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Abstract

Conventional methods of solving nonconvex separable programming (NSP) problems by mixed integer program-

ming methods requires adding numerous 0±1 variables. In this work, we present a new method of deriving the global

optimum of a NSP program using less number of 0±1 variables. A separable function is initially expressed by a

piecewise linear function with summation of absolute terms. Linearizing these absolute terms allows us to convert a

NSP problem into a linearly mixed 0±1 program solvable for reaching a solution which is extremely close to the global

optimum. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Separable programs are nonlinear programs in which the objective functions and constraints can be
expressed as the sum of all functions, each nonlinear term involving only one variable. The nonconvex
separable programming (NSP) problem discussed herein, denoted as Problem P1, is expressed as follows:

Problem P1 (NSP Problem)

minimize
Xn

i�1

fi�xi�

subject to
Xn

i�1

hij�xi�P 0 for all j;

xi P 0 for i � 1; 2; . . . ; n;
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where fi�xi� could be nonconvex functions and hij�xi� are linear functions.
By assuming that all of fi�xi� in Problem P1 are convex, Problem P1 can be solved by the simplex method

to obtain the global optimum. The conventional means of solving Problem P1 with nonconvex fi�xi� [3,5,11]
is discussed below.

Assume that fi�xi� is approximately linearized over the interval [a, b]. De®ne ai;k; k � 1; 2; . . . ;mi, as the
kth break point on the xi-axis such that ai;1 < ai;2 < � � � < ai;mi with ai;1 � a and ai;mi � b. Then fi�xi� can be
approximated as

fi�xi� �
Xmi

k�1

fi�ai;k�ti;k; �1�

where xi �
Pmi

k�1 ai;kti;k;
Pmi

k�1 ti;k � 1; ti;k P 0; in which only two adjacent ti;k, e.g. �ti;kÿ1; ti;k� and �ti;k; ti;k�1�;
are allowed to be nonzero. In reference to Eq. (1), conventional methods [3,5,11] treat the NSP Problem as
the following program.

Program 1 (Conventional NSP methods [3,5,11])

minimize
Xn

i�1

Xmi

k�1

fi�ai;k�ti;k

subject to
Xn

i�1

hij�xi�P 0 for all j;

xi �
Xmi

k�1

ai;kti;k for i � 1; 2; . . . ; n;

ti;16 yi;1 for i � 1; 2; . . . ; n;

ti;k 6 yi;kÿ1 � yi;k for i � 1; 2; . . . ; n; k � 2; 3; . . . ;mi;Xmi

k�1

yi;k � 1
Xmi

k�1

ttki
� 1 for i � 1; 2; . . . ; n;

where yi;k � 0 or 1, ti;k P 0; k � 1; 2; . . . ;mi; and i � 1; 2; . . . ; n:
Obviously, there exists a unique k where yi;k � 1 and ti;k � ti;k�1 � 1, in which Problem 1 becomes

minimize
Xn

i�1

�fi�ai;k�ti;k � fi�ai;k�1��1ÿ ti;k��

subject to
Xn

i�1

hij�xi�P 0 for all j;

xi � ai;k�1 � �ai;k ÿ ai;k�1�ti;k for i � 1; 2; . . . ; n;

xi P 0; ti;k P 0:

Program 1 is a linearly mixed integer problem which can obtain the global optimum. Program 1 is
seriously limited in that it contains a large number of 0±1 variables which incur heavy computational
burden. The number of newly added 0±1 variables required to approximately linearize a function fi�xi�
equals the number of breaking intervals. For instance, Program 1 requires using

Pn
i�1�mi ÿ 1� zero±one

variables �i:e:; yi;1; yi;2; . . . ; yi;miÿ1�.
An alternative means of solving Problem P1 is the restricted-basis simplex method [3,11]. This method

speci®es that no more than two positive ti;k can appear in the basis. Moreover, two ti;k can be positive only if
they are adjacent. In this case, the additional constraints involving yi:k are disregarded. The restricted basis
method, although computationally e�cient in terms of solving Problem P1, can only guarantee to attain a
local optimum [3,11].
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In light of above discussion, this work presents a novel means of solving Problem P1. The proposed
method is advantageous over conventional NSP methods in that it can ®nd approximately global optimum
of a NSP problem by using less number of 0±1 variables. The solution derived herein can be improved by
adequately adding the break points with the searching intervals.

2. Preliminaries

Some propositions on how to linearize a nonconvex separable function f(x) are described as follows.

Proposition 1. Let f(x) be the piecewise linear function of x, as depicted in Fig. 1, where ak; k � 1; 2; . . . ;m,
are the break points of f(x), sk; k � 1; 2; . . . ;mÿ 1, are the slopes of line segments between sk and ak�1, and
sk � �f �ak�1� ÿ f �ak��=�ak�1 ÿ ak�:

In addition, f(x) can be expressed as follows:

f �x� � f �a1� � s1�xÿ a1� �
Xmÿ1

k�2

sk ÿ skÿ1

2
�jxÿ akj � xÿ ak�; �2�

where joj is the absolute value of o.

This proposition can be examined as follows:
(i) If x6 a2, then

f �x� � f �a1� � f �a2� ÿ f �a1�
a2 ÿ a1

�xÿ a1� � f �a1� � s1�xÿ a1�:

(ii) If x � a3; then

f �x� � f �a1� � s1�a2 ÿ a1� � s2�xÿ a2� � f �a1� � s1�xÿ a1� � s2 ÿ s1

2
�jxÿ a2j � xÿ a2�:

(iii) If x6 ak0 ; then
Pmÿ1

k P k0 �jxÿ akj � xÿ ak� � 0; and f(x) becomes

Fig. 1. A piecewise linear function.
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f �x� � f �a1� � s1�xÿ a1� �
Xk0ÿ1

k�2

sk ÿ skÿ1

2
�jxÿ akj � xÿ ak�:

Example 1. Consider a separable function f �x1� � x3
1 ÿ 4x2

1 � 2x1 depicted in Fig. 2(a), where 06 x16 5.
Assume that the break points of f �x1� are 0, 0.5, 1, 1.5,..., 4.5, 5. In reference to Proposition 1, f �x1� can be
approximately linearized as follows (Fig. 2(b)):

f �x1� � x3
1 ÿ 4x2

1 � 2x1

� 0:25x1 ÿ 2:5

2
�jx1 ÿ 0:5j � x1 ÿ 0:5� ÿ 1

2
�jx1 ÿ 1j � x1 ÿ 1� � 0:5

2
�jx1 ÿ 1:5j � x1 ÿ 1:5�

� 2

2
�jx1 ÿ 2j � x1 ÿ 2� � 3:5

2
�jx1 ÿ 2:5j � x1 ÿ 2:5� � 5

2
�jx1 ÿ 3j � x1 ÿ 3� � 6:5

2
�jx1 ÿ 3:5j

� x1 ÿ 3:5� � 8

2
�jx1 ÿ 4j � x1 ÿ 4� � 9:5

2
�jx1 ÿ 4:5j � x1 ÿ 4:5�:

�3�

Expressing a separable linear function by Eq. (2) is advantageous in that the intervals of convexity and
concavity for f(x) can be easily known, as described by the following proposition.

Proposition 2. Consider f(x) in Eq. (2) where x is within the interval �p; q�; ap6 x6 aq. If sk > skÿ1 then f(x)
is a convex for akÿ16 x6 ak�1, as depicted in Fig. 3(a). If sk < skÿ1 then f(x) is a concave for akÿ16 x6 ak�1,
as depicted in Fig. 3(b).

Consider Expression (3) and Fig. 2(b) as an example, in which f(x) is concave when 06 x6 1 and f(x) is
convex when 16 x6 5.

Proposition 3. Consider a goal programming PP1, as expressed below:

PP1 minimize w �
Xmÿ1

k�2

ck�jxÿ akj � xÿ ak�

subject to x 2 F �a feasible set�; x P 0; ck P 0;

�4�

where ck are coe�cients, k � 2; 3; . . . ;mÿ 1, and 0 < a1 < a2 < � � � < am, can be linearized as PP2 below:

PP2 minimize w � 2
Xmÿ1

k�2

ck xÿ ak �
Xkÿ1

l�1

dl

 !

subject to x�
Xmÿ2

l�1

dl P amÿ1;

06 dl6 al�1 ÿ al for ` � 1; 2; . . . ;mÿ 1;

x 2 F �a feasible set�; x P 0; ck P 0:

�5�

Proof. According to Li [7], PP1 is equivalent to the following program:

PP3 minimize w � 2
Xmÿ1

k�2

ck�xÿ ak � rk�

subject to xÿ ak � rk P 0; rk P 0; for k � 2; 3; . . . ;mÿ 1;

x 2 F �a feasible set�; x P 0; ck P 0;

�6�
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Fig. 2. (a) A nonconvex function f(x1). (b) A approximate piecewise linear function for f(x1).
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where rk is a deviation variable. PP3 implies that: if x < ak then at optimal solution rk � ak ÿ x; if x P ak

then at optimal solution rk � 0.
Substitute rk by

Pkÿ1
`�1 d`; 06 d`6 a`�1 ÿ a`; PP3 then becomes

PP4 minimize w � 2
Xmÿ1

k�2

ck xÿ ak �
Xkÿ1

l�1

dl

 !
subject to x� d1 P a2;

x� d1 � d2 P a3;

..

.

x� d1 � d2 � � � � � dmÿ2 P amÿ1;

06 dl6 al�1 ÿ al;

x 2 F �a feasible set�; x P 0; ck P 0:

Since a`�1 ÿ a` P d`, it is obvious that

Fig. 3. (a) A convex function for f(x). (b) A concave function for f(x).
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x P amÿ1 ÿ
Xmÿ2

`�1

d` P amÿ2 ÿ
Xmÿ3

`�1

d` P � � � P a3 ÿ d1 ÿ d2 P a2 ÿ d1 P 0:

Therefore, the ®rst (mÿ 2) constraints in PP4 are covered by the ®rst constraint in PP2. By doing so,
Proposition 3 is proven. h

Many conventional goal programming methods (such as Charnes and Cooper method in [3,5]) can be
utilized to solve (4). Comparing with conventional goal programming methods, linearizing (4) by (5) is
more computationally e�cient owing to the following two reasons.

(i) All constraints in (5) are simple upper or lower bounded constraints except for the ®rst constraint in (5).
(ii) By utilizing Li's method [7] for linearizing an absolute term with positive coe�cient, only (6) contains

mÿ 2 deviation variables (i.e., r2; r3; . . . ; rmÿ1). In contrast, conventional goal programming techniques
[3,5,11] require using 2(mÿ 2) deviation variables.

Example 2. Consider the following goal programming:

minimize w � 2�xÿ 1� � 2�jxÿ 2j � xÿ 2� � 1�jxÿ 3j � xÿ 3�
subject to x P 1:5:

This program, as depicted in Fig. 4(a), can be transformed into the following linear program:

minimize w � 2�xÿ 1� � 4�xÿ 2� d1� � 2�xÿ 3� d1 � d2�
subject to x� d1 � d2 P 3; x P 1:5;

06 d16 1; 06 d26 1; x 2 F :

LINDO [9] is used to solve the above program, hereby obtaining d1� 0.5, d2� 1, w� 1, and x� 1.5.

Notably, Proposition 3 can be applied only if all coe�cients in (4) are nonnegative. The technique of
linearizing an absolute term with negative coe�cient is introduced below.

Proposition 4. Consider the following program:

minimize w � cjxÿ aj
subject to x 2 F �a feasible set�; c is negative coefficient �i:e: c < 0�;

06 x6 x �x is the upper bound of x�:
This program can be replaced by the mixed 0±1 program:

minimize w � c�xÿ 2z� 2auÿ a�
subject to x� x�uÿ 1�6 z;

x 2 F �a feasible set�; x P 0; z P 0; u is a 0±1 variable and c is a negative constant;

06 x6 x �x is the upper bound of x�:

Proof. By introducing a 0±1 variable u, where u� 0 if x P a, and otherwise u� 1. It is convenient to con®rm
whether if u� 1 then z� x and if u� 0 then z� 0. Thus, w can be rewritten as cjxÿ aj �
c�1ÿ 2u��xÿ a� � c�xÿ 2ux� 2auÿ a�. Denote the polynomial term ux as z. By referring to Li and
Chang [8], the relationship among x, z and u is expressed as x� x�uÿ 1�6 z and z P 0. By doing so,
Proposition 4 is proven. h
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Example 3. Consider the following goal programming:

minimize w � 5ÿ �xÿ 1� ÿ 1:5�jxÿ 2j � xÿ 2�
subject to x6 2:5:

This program, as depicted in Fig. 4(b), can be transformed into the following linear program:

minimize w � 5ÿ �xÿ 1� ÿ 1:5��xÿ 2z� 4uÿ 2� � �xÿ 2�� � ÿ4x� 3zÿ 6u� 12
subject to x� 3�uÿ 1�6 z; x6 2:5;

x P 0; z P 0; u is a 0±1 variable; x 2 F :

Solve the above program by LINDO [9] to obtain u� 0, z� 0, w� 2, and x� 2.5.

Based on Propositions 1±3, Problem 1 can be approximated as the following program:

Fig. 4. (a) A goal programming problem with convex objective function (Example 2). (b) A goal programming problem with concave

objective function (Example 3).
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Program 2 (Proposed NSP method):

minimize
Xn

i�1

f �ai;1� � si;1�xi ÿ ai;1� � 2
X

for k; where si;k>si;kÿ1

�si;k ÿ si;kÿ1� xi ÿ ai;k

 
�
Xkÿ1

l�1

di;l

!24
�

X
for k;where si;k<si;kÿ1

�si;k ÿ si;kÿ1��xi ÿ 2zi;k � 2ai;kui;k ÿ ai;k�
35

subject to
Xn

i�1

hij�xi�P 0; for all j;

xi �
Pmjÿ2

l�1

di;l P amiÿ1

06 di;l6 ai;l�1 ÿ ai;l

9=; for i � 1; . . . ; n and k where si;k > si;kÿ1;

xi � x�ui;k ÿ 1�6 zi;k

zi;k P 0

�
for i � 1; . . . ; n and k where si;k < si;kÿ1;

where xi P 0; di;l P 0; zi;l P 0, and ui;k are 0±1 variables.
Table 1 lists the extra 0±1 and continuous variables used in Programs 1 and 2. Table 1 indicates that for

solving a NSP problem the proposed method uses less number of 0±1 variables than used in Program 2.

3. Selection of break points

Accuracy of the piecewise linear estimate heavily depends on the selection of proper break points. With
an increasing number of break points, the number of additional deviation variables for approximating a
convex function (or zero±one variables for approximating a concave function) also increases. Conse-
quently, inappropriate selecting of break points causes a computational burden when piecewise linearizing
non-linear functions.

Bazarra et al. [3] and Meyer [10] presented a means of selecting adequate break points. Their method
initially utilizes a coarse grid and then generates ®ner break points around the obtained optimal solution
computed by the coarse grid. If necessary, break points around the optimal solution computed by the ®ner
break are generated again until the precision is satis®ed. Their method, although applicable to linearize a
convex function, is di�cult for use in linearizing a nonconvex function.

Therefore, in this work, we present an e�cient means of selecting break points. For instance, consider a
convex function f(x1)� 5x3

1 (Fig. 5(a)) where a16 x16 a5. Assume that three break points a2, a3, and a4

within a16 x16 a5 are selected. The error of piecewisely linearizing f(x1) is computed as

Table 1

Comparison of Programs 1 and 2

Extra 0±1

variables

Number of extra 0±1

variables

Extra continuous

variables

Number of extra continuous

variables

Program 1 (Conventional

NSP Method)

yi;k Number of all piecewise

segments for all fi (xi)

ti;k Number of all piecewise

segments for all fi(xi)

Program 2 (Proposed

NSP Method)

ui;k Number of concave

piecewise segments only

di;` Number of convex piecewise

segments only

zi;k Number of concave piecewise

segments only
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Error � f �a1� � s�x1 ÿ a1� ÿ f �x1� � 125x1 ÿ 5x3
1:

By taking partial oError/ox1� 0, the maximal error occurs at x1� 2.89 where oError=ox1 �
sÿ �of �x1�=ox1� � 125ÿ 15x2

1 � 0. By doing so, we obtain the ®rst break point a3� 2.89.
Similarly, ®ner break points a2 and a4 can also be generated at maximal errors occur at x1 for

06 x16 2.89 and 2.896 x16 5, respectively, as depicted in Fig. 5(b). Therefore, the second break point is

Fig. 5. (a) A convex function f1(x1). (b) A convex function f1(x1). (c) A nonconvex function f2(x2).
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a2� 1.67 (for 06 x16 2.89) where sa ÿ of �x1�=ox1 � 41:76ÿ 15x2
1 � 0 and the third break point is a4� 3.99

(for 2.896 x16 5) where sb ÿ of �x1�=ox1 � 239ÿ 15x2
1 � 0.

Similarly, for a concave function f(x2)� 5x0:5
2 ÿ x2 (Fig. 5(c)) where a16 x26 a3. Assume we want to

choose a break point a2 within a16 x16 a3. The maximal error of piecewisely linearizing x2 is computed as

Error � f �x2� ÿ �f �a1� � s�x2 ÿ a1�� � 5x0:5
2 ÿ x2 ÿ 1:5x2:

By taking oError=ox2 � 0, the maximal error occurs at x2 where �of �x2�=ox2� ÿ s �
�2:5xÿ0:5

2 ÿ 1� ÿ 1:5 � 0. After calculating, the obtained break point a2� 1.
Owing to that treating continuous variables is more computational e�cient than treating zero±one

variables, we recommend selecting three break points for linearizing a convex function and one break point
for linearizing a concave function at each iteration.

4. Solution algorithm

The solution algorithm of solving Problem P1 is described in the following steps:
Step 1. Select initial break points.
(i) For each function fi(xi) where fi(xi) is convex for the interval xi6 xi6 xi, three break points within this

interval are selected by the method described in the Section 3.
(ii) For each function fi(xi) where fi(xi) is concave for the interval xi6 xi6 xi, one point within this in-

terval is selected by the method described in the Section 3.
Step 2. Formulate piecewise functions. Proposition 1 can be used to approximately linearize each function

fi(xi), expressed as

f̂ i�xi� � fi�ai1� � si1�xi ÿ ai1� �
Ximÿ1

k�2

si;k ÿ si;kÿ1

2
�jxi ÿ aikj � xi ÿ aik�;

where aik are break points selected in Step 1.
Step 3. Linearize the program. Using Proposition 3 linearizes the absolute terms where si;k > si;kÿ1, and

using Proposition 4 linearizes the absolute terms where si;k < si;kÿ1.
Step 4. Solve the program and assess the tolerable error. Solve the linear mixed integer program to obtain

the solution xD � �xD
1 ; x

D
2 ; . . . ; xD

n �. If jfi�xD
i � ÿ f̂ i�xD

i �j6 e for all i, where f̂ i�xi� is the approximate linear
function expressed in Step 2, then terminate the solution process; and otherwise go to Step 5.

Step 5. Add ®ner break points. If ak 6 xD
i 6 ak0 , then add new break points within the interval, reiterate

Step 2.

5. Numerical examples

Example 4. Consider the following separable programming problem with nonconvex objective function, in
which one of the constraints is nonconvex:

minimize w � x3
1 ÿ 4x2

1 � 2x1 � x3
2 ÿ 4x2

2 � 3x2

subject to 3x1 � 2x26 11:75;
2x1 � 5x0:5

2 ÿ x2 P 9;
06 x16 5; 06 x26 4;

where x3
1 ÿ 4x2

1 � 2x1; x3
2 ÿ 4x2

2 � 3x2, and 5x0:5
2 ÿ x2 are depicted in Figs. 2(a), 6(a) and 5(b), respectively.
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Step 1. Select initial break points. From the basis of Section 3, one break point (x2� 1) is selected for the
function 5x0:5

2 ÿ x2 within 06 x26 4 as depicted in Fig. 5(c). For the function x3
2 ÿ 4x2

2 � 3x2, one break
point (x2� 0.32) is selected for the concave portion in which 06 x26 1.5 and three break points (x2� 2.3,
2.923 and 3.48) are selected for the convex portion in which 1.56 x26 4 (Fig. 6(b)).

Step 2. Formulate the piecewise functions. The original problem is expressed piecewisely as

Fig. 6. (a) A nonconvex function f(x2). (b) A approximate piecewise linear function for f(x2).
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minimize w � �right-hand side of expression �3�� � 1:8224 x2

ÿ 3:27

2
�jx2 ÿ 0:32j � x2 ÿ 0:32� � 0:2376

2
�jx2 ÿ 1:5j � x2 ÿ 1:5�

� 3:873

2
�jx2 ÿ 2:3j � x2 ÿ 2:3� � 5:553

2
�jx2 ÿ 2:923j � x2 ÿ 2:923�

� 6:894

2
�jx2 ÿ 3:48j � x2 ÿ 3:48�

subject to 3x1 � 2x26 11:75;

2x1 � 4x2 ÿ 3:3334

2
�jx2 ÿ 1j � x2 ÿ 1�P 9;

06 x16 5; 06 x26 4:

Step 3. Linearize the program. The above problem is converted into following linearly mixed 0-1 pro-
gram:

minimize w � 31:75x1 � 2:5z11 � z12 ÿ 1:25u11 ÿ u12 � 35d11 � 34:5d12

� 32:5d13 � 29d14 � 24d15 � 17:5d16 � 9:5d17 � 15:11x2

� 3:27z21 ÿ 1:046u21 � 16:5576d21 � 16:32d22 � 12:447d23 ÿ 6:894d24 ÿ 172:19
subject to x1 � d11 � d12 � d13 � d14 � d15 � d16 � d17 P 4:5;

x2 � d21 � d22 � d23 � d24 P 3:84;
x1 � 5�u11 ÿ 1�6 z11; x1 � 5�u12 ÿ 1�6 z12; x2 � 4�u21 ÿ 1�6 z21;
3x1 � 2x26 11:75;
2x1 � 0:666x2 ÿ 3:334z22 ÿ 3:334u22 P 5:666;
x2 � 4�u22 ÿ 1�6 z22;
06 x16 5; 06 x26 4:
d1j6 0:5; j � 1; 2; . . . ; 7; d216 1:18; d226 0:8; d236 0:623; d246 0:557;
u11; u12; u21; u22 are 0±1 variables:

Step 4. Solve the program and assess the tolerable error. By running on the LINDO [9], the optimal
solution is x1� 2.38333, x2� 2.3, w�ÿ6.380064 and the error of approximation is 0.129. Assume that the
pre-speci®ed tolerable error should be less than 0.01. Then, go to Step 5.

Step 5. Add ®ner break points. To derive a solution closer to the global optimum and satisfy the pre-
speci®ed approximated error 6 0.01, three break points (2.285, 2.386, 2.48) can be further added for the
function x3

1 ÿ 4x2
1 � 2x1 within 2.186 x16 2.58. In addition, three break points (2.205, 2.307, 2.405) can be

added for the function x3
2 ÿ 4x2

2 � 3x2 within 2.16x26 2.5. Similarly, one break point (x2� 2.296) is added
for the function 5x0:5

2 ÿ x2 within 2.16 x26 2.5.
The problem then becomes

minimize w � ÿ0:90507�x1 ÿ 2:18� � 0:5873

2
�jx1 ÿ 2:285j � x1 ÿ 2:285�

� 0:6145

2
�jx1 ÿ 2:386j � x1 ÿ 2:386j � x1 ÿ 2:386� � 0:6685

2
�jx1 ÿ 2:48j � x1 ÿ 2:48�

ÿ 0:131626�x2 ÿ 2:1� � 0:5404

2
�jx2 ÿ 2:2055j � x2 ÿ 2:2055�

� 0:5817

2
�jx2 ÿ :20369j � x2 ÿ 2:3069� � 0:6203

2
�jx2 ÿ 2:4049j � x2 ÿ 2:4049�

subject to: 3x1 � 2x26 11:75;

2x1 � 0:6868�x2 ÿ 2:1� ÿ 0:0719

2
�jx2 ÿ 2:29564j � x2 ÿ 2:29564�P 9;

2:186 x16 2:58; 2:16 x26 2:5:
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The problem is linearized as follows:

minimize w � 0:965204x1 � 1:870274d11 � 1:282974d12 � 0:668524d13

� 1:42614x2 � 1:7424d21 � 1:202d22 � 0:6203d23 ÿ 5:4092

subject to x1 � d11 � d12 � d13 P 2:48; x2 � d21 � d22 � d23 P 2:4049;

3x1 � 2x26 11:75;

2x1 � 0:6149x2 � 0:0719zÿ 0:16506u P 10:277223;

x2 � 2:5�uÿ 1�6 z; u is an zero±one variable:

2:186 x16 2:58; 2:16 x26 2:5;

d116 0:105; d126 0:101; d136 0:094;

d216 0:10548; d226 0:10139; d236 0:098:

After running on the LINDO [9], the ®ner optimal values are x1� 2.3875, x2� 2.2155, the objective
function's value is ÿ6.5291 and the approximated error� 0.00029 < 0.01. The solution process is termi-
nated since the approximated error is less than the pre-speci®ed tolerable error.

Example 5. (Taken from Klein et al. [6]). The amount of electric power that can be produced from a multi-
unit hydro-electric generating station depends on the amount of water discharged through each unit. A
situation in which the discharge is not properly allocated among the generating units implies that the
potential power output may not be fully achieved. More expensive sources such as nuclear, coal or oil
(which are environmentally less attractive) would have to replace any loss. Thus, an electric utility should
maximize hydro-electric generation which is the cheapest and cleanest source of energy. In addition, the
quantity of electricity generated through each generating unit is a nonconvex function since the e�ciency
characteristics may not be the same for di�erent units [6]. An illustrative example is provided in the
following, which consists of two hydro-electric generating units, as depicted in Fig. 7(a) and (b),
respectively:

maximize f1�x1� � f2�x2�
subject to x16 241; x26 250;

x1 � x2 � Q; x1; x2 P 0;

where Q are varying values of total discharge.
From the basis of Proposition 1, f1(x1) and f2(x2) can expressed as follows:

f1�x1� � 0:23256�x1 ÿ 11� � 0:00872�jx1 ÿ 54j � x1 ÿ 54� ÿ 0:04924�jx1 ÿ 142j � x1 ÿ 142�;
f2�x2� � 0:22727�x2 ÿ 11� � 0:040475�jx1 ÿ 55j � x1 ÿ 55� ÿ 0:041865�jx1 ÿ 201j � x1 ÿ 201�:

Based on Propositions 3 and 4, the problem can be reformulated as follows:

minimize ÿ f1�x1� ÿ f2�x2� � ÿ0:15152x1 � 0:01744z1 ÿ 0:94176u�0:09848d1

ÿ 0:22449x2 � 0:08095z2 ÿ 4:45225u2 � 0:08373d2 ÿ 20:36175

subject to x1 � d1 P 142; d16 88; x1 � 241�u1 ÿ 1�6 z1;

x2 � d2 P 201; d26 146; x2 � 250�u2 ÿ 1�6 z2;

x1 � x2 � Q;
u1; u2 are 0±1 variables; x1; x2 P 0:

288 H.-L. Li, C.-S. Yu / European Journal of Operational Research 117 (1999) 275±292



By letting Q� 450, 400, 350, 300 and 250, the computed optimal discharge allocation (x1, x2)� (200, 250),
(150, 250), (142, 208), (142, 158), and (142, 108) respectively. The obtained solutions are the same as the
ones found in Klein et al. [6].

Example 6 (Modi®ed from Hillier et al. [5]). A farmer raises pigs for market, and he wishes to determine the
quantities of the available types of feed that should be administered to each pig to ful®ll certain nutritional
requirements at a minimum cost. Table 2 provides the number of units of each type of basic nutritional

Fig. 7. (a) A hydro-electric generating function f1(x1). (b) A hydro-electric generating function f2(x2).

Table 2

Required nutritional ingredient

Nutritional ingredient Kilogram of corn Kilogram of tankage Kilogram of alfalfa Minimum daily requirement

Carbohydrates 90 20 40 2000

Protein 30 80 60 1800

Vitamins 10 20 60 1500

Costs f(x1) f(x2) f(x3)
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ingredient contained within a kilogram of each feed type, along with the daily nutritional requirements and
feed cost:

By considering factors such as holding cost, order cost, and quantity discount, cost functions f(x1), f(x2),
and f(x3) naturally become a non-convex shape [1,2,4,12], as depicted in Fig. 8(a)±(c), respectively.

Based on Proposition 1, the cost functions are formulated as follows:

f �x1� � 40x1 � 5�jx1 ÿ 10j � x1 ÿ 10� ÿ 5�jx1 ÿ 12j � x1 ÿ 12�;
f �x2� � 20x2 ÿ 5�jx2 ÿ 10j � x2 ÿ 10� � 5�jx2 ÿ 12j � x2 ÿ 12�;
f �x3� � 30x3 � 10�jx3 ÿ 10j � x3 ÿ 10� ÿ 10�jx3 ÿ 20j � x3 ÿ 20�:

Fig. 8. (a) A cost function f1(x1). (b) A cost function f2(x2). (c) A cost function f3(x3).
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From the basis of Propositions 3 and 4, f(x1), f(x2) and f(x3) can be linearized as follows:

f �x1� � 40x1 � 10z1 ÿ 120u1 � 10d1 � 20;

where x1 � d1 P 10; d16 10; x1 � 17�u1 ÿ 1�6 z1; and u1 is a 0±1 variable;

f �x2� � 20x2 � 10z2 ÿ 100u2 � 10d2 ÿ 20;

where x2 � d2 P 12; d26 2; x2 � 17�u2 ÿ 1�6 z2; and u2 is a 0±1 variable; and

f �x3� � 30x3 � 20z3 ÿ 400u3 � 20d3 � 200;

where x3 � d3 P 10; d36 10; x3 � 25�u3 ÿ 1�6 z3; and u3 is a 0±1 variable.
Therefore, the problem is formulated as follows:

minimize f �x1� � f �x2� � f �x3�
subject to x1 � d1 P 10; d16 10; x1 � 17�u1 ÿ 1�6 z1;

x2 � d2 P 12; d26 2; x2 � 17�u2 ÿ 1�6 z2;

x3 � d3 P 10; d36 10; x3 � 25�u3 ÿ 1�6 z3;

90x1 � 20x2 � 40x3 P 2000; 30x1 � 80x2 � 60x3 P 1800;

10x1 � 20x2 � 60x3 P 1500; x1; x2; x3 P 0;

u1; u2; and u3 are 0±1 variables:

After running on the LINDO [9], the optimal values are x1� 11.04, x2� 12, and x3� 19.16.

6. Concluding remark

This paper treats nonconvex separable programming problems where the objective functions and the
constraints might be nonconvex. Comparing the proposed method with conventional NSP methods reveals
that the former can derive the approximately global optimum of a NSP problem by using less number of
zero±one variables. The quality of derived solution can be improved by adequately adding the break points
with the searching intervals.
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