
One-way hash functions with changeable
parameters

Tsu-Miin Hsieh a,1, Yi-Shiung Yeh a, Chu-Hsing Lin b,*,
Ssu-Heng Tuan a

a Department of Computer Science and Information Engineering, National Chiao Tung University,

Hsinchu, Taiwan
b Department of Computer and Information Sciences, Tunghai University, Taichung, Taiwan

Received 1 April 1998; received in revised form 13 April 1999; accepted 23 June 1999

Abstract

In this paper, four new algorithms for improvements of MD5 and SHA-Keyed/Un-

keyed MD5 and Keyed/Unkeyed SHA are proposed. We change the mode of ®xed re-

trieval of the parameters to that of dynamic retrieval of the parameters by applying a

mapping between the index phrase and the parameter table. As shown in the experi-

mental result, with 1% degradation of performance, comparing to the original algo-

rithms, dynamic retrieval of parameters can be achieved. We believe that the security can

be increased under the improvements. Ó 1999 Elsevier Science Inc. All rights reserved.

Keywords: MD5; SHA; One-way hash functions; Keyed/Unkeyed MD5; Keyed/

Unkeyed SHA

1. Introduction

MD5 was proposed by R. Rivest and the RSA Data Secure, in 1991, and
enrolled into No. 1321 suggestion of Request for Comments (RFC) in 1992.
SHA was announced by the United State Federal Register in 1992, and en-
rolled into No. 180 [6] suggestion of Federal Information Processing Standard
(FIPS) by National Institute of Standards and Technology (NIST) in 1993.

Information Sciences 118 (1999) 223±239
www.elsevier.com/locate/ins

* Corresponding author. Fax: +886-04-359-6557; e-mail: chlin@mail.thu.edu.tw
1 E-mail: tmhsieh@csie.nctu.edu.tw

0020-0255/99/$ - see front matter Ó 1999 Elsevier Science Inc. All rights reserved.

PII: S 0 0 2 0 - 0 2 5 5 (9 9) 0 0 0 3 1 - 6

MD5 [19,4,10] and SHA [9] are two important one-way hash functions used
for digital signature in cryptography. These algorithms process a variable-
length message and output a ®xed length of Message Digest. However, it seems
to have some prede®ned rule for MD5 and SHA: The algorithms will use some
particular parameters when some steps are executing. That is, the two algo-
rithms have ®xed and sequential retrievals of prede®ned parameters. It may be
vulnerable to attackers. In this paper, we propose four improvements of MD5
and SHA-Keyed/Unkeyed MD5 and Keyed/Unkeyed SHA. We change the
mode of ®xed retrieval of the parameters to that of dynamic retrieval of the
parameters by applying a mapping between the index phrase and the parameter
table. As shown in the experimental result, under 1% degradation of perfor-
mance, comparing to the original algorithms, dynamic retrieval of parameters
can be achieved. In the remainder of this section, for better understanding the
algorithms of MD5 and SHA are brie¯y reviewed. In Section 2, cryptanalysis
on MD5 and SHA are introduced. Some existing improved algorithms for
MD5 and SHA are described in Section 3. Dynamic retrieval of parameter
table for one-way hash function is introduced in Section 4. Keyed/Unkeyed
MD5 and Keyed/Unkeyed SHA are proposed in Section 5. Finally, we have the
experimental result in Section 7.

1.1. MD5

MD5 [19] is an algorithm designed for 32-bit machines, it can convert a
message with arbitrary length to a ®xed length of 128-bit Message Digest. The
original purpose of designing MD5 is for digital signatures. A large ®le can be
compressed ®rst by MD5, then encrypted by RSA-like schemes, and thus de-
livered to the destination. MD5 is depicted by Fig. 1.

1.2. SHA (Secure Hash Algorithm)

SHA [9] is also an algorithm designed for 32-bit machines. Evolving from
MD4, some steps in SHA is resemble with MD5. Similarly, SHA can convert
an arbitrary length of message to a ®xed length of 160-bit Message Digests.
SHA is originally applied to Digital Signature Standard (DSA) that is pro-
posed by the NIST. SHA is depicted by Fig. 2.

2. Cryptanalysis

2.1. Attacks on MD5

Since the announcement of MD5 in 1991, some attacks have been proposed.
In the following, the attacking methods are brie¯y described.

224 T.-M. Hsieh et al. / Information Sciences 118 (1999) 223±239

(a) Di�erential cryptanalysis: Di�erential attack is one type of cryptanalysis
that is based on the observation of the di�erence of a ciphertext pair H and H0

of two distinct messages M and M0, respectively. It was proposed by Biham
and Shamir in 1990 [1] for the attacks on DES and its related encryption
schemes. Afterwards, similar cryptanalytic methods are used on Feal, N-Hash,
PES, Snefru, Khafre, REDOC-II, LOKI and Lucifer, etc. [2,5].

Fig. 1. MD5.

T.-M. Hsieh et al. / Information Sciences 118 (1999) 223±239 225

The spirit is to make use of the weakness: abuses of XOR operations. Be-
cause of an XOR operation is equal to the operation of addition mod 2.
Di�erential method can be used to compare the di�erence between a plaintext
and its ciphertext, and estimate the distance (mod 2) of the di�erence. Thus the
e�ect of using XOR operations will be cut down. Since a lot of XOR opera-
tions are used in MD5, it becomes an object of di�erential cryptanalysis.

In 1992 Thomas A. Berson proposed a di�erential attack, based on the
characteristic of weakly collision free, with modulus 232 [3]. At ®rst, the

Fig. 2. SHA.

226 T.-M. Hsieh et al. / Information Sciences 118 (1999) 223±239

attacked message M and a forgery message M0 are decided such that
H(M)�H(M0). Then it attacks on some SubBlocki in one time, and further on
the other subblocks. However, this cryptanalysis can only handle operations in
one round, not for operations in four rounds.

(b) Pseudo-collision: In MD5, a real collision occurs if we have two messages
M1 and M2 such that H(IV, M1)�H(IV, M2), where H is an one-way hash
function and IV is the Initial Chaining Variables.

In 1994 Bert den Boer and Antoon Bosselaers proposed the concept of
pseudo collision [8]. It means that H(IV, M1)�H(IV2, M2), where IV1 and IV2

are two initial values and di�er from IV. They discover that it needs only 216

operations to ®nd the Pseudo Collision of MD5 at particular IV of initial values.
However, it needs 264 operations to look for the Real Collision in case of weakly
collision free and 2128 operations in case of strong collision free. In this method
the values of IV are decided by the attacker and not for general case of MD5.

(c) Collision of the compress function in MD5: According to the pigeon hole
principle, the exhaustive approach to discover a real collision is to take 2128 + 1
messages, Mk Õs, and compress them with MD5 algorithm to obtain 128-bits
outputs, MDk Õs, respectively. Then we will have at least two message namely
Mi and Mj with the same output; that is: H(IV, Mi)�H(IV, Mj).

In 1996 Hans Dobbertin discovered the collision, based on pseudo collision
and de®ning IV value by himself, with a Pentium PC in 10 h [14±16]. Though
this does not show that collision can be found at the circumstances of standard
IV, it exposes the question: is 128-bits output enough for MD5 to be hard to
reverse?

2.2. Attacks on SHA

The cryptanalysis of SHA is not yet found in thesis now.

3. The improved algorithms

There are some improvements of MD5 and SHA and can be categorized as
two methods. One method is to lengthen the message digest and thus to reduce
the probability of collision. For example: the variable length of output in
HAVAL, the 160-bit output in RIPEMD-160 [17,20]. The other method is to
enhance the characteristics of one-way hashing and thus it is hard to reverse.
For example: one left-shift operation is added in SHA-1, the round number is
increased in RIPEMD-160, S-boxes are added in Tiger and a key is added in
HMAC-MD5 [13,18].

Note that SHA-1 is an improvement of SHA; while HAVAL, RIPEMD-
160, Tiger and HMAC-MD5 are the improvements of MD5. For comparison,
we will introduce these improvements brie¯y as follows.

T.-M. Hsieh et al. / Information Sciences 118 (1999) 223±239 227

3.1. SHA-1

The main idea of SHA-1 [11] is to add a shift operation at the padding of
X[16..79] in the old version SHA; that is, X �j� � �X �jÿ 3� � X �jÿ 8� �
X �jÿ 14� � X �jÿ 16�� � 1, and � 1 represents a left shift 1 bit.

3.2. HAVAL

HAVAL was proposed by Zheng et al. in 1993 [7] as an improvement of
MD5. Message is divided into subblocks of 1024 bits instead of 512 bits. Be-
sides, two parameters are controlled and changeable: the round number (can be
three types of 3, 4 or 5 rounds) and the length of Message Digest (can be the
®ve kinds of 128, 160, 192, 224 or 256 bits). Therefore there are ®fteen kinds of
possible selections for users to determine based on the consideration of dif-
ferent grades of security and e�ciency. Note that the length of input message
M should be smaller than 264 bits.

3.3. RIPEMD-160

In 1996 Hans Dobbertin et al. proposed RIPEMD-160 [17,20] algorithm. It
divides an input message into n subblocks of 512 bits each and outputs a
message digest of length 160 bits. The authors hope that it can replace the old
MD4, MD5 and RIPEMD-128 algorithms. The reason is that the output
length (128 bits) of the above three algorithms is too short, a cryptanalytic
method may be found very soon. They show that the RIPEMD-160 can work
well within the next decade. However, RIPEMD-160 has a lower e�ciency
than SHA-1 for 20% in computation time. Note that the length of input
message is smaller than 264 bits.

3.4. Tiger

In 1996 Anderson and Biham proposed the Tiger algorithm [12] primarily
for 64 bits machine (such as DEC Alpha). They hope it will be suitable for
processors in the next ®ve years. An arbitrary length of message is input and
pass through three rounds of operations. Each round adopt 8-to-64 S-boxes
(substitution) to increase the randomness and to prevent the di�erential
cryptanalysis. Finally, it output a 192-bits hash value (For compatible with the
application environment now, it can be taken for 160 or 128 bits). The author
shows that even if the length of output taken is the same as MD5 or SHA-1,
Tiger has still higher security. For e�ciency by comparing to SHA-1, Tiger is
quicker on 16-bits machines, about has the same speed on 32-bits machines,
and quicker with a multiplicity of 2.5 on 64 machines.

228 T.-M. Hsieh et al. / Information Sciences 118 (1999) 223±239

3.5. HMAC-MD5 (keyed MD5)

Message Authentication Code (MAC) is a method used for authenticating
a message. By applying the keys for encryption and decryption between the
sender and the receiver a message can be authenticated. There are two
methods for implementing MAC: (1) using block ciphers such as DES-like
schemes and (2) using hashing functions such as MD5 or SHA. Because the
former has problems of export constraint and less e�ciency, it is convenient
to use hash functions. However, MD5 and SHA are not originally designed
for MAC ± there is no keys. It may need some modi®cations to these hash
functions for computing MAC. The ®rst one is that a key is appended after
data, i.e. key is seen as part of data. The second is that IV is seen as key,
i.e. instead of the standard IV, the sender and the receiver use the same
private key to compute the same message digest. One example of using the
second method, indicated as HMAC-MD5 [18], was proposed by Krawczyk,
Bellar and Canetti in 1996. The algorithm of HMAC-MD5 can be denoted
as

MD5�KXOR 0� 36 . . . 36;MD5�KXOR 0� 5C . . . 5C; text��:

The HMAC-MD5 does not change the algorithm of MD5, thus can retain
the performance. Further, other hash functions can also be used to replace the
MD5. Since a key is used as IV, there is one basic requirement in the chosen
hash function ± hard to ®nd collision for any IV value. Besides, the length of
key must be not less than 128 bits (the length of IV). An application program
will transform a longer key to a K value of 128 bits and then uses it as IV to run
HMAC-MD5.

4. Our algorithm

In this section, we will propose improvements for MD5 and SHA. Instead of
®xed retrieval of Ti values from tables, changeable parameters are used in our
schemes.

4.1. Fixed retrieval of parameters in MD5 and SHA

As stated previously MD5 has 68 parameters, four are the initial values A,
B, C and D of the chaining variables and the other 64 are parameters of Ti

values, where Ti � 232 � abs� sin�i� 1��; 06 i6 63, for i in radians. SHA have
85 parameters, ®ve are the initial values A, B, C, D and E of the chaining
variables and the other 80 are parameters of Ti values indicated as

T.-M. Hsieh et al. / Information Sciences 118 (1999) 223±239 229

Ti � 21=2=4 � 0� 5a827999 for 0 5 i 5 19

� 31=2=4 � 0� 6ed9eba1 for 20 5 i 5 39

� 51=2=4 � 0� 8f 1bbcdc for 40 5 i 5 59

� 101=2=4 � 0� ca62c1d6 for 60 5 i 5 79:

The retrieval of the parameters is sequential and ®xed in MD5 and SHA.
For instance in MD5, at the beginning it needs four initial parameters,
thereupon it takes A, B, C, D, and then there are 64 operation steps, it takes
one by one from T0 to T63. In SHA, at the beginning it needs ®ve parameters,
thereupon it takes A, B, C, D, E, and then there are 80 operation steps, it takes
one by one from T0 to T79.

We can see that there exist some prede®ned rules for MD5 and SHA: it will
use some particular parameters when some steps of the algorithm are execut-
ing. Though we do not know if this is the entry point of attackers, we can seal-
o� this entry point. We think that this is a place worthy of improving ± change
the mode of ®xed retrieval of the parameters to that of dynamic retrieval of the
parameters.

4.2. Dynamic retrieval of parameters with a mapping

There are lots of methods that can be applied for dynamic retrieval of pa-
rameters. For instance, we may make use of a mapping table: Deposit the
parameters in a table T in advance and use a mapping function to retrieve them
in some order when needed. The advantage of using a mapping table is that it
can prevent to take repeated parameters. For this reason, to avoid the dupli-
cate retrievals, the number of parameters in the table must be more than that is
required for MD5 and SHA. Therefore, assume that the size of the table T is n,
n not smaller than 68 (for MD5) or 85 (for SHA), the permutations of arbi-
trarily choose from n are P(n, 68) or P(n, 85). Compare with the original MD5
and SHA which have only one type of sequence, our method is dynamic and
would be more secure.

However, the problem is: How to design the above mapping table? An ex-
ample is to use a ``hashing'' that is studied in the course of Data Structure.
There are several methods for implementing hashing: The square and median
number method, the prime number division, the fold method, and the digit
analysis method, etc. For more detailed please cite any textbook in Data
Structure.

Regarding MD5 as an example, we may pick up any 68 parameters from the
table of size n. When n� 256, we can use 8 bits to indicate the index values. To
attain the purpose, we only need to ®nd 68 bytes of index values from the table.
Similarly, for SHA, 85 bytes of index values are required from the table of size
256.

230 T.-M. Hsieh et al. / Information Sciences 118 (1999) 223±239

For convenience, we concatenate the series of index values and indicate as
the Index Phrase I ; I � fI1; I2; . . . ; Ikg; k � 68 (for MD5) or k� 85 (for SHA).
The value of Ij in I ; �1 5 j 5 k�, means that it will retrieve the Ijth item in table
T, i.e., T�Ij�. For example: let I � f163; 22; 97; 48; . . .g, the 3rd item indicates to
retrieve the 97th parameter, T97, from the table.

In the proposed schemes, to prevent to fall into the style of ®xed retrievals of
parameters, the index phrases should be changeable as needed. We consider
two methods to attain this purpose:
1. Keyed method. The sender and the receiver possess the same key phrase.

When using our algorithm, the key phrase is inputed and transformed to
the required index phrase.

2. Unkeyed method. If there is no common key phrase for the sender and the
receiver, the message can be used. The sending message is transformed di-
rectly to the required index phrase.
In the following sections, we shall introduce two improvements of MD5 and

SHA with keyed and unkeyed methods, respectively.

5. Keyed/Unkeyed MD5

Keyed/Unkeyed MD5 can convert an arbitrary length of message to a 128-
bits ®xed length of Message Digest. The ¯owchart of Keyed MD5 and Un-
keyed MD5 are described in Figs. 3 and 4, respectively. For convenience, we
describe both algorithms together in one as follows.

Step 1. Input:
1.1 If a Keyed MD5 then inputs the key, its length is k bits, k= 0.
1.2 Input the message M with length m bits, m= 0.
Step 2. Construct index phrase: If a Keyed MD5 then converts the key to

index phrase; otherwise converts the message to index phrase.
Note that the principle of conversion is: If less than 68 bytes, then appends a

series of ``0'' at the tail of index phrase. If exceeding 68 bytes then only uses 68
bytes in the front as the index phrase. Therefore, we may get a 68-bytes array of
index phrase I ; I �0�; I �1�; . . . ; I �67�.

Step 3. Append k padding bits: Append padding bits (100..0)2 with length k
�1 5 k 5 512, such that �m� k� mod 512 � 448) at M's tail. After padding, M
is constituted by the subblocks with 512 bits, each subblock is indicated as
SubBlocki �1 5 i 5 n�. Because of SubBlockn is not yet full, it can be divided
into two parts: the front part of 448 bits is from the M's tail and k padding bits;
while the rear part is blank now.

Step 4. Append the length of M: Append the rear part of the nth subblock,
SubBlockn [449..512], with the original M's length. This shows that M's length
is less than 264.

Step 5. De®nition and initialization:

T.-M. Hsieh et al. / Information Sciences 118 (1999) 223±239 231

5.1 De®nition:
(a) Basic functions

F �X ; Y ; Z� � �X AND Y �OR��:X � AND Z�
G�X ; Y ; Z� � �X AND Z� OR �Y AND �:Z��
H�X ; Y ; Z� � X � Y � Z

I�X ; Y ; Z� � Y � �X OR �:Z��:
(b) Mapping Table T: The size is 256 bytes.

Write T[i]: See Step 5.2.a.
Read T[i]: Set on a ¯ag after an item T[i] is used. When a used item is to be
accessed again, a collision occurs. The simplest way to solve the problem of
collision is to access the next item below that. If that item has also been
used, then try its next again. Continuing the check until a unused item is
found. For example, as shown in Fig. 4, I �4� and I �1� are collision, then
the next index below I �4�, i.e. the item T �I �4� � 1� is to be accessed.

Fig. 3. Keyed MD5.

232 T.-M. Hsieh et al. / Information Sciences 118 (1999) 223±239

(c) Round functions: T[i] is changed to T �I �i�� for dynamic retrieval.

Round1�a;b;c;d;k;s; i�fa� b���a�F �b;c;d��SubBlockk�T I �i���� s�g
Round2�a;b;c;d;k;s; i�fa� b���a�G�b;c;d��SubBlockk�T I �i���� s�g
Round3�a;b;c;d;k;s; i�fa� b���a�H�b;c;d��SubBlockk�T I �i���� s�g
Round4�a;b;c;d;k;s; i�fa� b���a�H�b;c;d��SubBlockk�T I �i���� s�g:

5.2 Initialization:
(a) Initialize the table: put 256 values into array T[1.. 256].

T �i� :� 232 � abs� sin�i��; 1 5 i 5 64;

i is in radians.
(b) Initialize chaining variables: Let I[1..68] be the index phrase.

word32A � T �I �1��
word32B � T �I �2��
word32C � T �I �3��
word32D � T �I �4��:

Fig. 4. Unkeyed MD5.

T.-M. Hsieh et al. / Information Sciences 118 (1999) 223±239 233

(c) Duplication: word32 P�A, Q�B, R�C, S�D;
Step 6. Algorithm:
For �inti � 0; i6 nÿ 1; i�� { //Repeatedly process for each subblock, totally
4 � 16 steps.

Rnd1(a, b, c, d, k, s, i)
(ABCD 0 7 1) (DABC 1 12 2)(CDAB 2 17 3)(BCDA 3 22 4)
(ABCD 4 7 5)(DABC 5 12 6)(CDAB 6 17 7)(BCDA 7 22 8)
(ABCD 8 7 9)(DABC 9 12 10)(CDAB 10 17 11)(BCDA 11 22 12)
(ABCD 12 7 13)(DABC 13 12 14)(CDAB 14 17 15)(BCDA 15 22 16)

Rnd2(a, b, c, d, k, s, i)
(ABCD 1 5 17) (DABC 6 9 18)(CDAB 11 14 19)(BCDA 0 20 20)
(ABCD 5 5 21)(DABC 10 9 22)(CDAB 15 14 23)(BCDA 4 20 24)
(ABCD 9 5 25)(DABC 14 9 26)(CDAB 3 14 27)(BCDA 8 20 28)
(ABCD 13 5 29)(DABC 2 9 30)(CDAB 7 14 31)(BCDA 12 20 32)

Rnd3(a, b, c, d, k, s, i)
(ABCD 5 4 33) (DABC 8 11 34)(CDAB 11 16 35)(BCDA 14 23 36)
(ABCD 1 4 37)(DABC 4 11 38)(CDAB 7 16 39)(BCDA 10 23 40)
(ABCD 13 4 41)(DABC 0 11 42)(CDAB 3 16 43)(BCDA 6 23 44)
(ABCD 9 4 45)(DABC 12 11 46)(CDAB 15 16 47)(BCDA 2 23 48)

Rnd4(a, b, c, d, k, s, i)
(ABCD 0 6 49)(DABC 7 10 50)(CDAB 14 15 51)(BCDA 5 21 52)
(ABCD 12 6 53)(DABC 3 10 54)(CDAB 10 15 55)(BCDA 1 21 56)
(ABCD 8 6 57)(DABC 15 10 58)(CDAB 6 15 59)(BCDA 13 21 60)
(ABCD 4 6 61)(DABC 11 10 62)(CDAB 2 15 63)(BCDA 9 21 64)

g //End of loop i.
Step 7. Output message digest: Add the values of the last four 32-bits out-

puts, A, B, C, D, with their initial values �A � A� P ; B � B� Q; C �
C � R; D � D� S� and then concatenate the four Word32 values to obtain the
M's 128-bits Message Digest.

6. Keyed/Unkeyed SHA

Keyed/Unkeyed SHA converts an arbitrary length of message to a 160-bits
®xed length of Message Digest. The ¯owcharts of Keyed SHA and Unkeyed
SHA are described in Figs. 5 and 6, respectively. For convenience, we describe
both algorithms together as follows.

Step 1. Input:
1.1 If a Keyed SHA then inputs the key, its length is k bits, k= 0.
1.2 Input the message M with length m bits, m= 0.
Step 2. Construct index phrase:
a. If a Keyed SHA then converts the key to index phrase I.
b. If an Unkeyed SHA then converts the message to index phrase.

234 T.-M. Hsieh et al. / Information Sciences 118 (1999) 223±239

Step 3. Append k padding bits: Append the padding bits (100..0)2 with
length k�1 5 k 5 512; and�m� k� mod 512 � 448� at M's tail. After padding,
M is constituted by the subblocks with 512 bits, each subblock is indicated as
SubBlocki �1 5 i 5 n�. Because of SubBlockn is not yet full, it can then be
divided into two parts: the front part of 448 bits is from the tail of M and the k
padding bits, and the rear part of 64 bits are blanks now.

Step 4. Fill in the length of M: Fill in the rear part of 64 blanks as stated in
Step 3, SubBlockn[449..512], with the original M's length. This shows that M's
length is less than 264.

Step 5. De®nition and initialization:
5.1 De®nition:
(a) Basic functions

F �X ; Y ; Z� � �X AND Y � OR ��:X � AND Z�
G�X ; Y ; Z� � X � Y � Z

H�X ; Y ; Z� � �X AND Y � OR �X AND Z� OR �Y AND Z�
I�X ; Y ;Z� � X � Y � Z:

Fig. 5. Keyed SHA.

T.-M. Hsieh et al. / Information Sciences 118 (1999) 223±239 235

(b) The mapping Table T: The size is 256 bytes.
Write T[i]: See Step 5.2.a.
Read T[i]: As stated in Step 5.1.b of Keyed/Unkeyed MD5.

Round functions: Change T[i] to T I �i� for dynamic retrieval.

Round�a; b; c; d; k; s; i�fa � b� ��a� Z�b; c; d� � X �k� � T �I �i��� � s�; g
Z � F 0 5 i 5 19;

Z � G 20 5 i 5 39;

Z � H 40 5 i 5 59;

Z � I 60 5 i 5 79:

5.2 Initialization:
(a) Initialize the table: put 256 values into array T[1.. 256].

T �i� :� 232 � abs� sin�i��; 1 5 i 5 64; i is in radians:

Fig. 6. Unkeyed SHA.

236 T.-M. Hsieh et al. / Information Sciences 118 (1999) 223±239

(b) Initialize Chaining Variables: Let I �1::68� be the index phrase.
word32 A � T �I �1��
word32 B � T �I �2��
word32 C � T �I �3��
word32 D � T �I �4��
word32 E � T �I �5��

(c) Duplication:
word32 P � A; Q � B; R � C; S � D; V � E;

Step 6. Algorithm:
For �inti � 0; i6 nÿ 1; i�� {//Repeatedly process for each subblock, totally
80 steps

for �intj � 0; j6 79; j��
if �j6 15�X �j� � SubBlocki�j�;
else X �j� � �X �jÿ 3� � X �jÿ 8� � X �jÿ 14� � X �jÿ 16��

for �intj � 0; j6 79; j��4 {// ChangeTj toTRj

int TEMP � �A� 5� �Round�a;b; c; d; k; s; i� � E � X �j� � TRj;
E � D; D � C; C � B� 30; B � A; A � TEMP;

}
} // End of loop i
Step 7. Output message digest: Add the values of the last ®ve 32-bits out-

puts, A, B, C, D, E, with their initial values (A�A + P; B�B + Q; C�C + R;
D�D + S; E�E + V), and then concatenate the ®ve Word32 to obtain M's 160-
bits Message Digest.

7. Experimental results and discussion

In this section, we shall list the experimental results that show the com-
parisons of e�ciencies among the six algorithms: MD5, Keyed-MD5, Un-
keyed-MD5, SHA, Keyed-SHA, and Unkeyed-SHA. The methodology of
experiment is as follows. Download the MD5 and SHA program from the
Internet, modify them to My-MD5 and My-SHA programs. The former pro-
gram can execute three types of algorithms, MD5, Keyed-MD5 or Unkeyed-
MD5 by choosing a proper parameter. Similarly, the latter program can also
execute three types of algorithms, SHA, Keyed-SHA or Unkeyed-SHA by
specifying the proper parameter.

The machine we used is a PC Intel Pentium 166, the operating system is
Windows 95, and the programming language is Turbo C+ 3.0. We list the
execution result as follows:
1. To run MD5, the average e�ciency is 144,871 (byte/s).
2. To run Unkeyed MD5, the average e�ciency is 143,047 (byte/s).
3. To run Keyed MD5, the average e�ciency is 122,399 (byte/s).
4. To run SHA, the average e�ciency is 87,903 (byte/s).

T.-M. Hsieh et al. / Information Sciences 118 (1999) 223±239 237

5. To run Unkeyed SHA, the average e�ciency is 87,593 (byte/s).
6. To run Keyed SHA, the average e�ciency is 80,958 (byte/s).

As stated above, we can see that the improved algorithms are slower than
the original ones with 1% or so. The reason is that in our programs the function
of ``BuildKeyPhrase'' will spend some CPU time to build the index phrase.
From this, the proposed algorithms will provide better safety and not degrade
the e�ciency too much.

Finally, there are two phenomena in the proposed algorithms:
1. When the key phrase is shorter than the index phrase, our method is to ap-

pend 0Õs. This will produce a series of collisions and a situation of sequential
retrievals of parameters.

2. When the key phrase is longer than the index phrase, we cut out only k bytes
in the front.
These two problems can be solved through designing better mapping

functions for the algorithms.

References

[1] E. Biham, A. Shamir, Di�erential analysis of deslike cryptosystems, Advances in Cryptology

2-21.

[2] E. Biham, A. Shamir, Di�erential cryptanalysis of feal and N-hash, Advances in Cryptology -±

EUROCRYP'91 Proceedings, 1991, pp. 1±16.

[3] ThomasA. Berson, Di�erential Cryptanalysis Mod 232 with Applications to MD5, Advances

in Cryptology-EUROCYPT'92 Proceedings, 1992, pp. 71±80.

[4] R. L. Rivest, The MD5 Message Digest Algorithm, RFC 1321, 1992.

[5] E. Biham, A. Shamir, Di�erential Cryptanalysis of Snefru, Khafre, REDOC-II, LOKI, and

Lucifer, Advances in Cryptology ± CRYPTOÕ91, pp. 156±171.

[6] National Institute of Standards and Technology, NIST FIPS PUB 180, Secure Hash Standard,

US Department of Commerce, 1993.

[7] Y. Zheng, J. Pieprzyk, J. Seberry, HAVAL-a one-way hashing algorithm with variable length

of output, Advances in Cryptology-AUSCRYPT '92. Workshop on the Theory and

Application of Cryptographic Techniques Proceedings, 1993, pp. 83±104.

[8] Bertden. Boer, A. Bosselaers, Collisions for the Compression Function of MD5, Advances in

Cryptology-EROCRYPTÕ93 Proceedings, Springer, Berlin, 1994, pp. 293±304.

[9] W. Stallings, Sha the secure hash algorithm, Dr. Dobb's Journal 4 (1994) 32±34.

[10] B. Kaliski, M. Robshaw, Message Authentication with MD5, RSA LabsÕ CryptoBytes, vol. 1,

No. 1, Springer, Berlin, 1995 (http://www.rsa.com/relabs/cryptobytes/).

[11] National Institute of Standards and Technology, NIST FIPS PUB 180-1, Secure Hash

Standard, US Department of Commerce, 1995.

[12] R. Anderson, E. Biham, Tiger: a fast new hash function, Fast Software Encryption. Third

International Workshop Proceedings, 1996, pp. 89±97.

[13] M. Bellare, R. Canetti, H. Krawczyk, The HMAC Construction, RSA LaboratoriesÕs
CryptoBytes, vol. 2, No. 1, 1996.

[14] H. Dobbertin, Cryptanalysis of MD4, Fast Software Encryption. Third International

Workshop Proceedings, 1996, pp. 53±69.

[15] H. Dobbertin, The status of MD5 after a recent attack, RSA LabsÕ CryptoBytes, vol. 2, No. 2,

Summer 1996. http://www.rsa.com/rsalabs/pubs/cryptobytes.html.

238 T.-M. Hsieh et al. / Information Sciences 118 (1999) 223±239

[16] H. Dobbertin, Cryptanalysis of MD5 Compress, 2 May 1996. http://www.ph.tn.tudelft.nl/

visser/hashes.html.

[17] Hans Dobbertin, Antoon Bosselaers, Bart Preneel, RIPEMD-160: a strengthened version of

RIPEMD, Fast Software Encryption, Third International Workshop Proceedings, 1996, pp.

71±82.

[18] H. Krawczyk, M. Bellare, R. Canetti, HMAC-MD5: Keyed-MD5 for Message Authentica-

tion, submitted for RFC (Request For Comments) publication, August, 1996.

[19] B. Schneier, Applied Cryptography-Protocols Algorithms and Source Code in C, Wiley, New

York, 1996.

[20] A. Bosselaers, H. Dobbertin, B. Preneel, The RIPEMD-160 cryptographic hash function

(includes related article with sample problem) (Technology Information), Dr. Dobb's Journal,

vol. 22, No. 1, January 1997, p. 24.

T.-M. Hsieh et al. / Information Sciences 118 (1999) 223±239 239

