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Abstract

This paper presents a novel video data model and a nested annotation language for

describing complex information of video data. In contrast to conventional approaches,

the proposed model classi®es di�erent video materials of interest to users into di�erent

representation frameworks according to their individual properties. It makes the model

¯exible and capable of sharing video materials. The nested annotation language e�ec-

tively describes scenarios in video data and can be e�ectively analysed. With the as-

sistance of domain knowledge and index organizations this investigaton also develops

algorithms to e�ectively process ®ve types of familiar video queries: semantic query,

temporal quaery, similar query, fuzzy query and hybrid query. In addition, a SQL-like

query language for video content retrival is provided. Experimental results indicate that

combining the concepts of Bayesian networks and inheritance of attributes by context

signi®cantly improves the content based retrieval of video data. Moreover a prototype

system based on proposed model has been implemented. Ó 1999 Published by Elsevier

Science Inc. All rights reserved.
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1. Introduction

Video has found extensive applications owing to its richness and intuitive
ability to capture complex information in the real world. Advances in high-
capacity storage and high-performance compression technologies have made
large scale video archive an important source in modern databases. A video
database is a software system capable of managing a video data collection and
providing content-based access to users [13]. Recently, object storage systems
[6,7] and video server systems [23,30] have received considerable attention.
However, the lack of an e�cient mechanism to present and annotate video
content limits the ability of databases to retrieve video data with the same
facility as conventional data types such as text, graphics and image. In this
work, we adopt an example which is a video documentary entitled ``The Uni-
versity Campus'' containing information about the faculty, students, depart-
ments, FounderÕs Day celebration, commencements, intramural sports and
other relevant topics. This example documentary will be used throughout the
whole paper. Some queries that may be asked of the example are illustrated as
follows:

Type 1. Semantic query. Semantic queries specify a predicate that involves
the semantic content of video data. The semantic content is comprehensive
knowledge that a video conveys to users. It is usually referred to as an event,
object or relationship among events and objects in video clips. Consider the
following queries: ®nd all video frames in which the president appears, ®nd all
professors whose research interests include video databases and ®nd all video
frames in which professor Yang is teaching graduate students databases.

Type 2. Temporal query. Temporal query adopts temporal information as
inputs. Temporal information contains either a range of video frames or an
ordering relationship between two intervals. Consider the following queries:
®nd all events that occur in the interval from frame 1000 to 1500 and ®nd all
lectures that appear after the Founder's Day celebration.

Type 3. Similar query. Similar queries ®nd the audio-visual features of video
data that resemble the given feature examples. While helping users understand
the semantic content of video data, audio-visual features lack their meanings.
Owing to the di�culty that users have in describing audio-visual features
precisely, this kind of query needs a mechanism to support the similarity
measurement. For example, users may attempt to search for swimming pools
by sending the request: ®nd all objects whose color is close to blue.

Type 4. Fuzzy query. Fuzzy queries view a vague description involving lin-
guistic terms as inputs. Consider the following queries: ®nd all professors who
are famous and ®nd all basketball games with a large audience, where famous
and large are vague linguistic terms.

Type 5. Hybrid query. Hybrid queries are a Boolean combination of the
queries described above. Consider the following queries: ®nd all events in which
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a professor, who is famous and noted for his teaching, is speaking from the middle
frame to the last frame.

Video data contents are classi®ed by Hampaur [13] according to the fol-
lowing criteria: semantic, audio-visual and textual contents. Semantic and
fuzzy queries are applied to ®nd high-level semantics and textual information.
Similar and temporal queries are applied to ®nd low-level features such as
color, texture, audio, camera operation and spatiotemporal relationship. In
this paper, we present a novel generic video data model and an annotation
language for providing great expressive power to describe complex content of
video data. Based on this model, we consider several index schemes to evaluate
queries with the assistance of domain knowledge. Also developed herein is a
SQL-like query language and algorithms to present and process the above-
mentioned queries, respectively. The primary contributions of this paper are
summarized as follows:
1. Our schemaless data model, which provides the ¯exibility and sharability of

annotation/audio-visual features, categories the entities of relevant interest
in video data, respectively, according to their di�erent characteristics;

2. the nested annotation structure of the proposed data model can accurately
interpret complex scenarios in the real world and has a lower computational
complexity than natural language;

3. the proposed data model o�ers a more feasible means of content-based re-
trieval by describing conditional dependence relationships among meaning-
ful scenes and

4. the proposed system can e�ciently handle di�erent types of queries with the
assistance of domain knowledge and index organizations. In addition, high-
level semantics can be inferred from low-level features automatically and
vice versa.

The rest of this paper is organized as follows. Section 2 describes the per-
tinent literature related to content-based accesses to video data. Section 3 in-
troduces the basic ideas, underlying assumptions, and then, presents our video
data model and annotation structures. Next, Section 4 de®nes the syntax of
query language, classi®es the queries into ®ve categories, and describes how to
process these queries with the assistance of indices and domain knowledge.
Section 5 then describes the architecture and data structures of the prototype
system. Conclusions are ®nally made in Section 6.

2. Related work

Having received considerable attention, content-based retrieval of video
data can be categorized as follows based on the indexed and annotated in-
formation content: semantic-based approach [1,9,10,15,19,21,22,26,29,31],
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audiovisual feature-based approach [5,11,16,28,32], and hybrid approach
[8,14,24,33].

Focusing mainly on annotating the semantic content in video data, the se-
mantic-based approach is suitable for exploring the content description with
meaning and intuition to users. However, this method fails to automate an-
notation processes exactly. Moreover, semantic annotation is generally am-
biguous and application-dependent.

Adali et al. [1] proposed the AVIS system which uses a frame-segment tree
and an object and an event array to derive an e�cient structure for query
processing. However, that system [1,29] did not consider the relationships
among objects and events. Moreover, the nodes of a frame-segment tree can be
replicated in many ordered-linked lists of object or event arrays, resulting in
low storage utilization. Oomoto and Tanaka [26] proposed the OVID system
based on a schemaless object-oriented data model. Their model provides in-
terval-inclusion-based inheritance and operations to composite video objects.
Later, Weiss et al. [31] proposed an algebraic video data model. The video
algebra supports nested strati®cation by recursively employing a set of algebra
operations, such as create, delay and union. However, [26] and [31] did not
address query-processing algorithms. A. Dan et al. [9] proposed a hierarchical
multimedia annotation structure to provide the multiplicity of views and the
merits of sharing and reusing annotations among users.

Several annotation structures have been developed to represent semantic
information, including keywords [14,29], attributes [1,9,15,21,24,26,31,33],
natural languages [8,19,22], and iconic languages [10]. The keyword approach
is relatively simple. The attribute approach takes the form of attribute-value
pairs. By taking attributes into account, this method depicts the meanings of
values more precisely than the keyword annotation. However, both of keyword
and attribute approaches are limited in terms of satisfactorily describing
complex scenarios due to their restricted structures. Conversely, while pro-
viding a powerful expressive capacity, the natural language approach is in-
hibited by the computational complexity of intelligent parsers. Kim [22]
encoded the video content by natural language. Each sentence can be parsed
into the form of subject-centered dependency structures, which are joined into
a multi-path index tree to e�ciently retrieve the description. Jiang [19] intro-
duced a VideoText data model based on free text annotations, and in doing so,
integrated information retrieval technologies to evaluate content-based queries
and to rank query results.

The audiovisual feature-based approach derived from image information
systems extracts low-level features from video data. While completely auto-
mating the indexing processes, this method lacks semantics associated with the
extracted features. Despite the visual e�ectiveness of this method, users have
di�culty in querying audio-visual features, such as color, texture, shape and
object motion. The highly promising approach attempts to integrate semantic-
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based and feature-based contents. In a related work, Chua and Ruan [8]
proposed a VRSS system based on a two-layered, concept-based data model.
To evaluate a similar query, their system propagates similarity values pro-
portionally up the model. Traversing a scene hierarchy limits its performance.
Later, Lee et al. [24] proposed a VIMS system based on a dynamic data model.
Their model consists of clustering trees and role trees, where cluster trees re-
semble composite hierarchies and role trees are similar to ``is-a'' hierarchies.
While introducing the concept of domain knowledge, Yoshitaka et al. [33]
proposed a system for evaluating indirect queries. In their system, the type of
speci®ed condition may di�er from that of target data.

3. The video data model

3.1. Basic ideas and term de®nitions

In our video databases, raw video data consist of a sequence of continuous
frames, where a set of objects interacts with each another. A video frame,
commonly referred to as a static image, is the basic unit of video data. A frame
sequence is de®ned as a set of frame intervals, where a frame interval �i; j� is a
sequence of video frames from frame i to j. A video object is a concrete or
abstract entity appearing in video frames, such as a professor, a department, a
course, and the notion of object-oriented approaches. This object contains its
inherent attributes and composite relations to other objects. A situation in
which the interplay among a collection of objects has important implications
for us is referred to, herein, as an event, such as a lecture, a basketball game,
and a commencement. An event can be expressed in terms of spatial-temporal
relations among objects. In addition to including the proper attributes, an
event also contains scenarios and represents semantic abstractions. Theoreti-
cally, the entire video stream and the single frame are two extreme abstraction
levels. Other intermediate abstractions may include shots, scenes, sequences
and compound units [13]. None of the video objects must describe scenarios
and multi-level abstractions. Consequently, events and objects have di�erent
properties from the aspect of knowledge representation. Herein, these events
and objects are modeled, respectively, according to their individual charac-
teristics and the relationship between them is maintained.

From a querying point of view, this investigation assumes that objects,
events and video frames are the entities of relevant interest in most applica-
tions. This assumption is reasonable and used in [1,14,17,24]. Consider the
example queries mentioned in the Introduction. Type 1 involves objects/events
and the semantic relationships among them. Type 2 deals with temporal re-
lations of video data. Types 3 and 4 concern the vague properties of objects/
events.
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To classify the features of objects and events, we propose a video data model
with two major components: (1) the Object Net ± a net structure which de-
scribes primitive and composite references among objects and (2) the Event
Hierarchy ± a hierarchy structure which exhibits the multi-level abstraction of
video data and has the ability to annotate complex scenarios. The relationship
between an object and an event refers to a situation in which objects are role
players appearing in an event or which events involve the objects.

Our data model can integrate semantics and features of video data. Arbitrary
text-based or feature-based descriptions can be associated with an object or an
event, such as keywords, free text, icons, key frames, video clips, colors, textures,
spatial locations and temporal relations. An increasing number of successful
applications involving image feature processing have been made
[5,8,14,16,28,32]. However, the expressive capability and computational com-
plexity are trade-o�s in the environment of semantic annotations with keywords,
attributes and natural language. This paper focuses mainly on developing a
nested, unambiguous annotation language in the proposed data model with a
great descriptive power and less computational complexity. Also presented
herein are the corresponding query language and processing algorithms.

In the following, we present our main approach: the object net and the event
hierarchy. The concept of domain knowledge, which favors the annotation of
video data and the capacity of query processing, is then introduced. Assume
that all objects and events are recognized only by their own identi®ers.

3.2. The object net

The properties of each object can be divided into two categories: static and
dynamic. A static property implies that its values are ®xed and a dynamic
propertyÕs values vary over time. In other words, an objectÕs static attributes
are shared in all events and an objectÕs dynamic attributes are described in each
event. An object net attempts to represent static parts of video objects, in-
cluding static values and static relationships. These static properties are in-
herent and are independent of time.

De®nition 1. A video object (or object) is a 4-tuple (OID, DID, PT, I), where
· OID is the unique object identi®er.
· DID the domain identi®er referring to the objectÕs domain.
· PT denotes the stored data and is represented as a set of static properties. A

static property is de®ned as áR, DCñ, where R is the propertyÕs name and DC
denotes a set of descriptive components. A descriptive component is de®ned
as áDID, Vñ, where DID is the valuesÕ domain identi®er and V a single or a
set of values. A value is an OID, an EID (event identi®er), a static property,
or an atomic value, such as integer, real number and string.

· I denotes the frame sequence of video frames in which the object appears.
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According to De®nition. 1, each object belongs to a domain with a domain
identi®er. A static propertyÕs values support nested structures and set values. A
valueÕs domain serves as its data type. Most schemaless semantic-based systems
[1,9,21,24,26,31] are limited in terms of the computational ability of values
owing to the absence of de®nitions of operations. Di�erent from conventional
programming languages, each property may contain multiple domains. The
frame sequence reveals that every object is temporary and the video program
limits its lifetime. Regarding this annotation language, Appendix A(a) presents
an unambiguous CFG to parse the static content of objects and to avoid the
semantic confusion. An angle bracket refers to a non-terminal symbol.

An object net is formed when objects in a group are related. An object net is
a directed graph in which each arrow denotes the direction of a reference.
Composite references are not de®ned in De®nition. 1 since we assume that the
query processor is responsible for supporting integrity constraints, including
dependent shareable reference, dependent exclusive reference, independent
shareable reference and independent exclusive reference. Based on the CFG,
Fig. 1(a) presents an example of the object Tom. Fig. 6 displays its domain
knowledge. Intuitively, all the properties described in object Tom are static,
such as name, birthday and sex. Similarly, according to Fig. 1(b), all the ref-
erences revealed in the object net are also invariable throughout video pro-
grams. Each propertyÕs values may belong to di�erent domains, such as the
property Picture, which can be represented as pcx or bmp formats. Other useful
visual properties of an object include the cinematic parameters and features of
colors, shapes, sizes, positions and textures. These low-level image features are
then mapped to the objectÕs high-level semantics.

Fig. 1. An example of: (a) an object and (b) an object net.
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3.3. The event hierarchy

An event hierarchy attempts to develop a mechanism capable of describing
multi-level abstractions and representing complex scenarios. In particular, this
hierarchy concerns itself with two aspects of a semantic relationship: inheri-
tance of attributes by context and conditional dependence between two events.
For any event which involves the interplay among objects, it not only contains
the eventÕs inherent attributes but also describes dynamic properties of the
participant objects.

De®nition 2. An event is a 5-tuple (EID, DID, PT, CPT, I), where
· EID is the unique event identi®er.
· DID the domain identi®er referring to the objectÕs domain.
· PT denotes the stored data and is represented as a set of properties. A prop-

erty is de®ned as áR, DCñ, where R is the propertyÕs name and DC denotes a
set of descriptive components. A descriptive component is de®ned as áDID,
Vñ, where DID is the valuesÕ domain identi®er and V a single or a set of val-
ue. A value is represented as á(VID), SVñ, where VID is the valueÕs identi®er
(the bracket means it may be omitted), and SV a single value, including an
OID, an EID, a VID, a 2-tuple áOID, DPñ, a property and an atomic value,
such as an integer, real number, and string. For each 2-tuple áOID, DPñ, DP
denotes a set of the dynamic properties of the object with the identi®er OID
and can be treated as a 2-tuple property áR, DCñ. CPT denotes a conditional
probability table and is represented as áC, ETñ, where C denotes an ordered
list of its childrenÕs EIDs and ET denotes a set of conditional probability.
Each conditional probability is a function mapping from integer to [0, 1]
and de®nes the probability distribution, as listed in Table 1.

· I denotes the frame sequence of video frames in which the event appears.

Table 1

An example of CPT of the event Lecture

No. Introduction Talk Discussion Probability

(Lecture)

0 True True True 1.0

1 True True False 0.8

2 True False True 0.2

3 True False False 0.1

4 False True True 0.8

5 False True False 0.7

6 False False True 0.1

7 False False False 0.0
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According to De®nition. 2, an event clusters a collection of objects, which
interact with each other. Each event only needs to describe dynamic properties
of the participant objects. Static information of those objects is stored in an
object net and is referred as OIDs. Appendix A(b) illustrates an unambiguous
CFG for the annotation of an eventÕs properties. From the event Lecture in
Fig. 2, we can infer that student Tom (Oid_20) and student Alan (Oid_40)
presented ch. 3 of the book ``Video Database Systems'' (Oid_51) in the class-
room 130 (Oid_63) from 9:10 a.m. to 12:00 a.m. on 30 March 1998. That
lecture topic was ``Video Databases'' Tom presented his work with slices and
demonstrated his program (Oid_24) with a computer. Alan presented his work
with slices nervously. Notably, some static information is derived from the
corresponding object net, such as the book name, the classroom, and TomÕs
program. Similar to an object, low-level image features must also be attached
to an event.

To capture the feature of multi-level abstractions of video data, we organize
all events into an event hierarchy, as depicted in Fig. 3. An arbitrary video

Fig. 2. An example of the even Lecture.
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segment can be mapped into a set of annotations according to di�erent
viewpoints. An event hierarchy is a graph in which the children of an event
have links connected to it. The meaning of a link between a parent E1 and its
child E2 involves the following: E2 directly in¯uences E1; E1 has an inde-
pendent and shareable composite reference to E2 implicitly; and E2 may inherit
the properties of E1.

To describe the conditional dependence relationship among events, we
maintain a conditional probability table (CPT) for each event. Table 1 presents
the CPT of event Lecture. If the number of children of an event is n, then its
CPT has 2n entries. Consider the example in Fig. 3. Three events (Introduction,
Talk and Discussion) constitute a composite event Lecture. The second row in
Table 1 shows the following semantics:

Probability�LecturejIntroduction; Talk;:Discussion� � 0:8:

From the querying viewpoint, an event hierarchy can be treated as a Bayesian
network de®ned in [27]. The following situation is examined in which an event
hierarchy holds the rules of Bayesian networks:
1. the nodes of an event hierarchy can be viewed as a set of Boolean random

variables with the domain áTrue, Falseñ;
2. as a link between two events can be treated as an arrow pointing to a parent

from a child, an event hierarchy corresponds to a DAG, which denotes how
children in¯uence their parents and

3. each event contains a CPT, which stores the information of conditional
probabilities.

To e�ectively display the multi-level abstractions of video data, an event
hierarchy must provide the mechanism of inheritance of descriptions by con-
text for sharing common information among meaningful scenes [24,26,31].
This mechanism reduces the amount of annotations for events with a low-level

Fig. 3. An example of the event hierarchy about Campus Life.
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abstraction. According to Fig. 4, a plus-marked attribute can be inherited and
vice versa. Inheritance by context is only adapted when the inheritable prop-
erties in an event and all its children have the following relationships: gener-
alization, composition or identification. For example, consider the properties
Location and Topic in event Lecture and all its children. Modern Database,
Video Database and Mobile Database are kinds of Database (generalization)
and Room 130 and Room 132 are parts of CS Hall (composition). Event In-
troduction omits the location CS Hall (identi®cation). Consider a situation in
which someone poses the following query: find all the events, where Student
Tom is in the location Main Campus, the result is event Talk 1. Notably, no
domain knowledge is required to inform a query processor that Room 130 is a
part of Main Campus. In addition, it is inappropriate to inherit some proper-
ties. For example, the attribute Chairman in event Lecture only occurs in one of
its children.

However, consider a situation in which someone wants to identify all the
events where Student Tom or Student Alan is located in CS Hall. Under this
circumstance, we obtain three events (Introduction, Talks 1 and 2) as a result.
However, returning to event Lecture would appear to be more appropriate.
The event Lecture involves high-level concepts (CS Students) but loses some
important information (Student Tom and Student Alan) of its children.
Therefore, the mechanism of inheritance by context is limited in terms of the
capacity of content-based retrieval. Most related investigations only address
how an event impacts its descendants without discussing the above situation.
With respect to querying relative events, the conventional approach examines
inheritance by context, thereby having two major disadvantages:

Fig. 4. A detailed example of the event hierarchy about Campus life.
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(1) User level: Users who are querying relevant events can generally not
accurately describe in detail the contents of the event they are interested in.
Individuals may merely remember the important, apparent part of objects or
motions in an event. That is, video data models are required to assemble
several salient parts into a more complete concept. However, the conven-
tional method lacks the ability to draw inferences from events. For vague or
inexact queries, the conventional method also fails to yield more complete
results.

(2) System level: To save storage space, video data models attempt to
describe high-level semantics to represent larger events and vice versa. Re-
stated, large events are only for a common description, and only small events
are described in detail. Even if users can o�er accurate queries, video data
models still have to possess the ability of inference, which is facilitative in
obtaining an acceptable outcome from simpli®ed annotations. This ability is
not only e�ective for semantic-based comments, but also helpful for audio-
visual content of video data owing to limitations of image processing
technologies. A complete annotation of video data is impossible. With the
assistance of inference engines, a new result can be deduced from the audio-
visual features already captured or from the text-based comments already
generated.

The following considers two kinds of properties in an event: inheritable and
not inheritable. All of its descendants inherit the inheritable properties in an
event. To solve the above problem, we apply the data structure of Bayesian
networks to event hierarchies. Bayesian networks based on BayesÕ theorem
compute the posterior probability distribution for a set of query variables,
given some evidence variables. An evidence variable or a query variable cor-
responds to an event. When users pose a query, an event hierarchy propagates
inheritable information top-down ®rst and then evaluates each eventÕs prob-
ability bottom-up. While considering the inference between an event and its
children, this method signi®cantly improves the approach of inheritance by
context. This inference mechanism is also applied to audio-visual features. In
addition, the determination of a CPT for each event is application-dependant
and can be generated either automatically or manually. Later, two formulas
are introduced to produce each eventÕs conditional probabilities to experiment
with our approach. Moreover, detailed algorithms and experiments will be
stated in Sections 4.2 and 4.3

3.4. Domain knowledge hierarchy

Oomoto [26] introduced two di�culties encountered in de®ning attributes
and querying. To facilitate query processing and annotation of video data, this
work proposes the concept of a domain knowledge hierarchy as illustrated in
Fig. 5.
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De®nition 3. A domain knowledge hierarchy (DKH) is a 3-tuple (D, ISA, T),
where
· D is a countably in®nite set of domain knowledge (DK). Each domain know-

ledge is represented as a 4-tuple áDID, PR, DT, RLñ, where DID is the un-
ique domain identi®er, PR denotes a set of properties, DT denotes a set of
shared data and RL is a set of if-then rules. A property is de®ned as áP,
CDñ, where P is the property name and CD a set of candidate domain know-
ledge (CD � D). Shared data is de®ned as áP, Vñ, where V is a set of values.
Operators can be treated as shared data.

· ISA denotes the generalization (is-a) relationship among DKs and is a func-
tion mapping D±D (ISA � D� D). For each s and t2D, if s is a child of t, we
denote it as ``s ISA t'' and the properties of t may be inherited by s.

· T is a special DK (T2D) and called Meta-DK. It denotes the root of a DKH.

According to De®nition 3, a DK can represent the properties of a domain.
Each DK inherits the properties of its parents by default and consists of
properties, shared data, operators and if-then rules. A property describes
certain aspects of a domain; its values must also be the instances of its can-
didate DKs. All instances of a DK share sharable data, such as linguistic
values. Operators compute the domainÕs instances and sharable data. If-then
rules are responsible for evaluating the type of fuzzy query and connecting
high-level semantics to low-level audio-visual features. Detailed descriptions
will be stated in Sections 4.4 and 5, respectively. Fig. 6 presents an illustrative
example of the DKs Student and Lecture.

Domain knowledge focuses mainly on achieving the following goals: (1) to
serve as the source of properties of objects/events, (2) provide the computing
ability of values, (3) support taxonomies, (4) describe the shared data among
common objects/events, (5) facilitate query processing and (6) bridge the gap
between di�erent abstraction levels. Notably, users can also attach arbitrary
properties to objects/events if necessary. This is despite the fact that they can
de®ne their properties di�erently from those of its domain knowledge. Herein,

Fig. 5. An example of the DKH about University Campus.
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we assume that a DKH is given in advance by users who are familiar with the
application domain, such as directors. The simplest structure of a DKH con-
sists of three DKs: Meta-DK, Object and Event. Completely building a DKH at
one time is unnecessary. Instead, arbitrary DKs can be added incrementally in
a DKH. Notably, limiting the context or the application allows us to reduce the
complexity of building a DKH.

3.5. Discussion

Although object recognition in an unconstrained domain is still limited by
the lack of progress in image processing technologies, the advent of new video
compression standards relying on content-based representation of visual data
is helpful in extracting visual objects from the encoded video streams, such as
MPEG-4 [34]. At present, most researches use visual features and motion in-
formation to detect and trace objects such as human faces [4]. Regarding scene
change detection, several algorithms have been developed for compressed and
uncompressed video [13,18]. Therefore, our data model is targeted at partial
automation of text-based annotation and full automation of feature-based
annotation.

4. Query language and processing

In this section, we develop a SQL-like query language for retrieving objects,
events and video frames. All the content-based queries can be categorized as
semantic query, temporal query, similar query, fuzzy query and hybrid query.
For each query, this section provides some examples and corresponding query

Fig. 6. An example of domain knowledge: Student and Lecture.
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language, as well as describes how to process these queries with the assistance
of indices and domain knowledge. The complexity of each query depends
mainly on its index structures.

4.1. Query language

The query language for our data model consists of three clauses:
· Select clause: This clause speci®es the properties of the entities whose values

are to be retrieved and the maximum number or the probability threshold of
returned results. The keyword RELATIVE is only appropriate for querying
relevant events, where query processors will infer answers from the condi-
tional dependence relationship among events. For example, the statement,
select RELATIVE lecture.topic (5), is to output the topics of top ®ve relative
lectures resulting from the inference.

· From clause: This clause speci®es domain names, domain variables and their
frame sequences required to process the query. For example, the statement,
Video V[1000,3000], reveals that domain variable V belongs to domain video
and its frame scope is from 1000 to 3000. Notably, objects and events are
also temporal.

· Where clause: This clause speci®es conditional expressions, consisting of the
set of domain variables de®ned in the From clause, a set of Boolean opera-
tors (AND, OR and NOT), and a set of temporal operators, including the 13
relations of two given intervals [25]. The simpli®ed syntax of a conditional
expression is de®ned in Appendix B.

This query language makes use of domain names as inputs because users are
normally familiar with the domains of interesting things. A more natural ap-
proach would be for users to pose a query of ®nd out all the people named Tom
than to ask a question of ®nd out all the entities named Tom. In addition, each
type of content-based query referred to hereinafter can be identi®ed by the
format of its query language. This format helps query processors analyze given
inputs. Table 2 lists the notations for facilitating the descriptions of query
language and processing.

4.2. Semantic query

A semantic query inquires the information about objects, events, and their
relationships. This query is further classi®ed into several more detailed queries
as follows:

Elementary domain query. This query ®nds all objects/events of the same
domain.

Example: Find out all professors in the video campus.
Query lang:
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Select O.name
From Video V, Professor O
Where V CONTAIN O

AND V.name� ``campus''

Algorithm DomainQuery(RVD, Vname, Dname, Pname)
Input: video source RVD, video name Vname, domain name Dname, prop-

erty name Pname.
Output: the values of the property Pname
Step 1. Locate video v, v2RVD and v.name�Vname
Step 2. Locate domain d, d2 v.DM and d.name�Dname
Step 3. Set R to be an empty set, R � R[ {d}
Step 4. For each r2R

If 9d 0; d 0 2 v:DM ; d 0 62 R; and d 0 �v:D r

then R � R [ fd 0g; repeat Step 4

Step 5. For each r2R

For each t 2 r:s

return t:Pname

This algorithm must search for the domain identi®ers of the given domain
and all its descendants in the DKH for the links among DKs represent is-a
relationships. By doing so, the bodies of objects/events can be acquired by an
access method, which translates meaningless identi®ers into their disk ad-
dresses. Several conventional index structures facilitate the Steps 1 and 2, such
as B+ tree and hashing. We recommend that each DK keep all of its instances.

Table 2

The notations de®ned in query language and processing

Notation Description

RVD The set of all the video sources, which describe bibliographic data, such as

video title/name, video ®le name, total frame number, and so on.

v.EVT The set of all the events in the video v, v2RVD

�v:E A function mapping v.EVT to v.EVT, �v:E � v:EVT � v:EVT : e1 �v:E e2

means e1 is a child of e2

v.OBJ The set of all the objects in the video v, v2RVD

v.DM The set of all the domains in the video v, v2RVD

�v:D A function mapping v.DM±v.DM, �v:D � v:DM � v:DM : d1 �v:D d2 means

d1 is a child of d2

X.p The values of Xs property p, where X2 v.EVT[ v.OBJ[ v.DM[RVD. For

example: X.i: XÕs identi®er, X2 v.EVT[ v.OBJ[ v.DM. X.d: X's domain,

X2 v.EVT[ v.OBJ. X.f: XÕs frame sequence, X2 v.EVT[ v.OBJ. X.s: the set

of instances contained in the X, X2 v.DM
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Elementary content query. An elementary content query ®nds all objects/
events whose properties satisfy given conditions independent of object/event
identi®ers.

Example: Find all video frames where student Tom appears and ®nd all
lectures that are held in the location 130 in the video campus.

Query lang:

Algorithm ContentQuery(RVD, Vname, Dname, ,Clist, Pname)
Input: video source RVD, video name Vname, domain name Dname, con-

ditional list Clist, property name Pname
Output: the values of the property Pname
Step 1. Call QueryDomain(RVD, Vname, Dname, Identi®er) to get a set R
Step 2. For each r2R,

Compute prob(r) based on Clist, where prob() can be treated as the sim-
ilarity function de®ned in Section 4.3

Step 3. Rank prob(r) for all r2R. If prob �r� > 0 then return r.Pname

Similar to conventional databases, indexing on the properties involved in the
given conditions is able to improve query processing. However, if a condition
contains complex scenarios in an event, we need to deal with the issue of
matching annotation structures with query forms.

Object-event relation query. This query corresponds to elementary content
queries except that their conditions must be associated with object/event
identi®ers. These queries attempt to ®nd the objects in a given event or to ®nd
the events in which a given object appears.

Example: Find the students who are playing basketball and ®nd all the
events in which student Tom appears in the video campus.

Query lang:

Algorithm ObjEvtRelationQuery(RVD, Vname, Ename, Oname, Eclist, Oc-
list, Pname, Flag)

Select O.f Select E.name
From Video V, Student O From Video V, Lecture E
Where V CONTAIN O Where V CONTAIN E

AND V.name� ``campus'' AND V.name� ``campus''
AND O.name� ``Tom'' AND E.location � 130

Select O.name Select E.name
From Video V, Student O, Sport E From Video V, Student O, Event E
Where V CONTAIN E Where V CONTAIN E

AND E CONTAIN O AND E CONTAIN O
AND V.name� ``campus'' AND V.name ``campus''
AND E.name� ``basket-

ball''
AND O.name� ``Tom''
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Input: video source RVD, video name Vname, event Ôs domain name Ename,
objectÕs domain name Oname, eventÕs conditional list Eclist, objectÕs condi-
tional list Oclist, property name Pname, choice Flag

Output: the values of the property Pname
Step 1. Locate video v, v2RVD and v.name�Vname
Step 2. If Flag�True then goto Step 8 (®nd the events in which a given ob-
ject appears)
Step 3. Call QueryContent(RVD, Vname, Ename, Eclist, Identi®er) to get a
set R
Step 4. For each r2 R

If 9d; d 2 v:EVT ; d 62 R; and d �v:E r

then R � R [ fdg; repeat Step 4

Step 5. Set S to be an empty set
For each r2R,
Locate the set of objects O2 r, S � S [ O

Step 6. For each s2S
If s.d�Oname then compute prob(s) based on Oclist

Step 7. Rank prob(s) for all s2S. If prob(s)>0, then return s.Pname
Step 8. Call QueryContent(RVD, Vname, Oname, Oclist, Identi®er) to get a
set R
Step 9. Set S to be an empty set

For each r 2 R

Locate the set of events E in r; S � S [ E

Step 10. For each s2S

If 9 d; d 2 v:EVT ; d 62 S; and s �v:E d

then S � S [ fdg; repeat Step 10

Step 11. For each s2S
If s.d�Ename then compute prob(s) based on Eclist

Step 12. Rank prob(s) for all s2S. If prob(s) > 0, then return s.Pname

Based on usersÕ annotation, this algorithm takes into account the compo-
sition relationship among events. Applying temporal queries can get a more
precise result. In other words, the above example can be represented as:

Select O.name
From Video V, Student O, Sport E
Where V CONTAIN E AND V CONTAIN O

AND V.name� ``campus'' AND E.name ``basketball''
AND E INTERSECT O.

Object path query. This query ®nds all objects with a particular relation to a
given object.
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Example: Find all students who are members of the database lab which
belongs to the CS department in the video campus.

Query lang:
Select O.name
From Video V, Student O
Where V CONTAIN O

AND V.name� ``campus'' AND O.lab.belong_to� ``CS''

Algorithm ObjectPathQuery(RVD, Vname, Dlist, Opath, Clist, Pname)
Input: video source RVD, video name Vname, domain set Dlist, path ex-

pression Opath, conditional list Clist, property name Pname
Output: the values of the property Pname
Step 1. For each domain di2Dlist

Call DomainQuery(RVD, Vname, di, Identi®er) to get a set Ri

Step 2. Join all the Ri into a set R according to Opath
Step 3. For each r2R

Compute prob(r) based on Clist
Step 4. Rank prob(r) for all r2R. If prob�r� > 0, then return r.Pname

Fig. 1(b) illustrates the path expression of above example. An object path
query has di�culty in evaluating join operations (Step 2) e�ciently if a query
path has no indices. Several index organizations proposed to support object-
oriented databases are also appropriate for processing this query, such as
multi-index, join index, nested index and path index.

Event inference query. This query ®nds all events that are relative to given
predicates.

Example: Find all the sports where student Tom is in the location gym in the
video campus.

Query lang:
Select RELATIVE E.name
From Video V, Sport E, Object O
Where V CONTAIN E AND E CONTAIN O

AND V.name� ``campus'' AND O.name� ``Tom'' AND E.loca-
tion� ``gym''

Algorithm EventInferenceQuery(RVD, Vname, Ename, Oname, Eclist, Oclist,
Pname)

Input: video source RVD, video name Vname, event Ôs domain name Ename,
objectÕs domain name Oname, eventÕs conditional list Eclist, objectÕs condi-
tional list Oclist, property name Pname

Output: the values of the property Pname
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Step 1. Call ContentQuery(RVD,Vname,Ename,Eclist,Identi®er) or call Ob-
jectEventRelationQuery(RVD,Vname,Ename,Oname,Eclist,Oclist,Identi-
®er,True) to locate a set of events R and corresponding probabilities.
Step 2. For each r2R

If $ d, d 2 v:EVT ; d 62 R, and r �v:E d or d �v:E r� �
Then R � R[ {d} and set prob�d� � 0

Step 3. Locate a topological order r1 ; r2 ; ::: ; rq


 �
of all the events in R,

where a link between two events is treated as an arrow pointing to a parent
from a child.
Step 4. For i� 1 to q

If ri is not a lowest-level event in v.E
Then prob�ri� � max�prob�ri�;

P
u prob�riju� �

Q
jprob�uj�),

where u is the vector of children of ri, hu1; u2; . . .i
Step 5. Rank prob(r) for all r2R, If prob�r� > 0, then return r.Pname.

For each event inference query, a set of evidence events can be found by
making use of conventional index structures, and then, applying the causal
inference algorithm [27] of Bayesian networks to evaluate the probabilities of
the other events in an event hierarchy. Other distinct kinds of inferences in [27]
are not adopted herein because Bayesian networks are only used for deter-
mining how children in¯uence their parents.

4.3. The experiment

To examine the impact of the event inference approach on content-based
video retrieval, we experiment with our method (integration of conditional
probability dependence and inheritance by context) and the conventional
method (only inheritance by context). Consider a video database with a set of
events, denoted as EVT � fe1; e2; . . . ; eNg, where N=1. These events are formed
as a multi-level event hierarchy. Each event ei has a term vector,
ti � h tfi1; tfi2; . . . ; tfiMi, and a weight vector, wi � hwi1;wi2; . . . ;wiMi, where M
is the total number of terms. tfij and wij represent the frequency and the weight
of term j in event ei, respectively. A term can be viewed as a keyword or an
audio-visual feature. The derived weight vector of a high-level event can be
de®ned as:

wi � T wjjej 2 Si

� 	ÿ �
;

where Si the set of descendants of event ei and T a transfer function mapping
the set of weight vectors of eiÕs descendants to a weight vector. For audio-visual
features, T may be a mechanism of key-frame selection [12,24] or a compu-
tation of arithmetic mean [8]. For text-based annotation, T represents the re-
lationships of generalization, composition and identi®cation discussed in
Section 3.3. This transfer function helps derived weights capture high-level
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semantics but results in the loss of detailed information. Herein, information
retrieval technique is applied as the basis of judging the retrieval performance.
For the composition relationships of multi-level abstraction, the derived term
frequency of event ei satis®es the following condition:

tfij �
X
ek2Si

tfkj:

The weight value of weight vector of event ei is de®ned as [6]:

Wij � tfij � idfj������������������������������PM
k�1

�tfik � idfk�2
s and idfj � log

N
nj

� �
;

where idfj denotes the inverse document frequency of term j and nj the number
of events in which term j appears. In an ideal situation, above formula eval-
uates weight vectors of all the events. However, in a real situation, a transfer
function T computes the weights of non-lowest-level events. Given a query
vector Q � hq1; q2; . . . ; qMi, the similarity between wi and Q is de®ned as:

Sim�wi;Q� �
XM

k�1

wik � Qk

,XM

h�1

Qh;

where the denominator generates normalized term similarities between 0 and 1
so as to satisfy the condition of probabilities. The conditional probability de-
pendence among event ei and all its children Ci is computed as:

Prob�eijTi;:�Ci ÿ Ti�� �
X
ej2Ti

XM

k�1

tfjk � idfk

X
ej2Ci

XM

k�1

tfjk � idfk

,
�1�

or

Prob�eijTi;:�Ci ÿ Ti�� � min 1;
XM

j�1

idfj �
P

ek2Ti

tfkj�����������������������������������������PM
n�1

idfn �
P

ek2Ti

tfkn

 !2
vuut � Wij

0BBBBBB@

1CCCCCCA; �2�

where Ti is a subset of Ci denoting all the true evidence events of Ci.
Consider an event hierarchy with ®ve levels. The degree of fan out of a node

is three. The total numbers of terms (M) and events (N) are, respectively, 250
and 121. Each lowest-level event contains 10% of M terms uniformly distrib-
uted in its term vector and each term frequency is in uniform distribution
varied between 1*base_freq and 10*base_freq. The base_freq denoting the
minimum number of continuous frames in which a term appears is set to be 15.
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We evaluate all the similarity values for four approaches: the ideal approach,
the integrated approach (combination of conditional probability dependence
and inheritance by context), using Eq. (1), the integrated approach, using Eq.
(2), and the conventional approach (only inheritance by context). Suppose that
the ranked results of the four approaches are, respectively, Fideal, Finference1,
Finference2, and Fconventional. Each result in a decreasing order is a permutation of
events whose similarity values are not equal to zero. We examine the retrieval
e�ectiveness according to two parameters, recall �Rk� and precision �Pk�, where
k is a threshold varying between 1 and N. Rk and Pk are de®ned as:

Rk�X � � jfthe top k events in Fxg
\ fthe top k events in Fidealgj=jfthe top k events in Fidealgj

and

Pk�X � � jfthe top k events in Fxg
\ fthe top k events Fidealgj=jfthe top k events in Fxgj;

where X can be denoted as inference 1, inference 2 or conventional. We ran the
simulation with 1000 iterations randomly. Fig. 7 how the recall and precision
results. The experimental results show that the proposed integrated policies
outperform the existing ones substantially in maximizing the criteria of recall
and precision. The performance orders in both criteria are as follows: Inference
2 > Inference 1 > Conventional approach. According to Fig. 7, the recall of the
conventional policy is bounded by a lower value even when k is close to N. The
main reason for this phenomenon is that high-level events lack of the detailed
information. Query processor cannot retrieve them by searching their partial
features arbitrarily. In addition, Fig. 7 shows that not only the proposed
policies get a better overall recall but the permutations of their results are
similar to that of the ideal case. That is, the better an event satis®es query

Fig. 7. Recall for traditional and interference approaches.
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conditions, the larger its similarity value. Consider the approaches of Inference
1 and Inference 2. Inference 1 adopts Eq. (1), which takes into account the
importance of an event compared with its siblings. Inference 2 applies Eq. (2),
which takes the similarity between an event and its parent. The results show
that Eq. (2) is more appropriate for presenting conditional probabilities in
practice. Fig. 8 indicates that the integrated approaches have better precision in
average. Hence, from the experimental results, combining the concept of
Bayesian networks and inheritance by context signi®cantly improve the ca-
pability of content-based retrieval.

4.4. The other video queries

In addition to semantic queries, the proposed model and language support
other four video queries, including temporal query, similar query, fuzzy query
and hybrid query. This subsection introduces these queries by providing some
examples and corresponding query language. Di�erent from semantic queries,
the conditional expressions of these queries contain particular information
such as temporal information, low-level visual features and vague linguistic
terms. Query processing of temporal, similarity and fuzzy queries is similar to
that of elementary content query. The major di�erence is that they require
di�erent similarity measures to evaluate the probability values of the Con-
tentQuery algorithm mentioned in Section 4.3. Consequently, we simply bring
out the similarity functions instead of the complete algorithms.

Temporal query. Temporal queries view temporal information as inputs.
Temporal information is either a range of video frames or one of the 13 re-
lations of two intervals [25].

Example: Find out all the speeches in the commencement in the frame in-
terval [3000,9000] of the video campus.

Fig. 8. Precision for conventional and inference approaches.
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Query lang:
Select E.name
From Video V[3000,9000], Event E1, E2

Where V CONTAIN E1 AND V CONTAIN E2 AND V.name� ``cam-
pus''

AND E1.name� ``speech'' AND E2.name� ``commencement''
AND E1 DURING E2

In this work, a two-dimensional index structure is used to evaluate temporal
queries, such as R*-tree, SS-tree and SR-tree [2,20]. For each frame interval
[i, j] of a given object/event, the coordinate (i, j) is a key inserted into a two-
dimensional index structure. Hence, a temporal query can be viewed as a range
query in a two-dimensional space.

Similar query. Similar queries ®nd the audio-visual features of video data
that resemble the given examples. The low-level features are generally queried
by examples.

Example: Find out the name of the student in a given picture in the video
campus.

Query lang:
Select O.name
From Video V, Student O
Where V CONTAIN O AND V.name� ''campus'' AND O.picture �

The similarity between two images can be evaluated according to several
visual features such as color histogram, texture, and sketch. The operators of a
DK de®ne similarity measures. Consider the DK Student in Fig. 6 whose
property Picture belongs to the DK Pcx or Bmp. Assume that Pcx and Bmp are
image formats. The DK Image can de®ne a similarity operator (�) to compare
the color histograms of two images I1 and I2 as follows:

Sim�I1; I2� �
XN

i�1

XN

j�1

aij�H�I1; i� ÿ H�I2; i���H�I1; j� ÿ H�I2; j��;

where N is the number of colors and H�I ; i� the number of pixels of color i in
the image I and aij the similarity coe�cient between color i and j.

Similar to temporal queries, the feature vector of an object/event can be
indexed by a multi-dimensional tree, which has been extensively applied to
retrieve an image content [14,32]. Similar queries can be treated as the nearest
neighbor queries in a multi-dimensional space. In addition, we combine
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graphical user interfaces with SQL-like query language, thereby allowing users
to simultaneously query semantic content of video data and indicate visual
features and spatial relations of video objects at the same time.

Fuzzy query. Fuzzy queries correspond to elementary content queries except
that their predicate contains vague linguistic terms.

Example: Find out all the students who are fat in the video campus.
Query lang:
Select O.name
From Video V, Student O
Where V CONTAIN O AND V.name� ``campus'' AND O.shape � fat.

Query processor evaluates fuzzy queries by applying elementary domain
queries with the assistance of if-then rules de®ned in domain knowledge.
Consider the rule of if X 0 is A then Y 0 is B. Let sets of values of X 0 and Y 0 be X
and Y, respectively, where Y varies between 0 and 1. Assume that A and B are
fuzzy sets on the universal sets X and Y, respectively. A �Px2X lA�x�=x and
B �Py2Y lB�y�=y, where l is a membership function mapping from X or Y to
[0, 1]. A fuzzy relation R on X � Y can be de®ned as follows:
R�x; y� �Px2X ; y2Y min�lA�x�; lB�y��=�x; y�. Then, given the proposition of if
X 0 is A then Y 0 is B, two fuzzy sets A and B and a fact expressed by X 0 � x, a
new fuzzy set C �Py2Y lc�y�=y can be derived from the equation of
lc�y� � sup min�lA�x�;R�x; y��. To select one representative value of the set Y,
defuzzi®cation methods are used to determine the similarity value such as the
center of gravity and the mean of maximum.

In this example, consider the fuzzy rule of if weight is heavy then shape is fat
in Fig. 6. The two linguistic terms heavy and fat represent fuzzy sets de®ned in
the DK Student. If a student's weight is w, the probability of his/her being fat
can be the defuzzi®cation of lshape is fat�y�, where lshape is fat�y� �
sup min�lHeavy�w�;RHeavy;Fat�x; y��.

Hybrid query. Hybrid queries involve a Boolean combination of the queries
described above.

Example: Find all the events where the student Alan appears and the student
Tom is presenting the book Video Databases with slices in the video campus.

Query lang:
Select RELATIVE E.name
From Video V, Event E, Student O1, O2, Present P
Where V CONTAIN E AND E CONTAIN O1 AND E CONTAIN O2
AND V.name� ``Campus'' AND O1.name� ``Tom'' AND O2.name-
� ``Alan''
AND O1.action�P AND P.method� ``slice'' AND P.Content� ``Video
Databases''.
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5. Implementation

We have implemented a prototype system based on the proposed model
under a Microsoft Windows environment. The system manages a collection of
raw video clips, objects and events that can be queried and browsed. The
overall architecture illustrated in Fig. 9 consists of three major modules: in-
terface, content management and storage modules.

In the interface module, author tool extracts objects and events from video
data, and allows users to annotate their content according to the CFGs de®ned
in Appendix A. Notably, users do not need to remember the exact syntax of
annotation language since the authoring interfaces will direct users to process
it, as illustrated in Figs. 10±15. The playback area has the functions of video
clip playback and static frame display. The edit area guides users in video
content annotations. The display area shows the extracted content. When
someone needs to describe dynamic properties of the participant objects in an
event or the relevant objects of an object, browse area helps him/her look for a
domain knowledge, object or event. At present, domain and event hierarchies
are only tree structures, namely sub-domains and sub-events are of a single-
inheritance relationship. A table-of-content (ToC) represents a DKH or an
annotation language, as illustrated in browse and display area. Expanding a
condensed ToC can obtain a detailed ToC. The selection area allows users to
view a single object or a collection of objects. The query tool shown as Fig. 16 is
responsible for the validity of SQL-like queries by parsing usersÕ inputs. The
presentation tool shown in Fig. 17 allows users to arrange an output format and
to browse the video content by traveling the links among objects and events.

In the content management module, annotation manager maintains object
nets and event hierarchies consistently. To store individual instances in the
storage system, the data structures of V-Node, D-Node and I-Node are

Fig. 9. The architecture of the protype system.

62 P.J. Cheng, W.P. Yang / Information Sciences 118 (1999) 37±73



considered, as illustrated in Fig. 18(a). V-Node is responsible for storing a
DKH, object net or event hierarchy. D-Node and I-Node describe an anno-
tation language. Each node has a globally unique identi®er, which is generated

Fig. 11. An example of domain knowledge People annotation

Fig. 10. The interface of domain knowledge hierarchies.

P.J. Cheng, W.P. Yang / Information Sciences 118 (1999) 37±73 63



by the storage system. Node-Type identi®es a domain (D), object (O) or event
(E). Node-Length denotes the total length of the node. Link-Count and Data-
Count record the numbers of links and data, respectively. Link-Vector consists
of the identi®ers pointing to other nodes such as a link from a parent to a child

Fig. 12. The interface of object nets.

Fig. 13. An example of object Tom annotation.
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in a domain or event hierarchy. For each object, Link-Count is always set to be
zero. Data-O�set Vector consists of the o�sets of data in the Data-Vector part
of the V-Node storage format. Data-Vector is a data array. Each D-Node
represents data and comprises of an item array. Each item is represented as an

Fig. 15. An example of event Lecture annotation.

Fig. 14. The interface of event hierarchies.
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Fig. 16. An example query of ®nding out all buildings in the video Campus.

Fig. 17. The Query results of searching the object Building.
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I-Node. Data-Type identi®es an attribute (A), domain (D) or value (V). Data-
Pointer records a D-NodeÕs identi®er. To reduce the computational cost of
query processing, each annotation should be parsed in advance and trans-
formed into a data array. Figs. 18(b) and (c) show the examples of the event
hierarchy and the event Lecture, respectively. In Fig. 18(c), a D-Node stands
for a ToC and involves an item vector, which consists of items pointing to
(detailed) ToCs. Each item records the index number of an element of

Fig. 18. The Data Structures of the Data Model.
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Data-O�set Vector. Following the o�set of data in the Data-Vector part can
locate the detailed ToC.

The feature manager analyzes the audio-visual features of extracted events
and objects, and then inserts these feature values into the structures of objects
and events, and ®nally updates the index organizations automatically. The
prototype system focuses mainly on processing semantic queries and temporal
queries. Color playing a signi®cant role in image retrieval is supported in
current version. However, retrieving video content either manually or auto-
matically is easy to miss some important features possibly. To avoid the situ-
ation in which users cannot ®nd video content that is not completely extracted
by systems, we introduce two possible solutions. One is the Bayesian network
as stated in Section 3.3 and the other is to generalize each DK to prescribe
feature extraction from raw data, content matching, query analysis and se-
mantic translation. If-then rules can be applied to automatically connect high-
level semantics to low-level audio-visual features and vice versa. Consider a
situation in which the DK people contains the rule of if age is old then hair is
white, where age is a linguistic term and white is a visual concept. If someone
wants to search for the persons with white hair (similar query), the system may
attempt to automatically transform it into a new request: ®nd all people whose
hair is white (similar query) or whose age is old (fuzzy query). One of fuzzy
reasoning algorithms has been illustrated in Section 4.4.

The query processor primarily implements the algorithms described in Sec-
tion 4. To reduce the gap between annotatorÕs and usersÕ comprehension of the
video contents, synonym speci®cations are adopted herein. Each such synonym
is then automatically substituted for the original query term to retrieve video
data with respect to the original and the substituted terms, which can be vague
or nonvague. In the storage module, we adopt CTSS [6] developed in our
laboratory as the object-based storage system, which provides the capabilities
of BLOB, clustering, indices (B+-tree, extendible hash, and SR-tree [20]), video
data compression/decompression, and recovery.

6. Conclusion

This paper has presented a novel video data model for content-based ac-
cesses to video databases. An example video documentary is also adopted to
show how this model represents it. The proposed data model comprises of an
object net and an event hierarchy. This structure consists of the trend of video
compression standards and is targeted at a partial automation of text-based
annotation and full automation of feature-based annotation. Consider the twin
criteria [3], image preprocessing granularity and the level of abstraction, for
classifying existing approaches of modeling video data. For the ®rst criterion,
the proposed model involves identi®cation of objects within a video frame (®ne
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granularity), scene change detection of consecutive frames (coarse granularity).
Notably, a scene can be viewed as an event. For the second one, this model
supports both audio-visual features (low-level abstraction) and semantics
(high-level abstraction). Multi-level semantics can be associated with an object
or event such as keywords, key frames, icons and video. Consequently, the
proposed model is capable of capturing complex information in video data for
each dimension.

Regarding video contents, this paper focuses mainly on semantic information
annotation because conventional approaches either cannot describe complex
scenarios [1,9,15,21,26,31] or are inhibited by computational complexity
[8,19,22]. Audio-visual features are discussed as well. In contrast to previous
methods [1,8,19,26,29,31], the proposed model clearly describes the structures
of objects and events in video data and the relationships among them. Primary
features of the proposed video data model can be summarized as follows:
· The characteristics of objects are divided into two classes: static properties

and dynamic properties. Static properties are usually shared among events
over video programs. This provides the merits of sharability and reusablility
of annotation.

· Events are organized as an event hierarchy to capture the feature of multi-
level abstractions. According to this hierarchy, common properties among
events are inherited and shared; conditional dependence relationships
among events are depicted as well. To con®rm the merits of proposed policy,
a simulation experiment is performed to compare its performance with those
of existing policies. Experimental results indicate that the integrated method
improves the capacity of content-based retrieval signi®cantly, thereby max-
imizing the criteria of recall and precision.

· The annotation structure is organized recursively. Similar to Entity-Relation-
ship model, this scheme provides a great expressive power to represent com-
plex scenarios in the real world. Each entity in ER model corresponds to an
object in the proposed model and each relationship corresponds to a dynamic
property or a static reference of an object. In addition, the nested structure
does not need to analyze the free text statistically [8,19] or parse natural lan-
guage smartly [22]. It can be decomposed and processed e�ciently.

· The division of objects and events helps users directly understand video con-
tent, abstract important features early, and query/browse video information
in detail. This model is properly applied into the applications, where a set of
objects interact with one another, such as a movie with many actors and a
soccer game with many players. Moreover, an event hierarchy can be ex-
tended to represent multi-level abstractions of multi-dimensional data like
images. The integration of inheritance by context and conditional depen-
dence relationship can be applied as well.

· This schemaless data model allows users to incrementally de®ne their
own properties for each object/event and provides the advantage of ¯exibil-
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ity. With the assistance of DKHs, di�erent types of queries are processed
e�ciently and can be represented e�ectively by a SQL-like query language.

· According to fuzzy inference (if-then) rules de®ned in domain knowledge,
high-level semantics can be inferred from low-level audio-visual features to
associate what users desire with what systems can deliver and vice versa.

Further work should focus on capturing spatial±temporal information of
objects in di�erent events. We are planning to extend this model to the network
environment such as digital libraries. Interoperability will be the key challenge
in digital video library systems, which necessarily address a broad range of
issues such as metadata management, handle generation and interconnectivity
protocol. We also intend to investigate how to optimize video query processing
and apply our system to more real world applications.

Appendix A

(a) The unambiguous CFG for the static information of an object.
G� (V, T, S P), where
V� {áStatic Descriptionñ, áPropertyñ, áS1ñ, áDCñ, áS2ñ, áValueñ, áProperty
Nameñ, áDomain IDñ, áVñ}
T� { . , ``{``, ``}``, : , ( , ) , String, Real, Integer, DID, EID, OID }
S� áStatic Descriptionñ
P� {áStatic Descriptionñ::� {áPropertyñ}
áPropertyñ::� e | áS1ñ | áS1ñ.áPropertyñ
áS1ñ::� áProperty Nameñ: (áDCñ)
áDCñ::� áS2ñ | áS2ñ; áDCñ
áS2ñ::� áDomain IDñ(áValueñ)
áValueñ::� áVñ | áVñ, áValueñ
áProperty Nameñ::�String
áDomain IDñ::�DID
áVñ::�OID | EID | áPropertyñ | String | Real | Integer}

(b) The unambiguous CFG for the annotation of an event.
G� (V, T S, P), where
V� {áDescriptionñ, áPropertyñ, áS1ñ, áDCñ, áS2ñ, áValueñ, áProperty Nameñ,
áDomain IDñ, áV1ñ, áV2ñ, áDPñ}
T� { . , ``{``, ``}``, : , ( , ) , String, Real, Integer, DID, EID, OID, VID, }
S� áDescriptionñ
P� {áDescriptionñ::� {áPropertyñ}

áPropertyñ::� e | áS1ñ | áS1ñ.áPropertyñ
áS1ñ::� áProperty Nameñ: (áDCñ)
áDCñ::� áS2ñ | áS2ñ; áDCñ
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áS2ñ::� áDomain IDñ(áValueñ)
áValueñ::� áV1ñ | áV1ñ, áValueñ
áProperty Nameñ::�String
áDomain IDñ::�DID
áV1ñ::�VID, áV2ñ | áV2ñ
áV2ñ::�OID | EID | VID | OID, áDPñ | áPropertyñ | String | Real | Integer
áDPñ::� áPropertyñ}

Appendix B

The simpli®ed syntax of a conditional expression in the Where clause is
de®ned as follows:

áexpressionñ::� áexpressionñáBoolean opñáquery termñ | áquery termñ
áquery termñ::�NOT (áquery unitñ) | áquery unitñ
áquery unitñ::� áVñCONTAINáEñ | áVñCONTAINáOñ | áEñCONTAINáOñ |

áDñátemporal opñáDñ | áDñ.ápropertyñácompare opñávalueñ
áBoolean opñ::�AND | OR
átemporal opñ::� START, FINISH, BEFORE, MEET, OVERLAP, DUR-
ING, EQUAL, INTERSECT
ácompare opñ::�� | � | < | > |5j=j � j � j � j �
áDñ::� áVñ | áEñ | áOñ
áVñ::� String
áEñ::� String
áOñ::� String
ápropertyñ::� String
ávalueñ::� {áset valueñ} | ásingle valueñ
áset valueñ::� ásingle valueñ,áset valueñ
ásingle valueñ::� String | Real | Integer | áDñ,

where áVñ, áEñ and áOñ are, respectively, the domain variables of video, events,
and objects de®ned in the From clause. The keyword CONTAIN denotes the
relations among domain variables. The query statement, A CONTAIN B,
implies that A is the entity where B appears. The temporal operator INTER-
SECT suggests that the intervals of two domain variables have intersection.
The comparison operator (�) is used in the fuzzy query and the similar query.
The set operators (�;�;� and �) are used to evaluate set values.
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