISP interpreter

iipeg graphic compression and decompression
vortex a database program

artificial intelligence; plays the game of “Go”
new version of GCC; build SPARC code

RD I ALUI MEM I WB

cannot reflect this situation. Another metric, called MCPI
Memory Accesse Cycles Per Instruction, is used as the
performance metric [9]. We assume that the processor can
execute each instruction in one cycle (perfect pipelining),
and the only extra contributor of CPI is due to instruction
cache access penalty. The MCPI is defined as:

total instruction access penalty
number of instructions executed

MCPI =

4.2 Machine model specification
The machine model we use in this study is a pipelined
microprocessor with five stages, similar to the R3000
processor [lo], as shown in Fig. 6. Some necessary
assumptions are made on this machine model to make it
suited to the experiments:
1. The processor is perfectly pipelined and executes each
instruction in one cycle.
2. A fetch miss request has higher priority than a prefetch
request.
3. There is an on-chip instruction cache with an access
time of one cycle, and a line size of 16 bytes. The size and
the associativity of the instruction cache are input para-
meters in the experiments. We examined the sizes of 2, 4,
8, and 16KB; and the associativities of direct-mapping,
two-way and four-way.
4. There is a unified level-two cache which has a hit rate
of 100%. The latency of the L2 cache is three cycles, and
the L2 cache is non-pipelined and non-pre-emptive.
5 . The bus width between L1 and L2 caches is the same
as the line size.
6. BTB is associated with the IF stage to predict if the
instruction fetched is a branch and to fetch the next
instruction address. The BTB has 1024 entries and is 4-
way set-associative with the LRU replacement. The history
field of the BTB uses a two-bit saturation counter.
7. One cycle is assumed for the instruction fetch request
and the prefetch lookup in on-chip instruction cache.
8. The prefetch buffers of the PBN and the BIB prefetch-
ing have eight entries and are fully-associative.
9. The NRP cache of PBN prefetching is four-way set-
associative and has 1024 bytes. The prediction table of the

I

. IF : fetch the instruction (I-cache).
RD : read any required operands from CPU registers while
decoding the instruction.
ALU : perform the required operation on instruction operands.
MEM : access memory (D-cache).
WB :write back results to register file.

Fig. 6

244

Pipeline stages of the proposed machine model

PBN prefetching is a 1024 entry four-way set associative
branch target buffer-like cache.

4.3 Simulation results
In this section, we examine the performance of four
instruction cache prefetching methods including no
prefetching, sequential prefetching, PBN prefetching, and
BIB prefetching. PBN prefetching is the best known case
of the prediction-table-based prefetching methods.

Some abbreviations are used in the simulator. The four
instruction cache prefetching methods are denoted
‘normal’, ‘sequential’, ‘PBN’, and ‘BIB’, respectively.
The symbol ‘associativity size’ is used to indicate the
associativity and size of the instruction cache. The asso-
ciativity part is denoted ‘D’ for direct-mapping and ‘n-
way’ for n-way set-associativity; and the size part is
denoted ‘m’ for mKbytes cache. For example, ‘D-2’
means the cache is direct-mapped and 2K bytes, and ‘4-
way-16’ means the cache is 4-way set-associative and 16K
bytes.

The performance of these methods according to MCPI
against each benchmark are shown in Figs. 7-12. BIB
prefetching is the most effective in most cases. The average
MCPI of the six benchmarks are shown in Fig 13. The BIB
prefetching method outperforms sequential prefetching by
7%, and PBN prefetching by 17%, on average.

The average memory bus traffic for each prefetching
method is shown in Fig. 14. The method that results in the
heaviest traffic is PBN prefetching, and BIB prefetching
generates about 28% more memory traffic than the direct

0.25 r

0.20

0.15
0 = 0.10

0 05

n

normal
 sequential
0 PEN
OBlB

Fig. 7 MCPI of ‘li’ benchmark program

0.03750

0.03745

normal
 sequential
0 PEN
OBlB

Fig. 8 MCPI of ‘compress’ benchmark program

IEE Proc -Computers & Digital Techniques, Vol 146, No 5, September 1999

0.6 r 0.25 r

0 5

04

8 03 z
0.2

0 1

0

-

normal
msequential
OPBN
OBlB

Fig. 9 MCPI of gcc' benchmark program

0.0009

0.0008

0.0007
0.0006

normal
msequential
0 PBN
0818

Fig. 10 MCPI of 'Ijpeg' benchmark program

0.6 r

normal
edsequential
0 PBN

BIB

Fig. 11 MCPI of 'vortex' benchmark pmgram

mapped normal cache with a cache size of 2K. The amount
of traffic which BIB prefetching generates is closely
correlated to BTB accuracy. High BTB accuracy will
result in high prefetching accuracy in the BIB prefetching
method, and as a consequence the memory traffic overhead
will be lowered or even completely eliminated.

Note that sequential prefetching is very effective, and
the BIB approach only shows a small improvement relative
to sequential prefetching. Two factors have caused this:
I . The frequency of not-taken conditional branches is
45.98% in SPECint95 [l I]. Sequential prefetching

normal
msequential
0 PBN

BIB

Fig. 12 MCPI of 'go' benchmark program

0.30 r
0 25

0.20

8 0.15
H

0.10

0 05
n

-

W normal
msequential
0 PBN

BIB

Fig. 13 Average MCPI

m 3000r
(U

5 2500
U

U)

5 2000

c 1000

2 1500
5

' 500
- n 3

W normal
msequential
0 PBN

BIB

Fig 14 Average memory trajic

prefetches contiguous lines without being affected by
cache miss penalties, and no additional memory traffic or
instruction cache pollution will result.
2. The targets of more than 50% of branches in
SPECint95 are only 2 to 15 instructions away [ll]. This
useful characteristic of spatial locality makes sequential
prefetching perform well without suffering from the penal-
ties contributed by the high ratio of branch instructions in
benchmarks. Because the target of a branch instruction is
close to the branch instruction, there is a good possibility
that the target instruction already exists in the instruction
cache.

Besides the reasons stated above, which will affect the
performance of all prefetching methods, other benchmark

IEE Proc -Computers & Digital Techniques. Vol 146, No 5, September 1999 245

behaviours deserve attention. If the ratio of branch instruc-
tions in a benchmark is too small, sequential prefetching
works well because of the good sequentiality characteristic
in benchmark programs. In the MCPI diagrams for bench-
marks ‘vortex’ and ‘go’, which have a smaller branch
instruction ratio, the sequential prefetching performance
is comparable to that of the BIB prefetching method.

The BIB prefetching method uses a lookahead basic-
block prefetching mechanism which starts to prefetch
whenever EBTB recognises a branch instruction. It works
well if (both) EBTB hits and the prediction ratios are high.
The EBTB used in our simulation is based on a conven-
tional BTB that has relatively low hit and accuracy ratios.
For this reason, in the MCPI diagrams for benchmarks
‘vortex’, ‘gcc’, and ‘go’, which have lower BTB hit and
accuracy ratios, the performance of the BIB prefetching
method is not significantly better.

From the average MCPI diagram shown in Fig. 14, it is
seen that there is less need to employ any prefetching
mechanism if the on-chip instruction cache is large and the
associativity is high, while a smaller cache with BIB
prefetching can do just as well as a large cache. For
example, a 2KB, direct mapped cache, with BIB prefetch-
ing can achieve better performance than that of a 16KB,
direct mapped cache without prefetching, or an 8KB, four-
way set associative cache without prefetching.

Note that PBN prefetching does not perform well in all
cases. The main reason for this is that PBN prefetching
uses the cache line address as the key to search the
prediction table. The resulting prefetching prediction accu-
racy is too low, because there may be more than one branch
instruction on a cache line. The lines prefetched from the
L2 cache are mostly not used by the CPU; as a conse-
quence, PBN prefetching cannot achieve the anticipated
performance even with an NRP cache.

5 Conclusions

We have studied the problem of on-chip instruction cache
miss. Instruction cache prefetching is a method that can
significantly reduce the penalty caused by instruction cache
misses. Many prefetching methods have previously been
proposed. In this paper, we have put forward a new
mechanism, known as BIB prefetching that, in bench-
marks, prefetches instruction cache lines based on a
branch instruction one basic block ahead. Simulation
results show that our method achieves better performance
than other prefetching methods. The BIB prefetching
method outperforms sequential prefetching by 7%, and
other prediction-table-based prefetching methods by 17%
on average.

The simulation results also show that there is no need to
prefetch if the on-chip instruction cache is large and the
associativity is high. However, the BIB prefetching method

with a small cache size can achieve performance equal to
that of a larger cache. It requires only a small increase in
die size to achieve better performance than other prefetch-
ing methods.

The prediction-table-based prefetching methods do not
perform highly enough because they use cache line
addresses as the key for searching the prediction table.
The prefetching prediction accuracy is low because there
may be more than one branch instruction in a line. Even
with an NRP cache, the prefetched lines are rarely used by
the CPU.

The BIB prefetching method is highly dependent on the
BTB hit and accuracy ratios. In this research, we used only
a simple BTB. As the BTB designs become more sophis-
ticated and achieve higher hit and accuracy ratios, the
performance of BIB prefetching can also be enhanced.

The instruction cache design is a major performance
factor in modern microprocessor designs. Furthermore, the
trends of ever-increasing clock rate and system-on-a-chip
both restrict the size and associativity of on-chip caches.
Instruction cache prefetching will become increasingly
important. Currently, we are planning to extend the BIB
prefetching method to other sophisticated hardware branch
prediction mechanisms, and use software to assist the
prefetching.

6 Acknowledgments

This paper presents partial result of a long-term research
project financed by both NSC of R.O.C. under contract no.
NSC 85-2622-E-009-010R, and by the industry.

7 References

1

2

3

SMITH, A.J.: ‘Sequential program prefetching in memory hierarchies’,
IEEE Comput., 1978, 11, (12), pp. 7-21
SMITH, LE., and HSU, W.C.: ‘Prefetching in supercomputer instruction
caches’, Supercomputing ’92, 1992, pp. 588-597
PARK, G.H., KNOW, O.Y., HAN, T.D., and KIM, S.D.: ‘Non-referenced
prefetch (NRP) cache for instruction prefetching’, IEE Pmc. Comput.
Digit. Tech., 1996, 143, (l), pp. 37-43

4 CHEN, L-C.K., LEE, C.-C., andMUDGE, T.N.: ‘Instruction Prefetching
Using Branch Prediction Information’, International Conference on
Computer Design, October 1997, Austin, Texas

5 JOUPPI, N.: ‘Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers’, 17th
ISCA, 1990, Seattle, WA, pp. 364-373
LEE, J.K., and SMITH, A.J.: ‘Branch prediction strategies and branch
target buffer design’, Computer, 1984, 7, (l), pp. 6-22
KIM, S.B., PARK, S.H., PARK, M.S., KIM, J., MIN, S.L., JEONG,
D.K., SHIN, H., and KIM, C.S.: ‘Threaded prefetching: An adaptive
instruction prefetch mechanism’, Micropmcess. and Micropmgv., 1993,
39, (l), pp. 1-15

8 SMITH, M.D.: ‘Tracing with pixie’, Technical Report of Stanford CA
94305-4070, 1991

9 CHEN, T.F.: ‘An effective programmable prefetch engine for on-chip
caches’, Proceedings of MICRO-28, 1995, pp. 237-242

10 KANE, G.: ‘MIPS RISC Architecture’ (Prentice Hall, 1988)
11 CHANG, S.E., and CHANG, Y.R.: ‘A study of SPEC CPU95 bench-

marks’. Technical Report of Chung Yuan University, Taiwan, 1996

6

7

246 IEE Proc.-Computers & Digital Techniques, Vol. 146, No. 5, September 1999

