
A New Architecture for Integration
of CORBA and OODB

Ruey-Kai Sheu, Kai-Chih Liang, Shyan-Ming Yuan, Member, IEEE, and Win-tsung Lo

AbstractÐObject-oriented database system (OODB) supports an object-oriented data model with the functionality of persistency

and transaction semantics. In order to facilitate the use of OODB, the Object Database Management Group (ODMG) defined a

standard for object database management system. On the other hand, the Object Management Group (OMG) defined the

Common Object Request Broker Architecture (CORBA), which is an emerging standard of distributed object technology providing

the interconnection network between distributed objects. For the sake of matching these two object models, taking the advantages

of merging both of them, and building a more sophisticated infrastructure, the integration of CORBA and OODB is currently an

urgent and important issue in distributed object systems. Instead of using Object Database Adapter (ODA) suggested by the

ODMG, in this paper, we provide a novel way of reusing the Object Transaction Service (OTS) and wrapping techniques to

introduce OODB into CORBA automatically. Through our design, CORBA clients or OODB object implementers do not need to

learn any knowledge of each other. In addition, error recovery is also provided to guarantee the consistency of object states. The

whole task for integrating CORBA and OODB is done transparently by our proposed preprocessor, which plays an important role

in solving problems encountered by ORB and OODB vendors easily.

Index TermsÐOMG, CORBA, ODMG, object-oriented database, integration, transaction.

æ

1 INTRODUCTION

1.1 Data Management Concepts

THE need for data management originates from the
complexity of using application data. There are three

elementary features that we have to pay attention to.
They are data definition, data manipulation, and data control.
Data definition means how the data, which will be used
later, looks. Its major concern is the structure of data. In
OODB, data definition means the schema definition of
objects. On the other hand, in CORBA [1], [2], it is the
definition of object interfaces through Interface Definition
Language (IDL). Data manipulation is mainly composed
of operations which have something to do with the
defined data. These operations include data creation,
modification, deletion, and reference. Data control usually
means the mechanism that is actually used to store the
data for later usage. The semantics of objects cannot be
changed no matter what mechanism is used to control the
storage of objects.

We focus on the definition and manipulation of data

objects because tasks of data control have been done well by

OODB storage managers. We must take care of the

mapping of data definition in the two systems and maintain

the semantics of data manipulation like transaction, con-

current accesses, and recovery. CORBA's OTS is the key

component in our architecture to deal with the problems of
data manipulations [3], [4], [5], [6]. While integrating
CORBA and OODB using OTS, it not only retains the
useful OODB transactional functions, but also provides a
transactional management environment for distributed
business applications.

1.2 Motivations

There are three major reasons that motivate the integration
of CORBA and OODB. They are the problems of object
persistency and heterogeneity while using CORBA or
OODB individually, the emerged advantages for the integra-
tion, and the experience of past research [8].

1.2.1 The Problems

With growing Internet and object technology, how to
make distributed objects convenient to use and manage is
the crucial issue for business applications. Persistence
Object Service (POS), proposed by OMG, is used to keep
critical data of corporations stored in permanent storage
[3]. However, there are weaknesses in POS implementa-
tion and integration with other key object services [7]. In
addition, the unspecified semantics of operations and the
unspecified functionality of POM (Persistent Object
Manager) in POS specification mismatch OODB transac-
tion semantics. It is not enough to provide a distributed
object management environment just through POS. No
OODB vendors would rather discard the OODB proprie-
tary transaction functions to match the POS specification
than lose the potentials to beat their competitors. On the
other hand, although the ODMG attempts to propose a
source code portable standard, the most current Object-
Oriented Database Management Systems (ODBMS) on the
market are still vendor-specific. Providing data access to
applications in today's heterogeneous environment is

748 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 1999

. R.-K. Sheu, K.-C. Liang, and S.-M. Yuan are with the Department
of Computer and Information Science, National Chiao-Tung
University, Taiwan, Republic of China.
E-mail: {gis87802, gis85804, smyuan}@cis.nctu.edu.tw.

. W.-t. Lo is with the Department of Computer and Information
Science, Tung Hai University, Taiwan, Republic of China.
E-mail: winston@pine.iecs.fcu.edu.tw.

Manuscript received 15 May 1998; revised 18 Oct. 1998.
For information on obtaining reprints of this article, please send e-mail
to: tkde@computer.org, and reference IEEECS Log Number 109205.

1041-4347/99/$10.00 ß 1999 IEEE

very complex for software vendors as well as corporate
application developers. Therefore, we propose an open
architecture to integrate ODMG-compliant OODB with
CORBA. It is necessary to extend the OODB architecture
to distributed heterogeneous environment in order to
promote the functionality and usability of OODB.

1.2.2 The Advantages

CORBA and OODB can be complementary to each
otherÐCORBA serves as the underlying distributed
infrastructure for OODB and OODB provides persistency
to CORBA. A better model can be constructed by
integrating the two parts. From the viewpoint of
CORBA, there is no good and straightforward metho-
dology to transparently provide object persistency to
meet the requirements of applications. It is an obvious
benefit to make object persistency easy by integrating
CORBA and OODB. On the other hand, for the reason
of the low-level store model proposed by POS, the
CORBA client programmers have to take care of the
dynamic state and persistent state of server objects. The
single-level store model proposed by the integration
architecture would alleviate the penalty of the program-
mer. In the perspective of OODB, CORBA helps OODB
across the boundaries of different computer machines,
operating systems, and programming languages and it
indeed promotes OODB to distributed heterogeneous

environment. In addition to distributed deployment of

OODB, CORBA allows OODB client objects to be

lightweight and communicate with each other in a

low-bandwidth network [8].

1.2.3 The Experience

Although problems of using CORBA or OODB and the

advantages for the combination of CORBA and OODB

motivate the integration, the main idea for integrating

CORBA and OODB comes from the experience of the

ORION project [9]. This project is in the Advanced

Computer Technology (ACT) program at Microelectronics

and Computer Technology Corporation (MCC) in Austin,

Texas. The major functional components of the ORION

system, as shown in Fig. 1, consists of Message Handler

Subsystem, Object Subsystem, Transaction Subsystem, and

Storage Subsystem.
The message handler receives all messages sent to the

ORION system. The object subsystem provides high-level

data management functions. The transaction management

subsystem coordinates concurrent object accesses and

provides recovery capabilities. The storage subsystem

manages persistent storage of objects and controls the

flow of objects between the secondary storage device

and main memory buffers. Likewise, from the experience

of ORION system, we construct a three-tier CORBA/

OODB integration architecture as shown in Fig. 2. We

can use the Object Request Broker (ORB) to act as the

message handler to transfer messages between distrib-

uted objects. We use the OTS to provide transaction

semantic. Finally, in the experience of ORION system

model, the OODB is treated as a storage subsystem to

support object persistency intuitively. Besides the suc-

cessful experience of ORION, the standard interfaces of

CORBA and OODB will facilitate the integration archi-

tecture. All the requirements of distributed object

management will be satisfied in the CORBA/OODB

integration architecture.

SHEU ET AL.: A NEW ARCHITECTURE FOR INTEGRATION OF CORBA AND OODB 749

Fig. 1. Functional components of the ORION system.

Fig. 2. The three-tier CORBA/OODB integration architecture.

1.3 The Goal

As the demand for information continues to grow, so do the
software vendors make their applications more open and
accessible. An open architecture is indeed needed for future
systems. The goal of this paper is to introduce a general and
easy-to-implement model that allows software vendors to
make the time-to-market of their products shorter with
lower development cost.

The ODA model suggested by ODMG is now im-
plemented by some vendors on the market [10], but those
products must be ORB vendor proprietary with the
specific object activation mechanisms as well as transac-
tional operations [17]. We are dedicated to providing an
open and pluggable architecture to adopt any ODMG 2.0
compliant OODB and a spontaneous code generation
model to reduce the burdens for the integration of
CORBA and OODB. The proposed architecture follows
the CORBA and ODMG standards and can co-exist with
the two stand-alone systems.

2 BACKGROUNDS

Some fundamentals must be introduced before describing
the CORBA/OODB integration architecture. These back-
grounds include the CORBA architecture, Object Transac-
tion Service, and the ODMG standard. We will briefly
describe them in the following subsections.

2.1 The CORBA Architecture

Providing data access to business applications in hetero-
geneous environments is very difficult. Those applications
might want to access data through different program-
ming languages, diverse operating systems, and distinct
computing machines. Environment heterogeneity leads to

a lot of problems, which motivated the birth of CORBA
proposed by the OMG.

Fig. 3 shows the CORBA Architecture [1], [2]. The
IDL Stubs/Skeletons define how clients invoke corre-
sponding services and perform marshal/unmarshal
which encode/decode the operations and parameters
into flattened message formats. The Dynamic Invocation
Interface lets clients discover the method to be invoked
at run time. The run-time meta information of objects is
stored in the Interface Repository. The Object Adapter
provides the run-time environment for instantiating
server objects, passing requests to them, assigning them
object references, and registering them to the Implemen-
tation Repository. CORBA specifies that each ORB must
support a standard adapter called the Basic Object
Adapter (BOA) [3].

2.2 Object Transaction Service

OTS is one of the Common Object Services of CORBA. The
concepts of transactions are important, especially when we
need to develop reliable applications. Here, we use OTS to
help programs perform the administrative functions by
accessing shared objects in OODB. The OTS supports the
concept of a transaction, which is a single atomic unit of
work, and processes the ACID properties, which character-
ize a transaction in a number of ways.

Fig. 4 shows the CORBA OTS functional diagram [6]. The
detail interactions between transaction originator, recover-
able objects, and other components of OTS are described as
follows, step by step:

1. The transaction originator issues a request to the
Factory to begin a transaction and a unique Control
object is returned.

750 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 1999

Fig. 3. The CORBA architecture.

2. Through the Control object, transaction originator
can get a Coordinator object to coordinate objects,
which join to the transaction.

3. The transaction originator invokes operations on
the recoverable objects with Coordinator as an
input parameter. Here, we assume that the
transaction context is propagated explicitly by
passing objects defined in OTS as explicit
parameters.

4. Recoverable objects use register_resource method
invocations to register themselves as Resource objects
to the Coordinator object. A RecoveryCoordinator object
will be returned after the registration.

5. The transaction originator gets a Terminator object
through the Coordinator object and prepares to
terminate the transaction.

6. The transaction originator uses the Terminator
object to complete the transaction. The Coordina-
tor coordinates the termination process among
Resource objects using the two-phase commit
protocol.

2.3 The ODMG

ODMG is an organization dedicated to promoting open
OODB architectures. The ODMG defines three essential
issues to be standardized, which are Object Definition
Language (ODL), Object Manipulation Language (OML),
and Object Query Language (OQL). ODL is the standard
declarative language, which is used to define the
interfaces of objects in OODB. OML is used to
manipulate OODB objects. For instance, one would like
to create a new object, delete another object, and the
like. OQL is the query interface used to browse the
objects in OODB with special criteria. Through these
unified standards, all the OODB objects could commu-
nicate with each other. In our design, we will use the
interfaces defined in ODMG Standard: ODMG 2.0 allows
CORBA applications to incorporate with proprietary
object-oriented databases.

Fig. 5 shows the ODMG architecture. ODMG compliant
OODB objects are defined through ODL. The ODL

preprocessor analyzes the ODL object definition and

generates the registry program to register the schema to

OODB. In addition, the preprocessor outputs the neces-

sary information for object persistency as well as the

related header files for programming language binding.

3 CORBA/OODB INTEGRATION MODELS

For the reason of distributed environment characteristics

such as shared database, shared business logic or message

handling system, and the individual front-ends, the legacy

system models have progressed to a new paradigm. The

integration of CORBA and OODB should match those

characteristics to satisfy the requirements of the present

distributed applications. We will illustrate the integration

through the viewpoint of models, which meet the require-

ments of user applications.

SHEU ET AL.: A NEW ARCHITECTURE FOR INTEGRATION OF CORBA AND OODB 751

Fig. 4. Functional diagram of CORBA OTS.

Fig. 5. The ODMG architecture.

3.1 The Three-Tier Model

The key characteristic of a three-tier model is the separation
of distributed computing environment into layers of
presentation, functionality, and data component [11]. This is
needed for building flexible, extensible architecture with a
manageable environment and facilitating rapid develop-
ment of robust applications. Experiences over the past
several years illustrate that CORBA is well-suited to best-
effort, client-server applications running over networks
[12]. In our design of CORBA/OODB integration, we
propose a three-tier model that separates CORBA clients,
OODB, and other CORBA objects into three different layers,
as shown in Fig. 6.

3.2 Data Model

A data model is a logical organization of the real-world
objects, constraints on them, and relationships among
objects. Object-oriented applications use existing object-
oriented programming languages like C++ and Smalltalk to
express their semantics. Most current object-oriented
database systems also support OO programming language
binding. However, CORBA does not support mechanisms
to bind OODB directly. In the integration of CORBA and
OODB, we face the problems of impedance mismatch
emerging from different data models of CORBA and OODB
[13]. The main problem for integrating these two data
models is that any data retrieved from OODB server to
CORBA servers have to be translated from their database
representation to the in-memory CORBA programming
language specific representation. The translation between
these two data models includes the object type, operation,
and relationship mapping.

3.2.1 Type Mapping

Here, we use C++ programming language as the target
language to show the type mapping. Table 1 shows the
mapping of fixed-length primitive types, whose length is
known at compile time, between CORBA and OODB. There
are also other types defined by ODMG such as String, Date,
Time, TimeStamp, Collection, Set, Bag, List, and Varray. In
our design, we define the IDL object interfaces corresponding

to those OODB object types, respectively, and implement the
codes for them through wrapper techniques. We show some
nonprimitive type mapping in Table 2.

The last kind of type mapping is the mapping of user-
defined types, which is the classical key issue of object
persistency. In OODB object model, the construction time
of a user-defined type attribute depends on the char-
acteristics of programming languages. For example, while
constructing an object, the object constructors do not
construct the nonprimitive type as well as user-defined
type attributes in Java, but they do in C++. In the
integration of CORBA and OODB, the CORBA devel-
opers leak just the object interfaces to clients instead of
exposing the database schema, that is, the clients do not
have the knowledge of the memory layout of a persistent
CORBA object. We map user-defined type attributes into
get and set methods. While constructing a CORBA object,
the embedded user-defined type attributes (interobject
reference) will be constructed recursively in their con-
structors. But, the attributes of the user-defined type
object will be initialized only when the get method is
called. In Table 3, we show the constructor and get
method for the object with embedded user-defined type
attribute in it. While constructing the CORBA_B object,
the CORBA_A object will be constructed recursively in
the CORBA_B object constructor. Only when the get
method is called will CORBA_A object states be
initialized from the associated OODB object by invoking
the fetch method.

3.2.2 Operation Mapping

All operations on OODB objects can be divided into two
parts, relationship related and nonrelationship related. For
nonrelationship operations, the CORBA server objects are
implemented as an agent for OODB object operations. On
the other hand, the relationship related operations are
implemented as methods of CORBA objects. ODMG
defines three kinds of relationships between objects. They
are 1-1, 1-m, and m-m relationship, which denote the
cardinality of the target object in one relationship. We use
three methods for the relationship mapping. They are
Get_<related object>_relation, Set_<related object>_relation,
and Clear_<related object> operations. The major difference
between those methods in 1-1 and 1-m or m-m relation-
ships is that the <related object> and return values of
methods should be nonfixed length types such as Collec-
tion, Set, List, and Varray. Whether two CORBA objects
have relationship or not depends on the relationship of
their associated OODB objects.

752 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 1999

Fig. 6. The three-tier CORBA/OODB integration model.

TABLE 1
Primitive Type Mapping for CORBA and OODB

SHEU ET AL.: A NEW ARCHITECTURE FOR INTEGRATION OF CORBA AND OODB 753

TABLE 2
Nonprimitive Types of Mapping for CORBA and OODB

TABLE 3
User-Defined Type Object Construction

3.3 Transaction Model

Transaction management is a critical issue in OODB
system as well as any distributed system. It defines the
scope of persistent operations. Only changes within the
transaction scope can be made persistent. In the current
ODMG Object Model, transient objects are not subject to
transaction semantics. This means that the states of
modified transient object need not be restored when a
transaction makes the abort decision. In the CORBA/
OODB integration architecture, data objects are collection
of persistent objects, which are defined through the ODMG
ODL and provided by the RO Server, which is a key
component in the integration architecture. Transient
CORBA objects can co-exist with the integrated CORBA/
OODB persistent objects in business applications.

The ODMG standard does not require that OODB
vendors support distributed transactions that span multi-
ple processes and/or span more than one database.
However, the OMG OTS allows transactions to span
multiple threads, multiple address spaces, or more than
one logic database, which may be implemented as one
or more physical databases. To integrate the two
transaction models in OODB and OTS, there should be
a mechanism to manage the relationship between the
CORBA and OODB transactions. In our design, we use
the RO server to begin OODB transactions as logic
transactions for CORBA. The collection of logic transac-
tions managed by the OTS coordinator forms a CORBA
transaction. Through the design of RO server, the
distributed transactions are supported in the model of
CORBA/OODB integration. The management of transac-
tions is shown in Fig. 7. There could be multiple
resource objects in a CORBA transaction spanned in
several threads to represent several persistent objects in
multiple databases. The RO server starts corresponding
processes to serve the operations for the persistent

objects and control the transaction semantics through
the help of OODB transaction manager. In addition,
concurrent accesses to CORBA objects are denied by the
RO Factory in the RO server through the recognition of
the unique OODB object handle, which is managed by
OODB. The well-controlled transaction model in our
integration framework not only guarantees the integrity
of business objects but also solves the unspecified
concurrent access semantics in POS.

In the transformation of transactions, whether or not
OODB vendors support distributed transactions, the dis-
tributed transactions are supported in the CORBA/OODB
integration architecture. It not only keeps the transaction
semantics for CORBA applications but also promotes the
functionality for OODB. It is the major advantage to
integrating CORBA and OODB through OTS than POS
and ODA, which just treats OODB as a data store and
wastes the original functionality supported by OODBs.

3.4 Fault Model

We assume the optimistic fault model that the failures
seldom occur. When a failure occurs, we must keep the
consistency of the database. All the operations on objects
must be REDO or UNDO, depending on the time at which
the failure occurs. In OTS transaction scenario, the recovery
point is the time while OTS issues the REQUEST-TO-
PREPARE operation to all its participants [6]. Before the
recovery point, all operations should be UNDO, i.e., all
operations are invalid in the transaction. On the contrary,
after the recovery point, all the operations on the objects
must be persistent and the values of object states are
invariant. There are two possible failures in our design:

. RO Server Crash: This failure could occur due to the
media failure and it will affect all the CORBA clients.
We will REDO or UNDO all the operations on all
objects when the server is restarted.

754 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 1999

Fig. 7. The transaction model for CORBA/OODB integration.

. Object Crash: The failure affects the object itself. It
will automatically recover the states of persistent
objects while any subsequent bind operations to the
RO Factory of the same type are issued by any
CORBA client.

In the two-phase commit protocol, the participants of
a transaction should be responsible for the recovery
after failures, which might occur in the uncertainty
period [14]. When failures occur, all we are concerned
about is how to recover from modified object states to
the consistency states. If failures occur before the
REQUEST-TO-PREPARE operation issued by OTS Co-
ordinator, the transaction will be aborted and undo all
the operations. While the COMMIT operation is issued,
the changes will be persistent and the integrity of states
will be assumed after the recovery routines. If failures
occur for the reason of object crash or RO server crash,
we use an automatic mechanism to recover the
consistent states by asking the OTS Coordinator what
the decision is. In the recovery routine of our design,
we keep the necessary information in the Recovery Object
to prevent inconsistency caused by failures. The neces-
sary information includes the RecoveryCoordinator, origi-
nal state, and new state of the modified object. When
recovery routine starts, all modified objects will be
consistent through the help of RecoveryCoordinator.

4 THE INTEGRATED ARCHITECTURE

4.1 System Overview

Fig. 8 illustrates the functional components in the CORBA/
OODB integration architecture. The components consist of
CORBA Client, OTS, RO Servers, and the pluggable ODMG
compliant OODB. Interoperations between these compo-
nents are based on the standard CORBA and ODMG
interfaces. To provide CORBA clients with a well-suited
transaction environment, it is vital to support a transparent
mapping of the data models and transaction scopes
between CORBA and OODB. For the data model mapping,
we use wrapping techniques to combine the CORBA
transactional object with OODB object into the RO server

object. As for the transaction semantics, we use RO Server to
serve as the dispatcher for the distributed CORBA transac-
tion, which spans multiple OODB transactions.

4.2 System Architecture

In Fig. 9, we illustrate the system architecture of our design.
This architecture can be treated as the integration of
CORBA programming model and OODB programming
model. For an OODB developer, in a general scenario, he/
she must define the object schema by ODL. After the
preprocessor processes the ODL definition, the meta
information will be registered to the data store. The
preprocessor will also generate the necessary header files
and glue information. All that a developer needs is to
implement the object in OODB way without caring about
the knowledge of CORBA. For a CORBA client application
programmer, object interface is the only thing he/she need
to know, i.e., all he/she needs to care about is the IDL object
definition which is generated from the ODL defined by the
OODB developer.

4.2.1 Preprocessor

The preprocessor in Fig. 9 is a key component in the
CORBA/OODB integration architecture to support the
spontaneous code generation model. It deals with all the
tasks for the integration and generates the necessary codes
automatically. The generated components are Registry
Program, Header and glue files, CORBA IDL, Partial RO
object implementation, CORBA server implementation, and
Recovery Object.

To promote the portability of generated codes, it is
inevitable that the preprocessor should know the difference
between specific operations played in these two stand-alone
systems. For example, different OODB systems will not
have the same database system entry point. ORB vendors
will have their own methods to bind server objects, too.
There are problems encountered, usually by ORB and
OODB vendors in integration processes. Now, it is no

SHEU ET AL.: A NEW ARCHITECTURE FOR INTEGRATION OF CORBA AND OODB 755

Fig. 8. The functional components of CORBA/OODB integration.

Fig. 9. The CORBA/OODB integration architecture.

longer the problem of OODB or ORB vendors. It is the
responsibility of preprocessor tool implementors to be
conscious of the differences of codes between vendor
proprietary functionalities. That is, this new approach
solves problems encountered by ORB and OODB vendors
through a third partyÐthe proposed preprocessor. Through
preprocessor tools, it not only reduces the time needed in
the integration processes but also helps OODB and ORB
vendors to plug their products into this architecture easily
and quickly.

4.2.2 RO Component

The RO component in the integration architecture can be
treated as a black box to integrate CORBA and OODB
smoothly. There are several entities in the black box,
including the RO server process, RO Factories, and RO
objects. The RO server process provides RO Factories to the
CORBA clients. RO objects are created by the RO Factories
within the RO Server for server object implementation and
support the binding with the OODB in the integration
architecture. The ªRº of RO means that the component
owns the capabilities, which include inheritance from OTS
Resource interface, to register itself to CORBA transaction
and recovery ability to maintain the consistency of a
database. The RO object deals with all the tasks to tie
CORBA and OODB tightly with the functionality of
persistency and recoverability. The major tasks of the RO
component are: binding OODB objects, implementing OTS
resource interface, transactional operations, recovery function-
ality, and mapping transaction scopes.We detail these tasks in
the following.

. Binding OODB objects: The RO object plays two
roles in the integration architecture: CORBA server
object and OODB client object. Through the object
implementation framework, the CORBA server
object can treat the implementation of an OODB
object as the servant of its own [2]. The key point to
bind the CORBA object and OODB object is the
mapping between OODB object handle and CORBA
object reference. RO Factory must provide a
mechanism to associate them. In general, RO objects

keep some private information, which includes the
object reference of Recovery_Coordinator and object
handles of clean and dirty OODB objects. RO
objects also need additional private methods to
fetch OODB object states to CORBA object. Those
private methods are get_handle(), set_reference(), and
fetch(). The get_handle() returns the OODB object
handle to CORBA object. The set_reference() method
sets the OODB object handles to the CORBA object.
The fetch() method associates the CORBA object
states with the OODB object state. This private
information and methods are generated automati-
cally by the preprocessor. Table 4 shows a null ODL
and null IDL interface definition and Table 5 is the
definition of the corresponding object implementa-
tion in C++.

. Implementation of OTS Resource interface: To parti-
cipate in the 2PC of OTS, the RO object must have the
implementation of Resource interface which includes
the commit, prepare, rollback, commit_one_phase, and
forget methods. The object of Resource interface is
registered to an OTS transaction and used in the
recovery phase to ask the decision of the transaction or
to replay the two phase commit protocol. In our
proposed transaction model, the RO Factory delays
the commit votes to the Coordinator to enhance the
performance and to guarantee the transaction seman-
tics. This is the critical point that the ODA misses.
Matching the transaction semantics through the
standard transaction scenario will integrate CORBA
and OODB seamlessly. It makes the RO object not only
a persistent object but also a manageable object. On
the other hand, reusing OTS to integrate CORBA and
OODB indeed provides the functional logic and meets
the requirements of business applications, which is
missing when POS are used.

. Transactional operations: There are three major
transactional operations that should be concerned
in the RO server: Create, Query, and Delete for
manipulating objects. The RO Factory, which
manages specific-type objects, provides these op-
erations to CORBA clients. We implement the
Query method as an agent to OODB through the
ODMG OQL. The Delete method checks if the
reference count is zero as possible and then
determines whether to kill an object or not. Object
reference will be invalid after the Delete method
makes the OK decision. When creating an object,
the RO Factory first creates an OODB object and a
CORBA object, and then calls the set_reference and
fetch methods to bind them together. Finally, it
returns an RO object to clients. In Table 6, we
present some pseudocodes for the Create transac-
tional methods.

. Recovery Functionality: Table 7 shows the ODL
schema of the Recovery Object. Each RO object
keeps the information of RecoveryCoordinator,
the dirty object, and clean object to ask OTS
what the transaction decision is to maintain the
integrity of itself. Every time an RO Factory is

756 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 1999

TABLE 4
Null Interface Definition

TABLE 5
Private Information for Object Implementation

bound, it checks if any Recovery Object with the
same type exists in the database. If yes, it means
that some failures have occurred and there must
be REDO or UNDO in the transaction. In the
optimistic fault model, it seldom happens in
normal condition.

. Mapping transaction scopes: The RO Factory
consists of several objects with the same data type
and it coordinates all the objects in one of the
spanned OODB transactions of an OTS transaction.
The RO Factory dominates the relationship be-
tween OTS and RO objects in the integration
architecture and keeps the integrity of transaction
semantics between the two transaction contexts.
The mapping of transaction contexts can be
divided into the following three types in Fig. 10,
where Tx means transaction(s).

The key point for managing the transaction semantics

is the well-controlled relationships among the client

threads, server threads, and the OTS Coordinators. One

Coordinator object manages a distributed transaction

context, which may span many OODB transaction

contexts. RO Factories manage concurrent accesses to

OODB objects through the recognition of OODB object

handles. Object consistency is also guaranteed through

the cooperation of RO Factories and OTS, which supports

the atomicity and isolation properties. The OODB

provides the durability property. That is, through the

cooperation among RO Factories, OTS, and OODB, the

ACID properties are satisfied to guarantee the integrity of

transaction semantics and to integrate CORBA and

OODB seamlessly.

4.3 The System Development Scenario

We insist that the integration of CORBA and OODB is
spontaneous. That is, the developers in different domain
do not need to understand any knowledge about the
other part. Fig. 11 shows the system develop scenario,
which is divided into three gray partsÐthe OODB
developer, the CORBA client AP, and the spontaneous
code generation partÐfor the CORBA/OODB integration
architecture. From the viewpoint of an OODB developer,
as shown in Part A of Fig. 11, there are only two tasks
that they have to do. The OODB developers should define
the object schema through ODL and then implement the
OODB object in OODB programming style. With the
OODB object implementation, the ODL preprocessor will
bring the OODB object to CORBA environment auto-
matically. In the beginning, the preprocessor takes the
ODL as inputs to generate the corresponding IDL object
definition, registry program and the RO implementations,
which are based on the class definition and server
skeleton generated by IDL compiler and rely on the
OODB header files as well as the glue information. Part B
of Fig. 11 is the main part for the spontaneous code-
generation model. It not only separates the developers
into two parts but also simplifies the application devel-
opment for the CORBA/OODB integration system. In the
perspective of CORBA client AP developers, as shown in
Part C of Fig. 11, the IDL compiler takes the IDL object
definition as inputs and generates the necessary informa-
tion for the client application development. The clients
use the class definition to develop applications through
the help of client stub without the knowledge of the
OODB objects.

4.4 Application Scenario

Fig. 12 shows the general scenario for client applications in
the CORBA and OODB integration architecture. When a
CORBA client binds an RO Factory, the RO server forks a
process to deal with the transactional operations on objects
of that type. After getting the RO Factory object reference,
the client can use Create or Query operations to construct an
RO server object to deal with further requests, which
include the methods defined in IDL and manipulations on
relationships between objects. After constructing an RO
server object, which consists of the body of the Transac-
tional Object and Resource object for OTS transaction style,

SHEU ET AL.: A NEW ARCHITECTURE FOR INTEGRATION OF CORBA AND OODB 757

TABLE 6
Transactional Operations

TABLE 7
The Schema of the Recovery Object in ODL

the RO Factory registers the RO server object to OTS. The

Resource object body is used to join the OTS with two-phase

commit protocol and used in the recovery phase. The TO,

which consists of the OODB data object and the interfaces

defined in IDL, receives the transactional operations from

client side and updates the OODB object states through

OODB language binding.
Separating the server objects into processes by types

simplifies the tasks for object management and speeds up

the recovery routines. Through the RO Factories in different

processes, as the mapping of transaction contexts men-

tioned in the previous section, the CORBA transaction

context can span several OODB transactions controlled by

RO Factories and the OTS coordinator. The concurrent

access of the OODB objects between CORBA transaction

contexts is controlled according to the OTS isolation

property. And, the RO Factory controls the concurrent

access to the CORBA in-memory object.

758 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 1999

Fig. 10: (a) Single thread joins single Tx; (b) multiple threads join single Tx; (c) multiple threads join multiple Tx.

5 DISCUSSION

Several issues must be handled with care while integrat-
ing CORBA and OODB. These important issues include
the object reference representation, object activation,
object deactivation, transaction management, and system
performance. In our design, we use the RO Factory and
the wrapping techniques to support the activation and

deactivation of the RO objects. As for the transaction

management, we use the OTS to serve as the transaction

manager to support distributed transaction. There are

other approaches [15] to integrate CORBA and OODB, as

well as several integration tools on the market. Notably,

the ObjectStore, Versant, and Objectivity/DB are inte-

grated with OODB via adapters, while O2 and Persistence

SHEU ET AL.: A NEW ARCHITECTURE FOR INTEGRATION OF CORBA AND OODB 759

Fig. 11. The system development scenario.

Fig. 12. The application scenario.

choose the front-end (wrapper) objects generating ap-
proach [16], [17], [18]. Both the techniques concern the
object reference representation, object activation, object
deactivation, and transaction management for the vendor-
specific OODB in their specific manners. In this section,
we will discuss the issues for integrating CORBA and
OODB by comparing the two techniques with our model.

5.1 Critical Issues

5.1.1 Object Reference Representation Issue

The difference between CORBA references to transient and
persistent objects is that the persistent object contains the
information to identify the corresponding OODB object. In
the ODA approach, an adapter is responsible for the
generation of object references. However, the programmer
should take care of the construction of the wrapped object
references while using the front-end tools on the market. In
our model, take the Orbix BOA for example, the CORBA
object references are generated through the BOA, which is
supported by CORBA standard. The relationship between
the CORBA object reference and OODB object handle can
be kept in an association table in the RO server process.
Formally, the wrapped object can be treated in two
abstraction levelsÐOODB abstraction level (the persistent
part) and CORBA abstraction level (the nonpersistent part).
For the CORBA abstraction level, the nonpersistent part is
the same as general CORBA objects without persistent
states. For the OODB abstraction level, the persistent part
of the CORBA object is registered to the OODB by the
preprocessor. That is, when clients get the CORBA object
reference, it is bound with the proper OODB object handle
and they can manipulate the object with other COSS
services as other normal CORBA objects do. Most
importantly, all the necessary codes for the association
table are generated automatically by the ODL preprocessor.
No vendor specific libraries need to be added to the
adapter and the programmers do not need to write any
extra codes at all.

5.1.2 Object Activation and Deactivation Issues

The object activation and deactivation issues are trivial for
the adapter technique because it controls the generation of
the object reference. On the contrary, when wrapping
technique is used, the programmer must take the respon-
sibility for activating the OODB object through program-
ming language binding and controlling the relationship
between the CORBA wrapper object and the activated
OODB object. In the case of object deactivation, the
programmer should control the deactivation of OODB
objects, as well as wrapper objects, through the manage-
ment of reference count. In our model, the RO Factory
controls the relationship between the CORBA abstraction
level as well as the OODB abstraction level in the wrapper
object. The RO Factory manages the object reference counts
to control the object lifetime. It activates the wrapper object
while clients call Create or Query method and deactivates
the object when Delete method is called. To alleviate the
burden of the programmer, the ODL preprocessor
generates the necessary codes for the responsibility of
taking care of the reference count of the objects.

5.1.3 Transaction Management Issue

No matter which technique on the market is used to

integrate CORBA and OODB, the model for transaction

management is vendor specific. For example, the adapter

uses per operation, per transaction, or the phased mechan-

ism to model the transaction semantics [17]. The phased

mechanism violates the CORBA principles of separating

client from server's memory as well as making clients

aware of persistence of the server-side object. The wrapping

techniques for the existing tools leave the transaction

management tasks for the programmer. It provides much

more space for maneuvering, but also increases the burden

of the programmers. In our CORBA/OODB integration

architecture, we reuse the OTS to manage the transactions

for applications [6]. The OTS not only provides the

management of distributed transactions but also promotes

the capability and usability for the restricted OODB

transaction model. From the client's point of view, the

reuse of OTS provides the standard CORBA transaction

model. In addition, ACID properties, the recovery cap-

ability, and the single-level store model are transparently

supported to their business applications.

5.2 Predominance of the CORBA/OODB Integration
Architecture

There are several advantages to using the architecture

proposed in this paper to build CORBA/OODB integration

applications. These advantages include:

. The pluggable open architecture. There are popular
CORBA/OODB integration tools on the market
like the Orbix+Versant Object Adapter and Orbix+
ObjectStore Object Adapter. All the products have
the same characteristic that they develop an Object
Adapter for each vendor-specific OODB. When a
new OODB is introduced, the developers must re-
build an Object Adapter for it. On the contrary, we
provide standard interfaces for each ODMG
compatible OODB to plug into easily. If there are
M ORB vendors and N OODB vendors, there will
be M �N adaptors and it will take almost M �N
times to build those adaptors. Through the
integrated architecture, we just need to change a
few of codes for the preprocessor implementation
to adapt all vendors and their proprietary func-
tions. It reuses the codes for each ORB and OODB
integration through the standard interfaces and
indeed reduces the development cost and shortens
the time-to-market for their products. The inte-
grated architecture is indeed much more open than
the ODA approach.

. The standard CORBA transaction scenario. We
reuse the OTS to help CORBA clients manage their
business applications in transaction style. Instead of
the usage of nonstandard phases for the adapter
technique, which changes the original CORBA
transaction programming model and brings extra
burdens to CORBA client applications, the stan-
dard transaction scenario which reuses OTS will be
kept no matter what kind of OODB are integrated.

760 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 1999

. Multidatabase supported. A CORBA client process
can manipulate many objects in various OODB
simultaneously without knowledge of any vendor-
specific programming model, especially the trans-
action model. The ODA and wrapper techniques
are designed for a specific OODB, which is not
enough for the multidatabase architecture.
Through the reuse of OTS, the distributed
transactions are well controlled. In addition,
through the mapping of transactions automatically
managed by each RO Factory, it will help to span
the CORBA transactions into multiple database
transactions.

. Solving POS problems. POS treats OODBs as data
stores and defines interfaces for general-purpose
data stores despite data management semantics so
the interfaces will not match the OODB interfaces
smoothly. If someone uses ODMG protocol to
integrate CORBA and OODB using POS, he/she
will find that there is no standard way to decide the
transaction scopes. There is no way to guarantee the
integrity of concurrent data access without the help
of other components. It is not enough to integrate
CORBA and OODB by POS. Instead of POS, the
integrated architecture uses standard interfaces to
integrate CORBA and OODB seamlessly and reuses
OTS to match the OODB transaction scopes. It also
defines three relationship methods to support
relationship to CORBA objects, which is an impor-
tant issue in business application and is not defined
in POS. Especially through the user-defined type
mapping, it provides the ªCompound Persistent
Object Service,º which is lacking in POS for CORBA
[7]. The proposed architecture provides not only the
persistent data store for CORBA objects, it provides
object management semantics for ORB and OODB
vendors. It goes without saying that the integrated
architecture solves the problems of unspecified

semantics of operations and supports the manage-
ment functionality to persistent objects, which is
weakly defined in POS.

. Integrate with other CORBA services. As we
mentioned above, the wrapper object could be
treated as two abstraction levels, which are the
CORBA abstraction level and the OODB abstraction
level. We use the RO_Factory to manage transaction
and concurrent access semantics for CORBA abstrac-
tion level through the help of OTS and use OODB to
serve as storage manager to provide the persistency
to CORBA objects in the OODB abstraction level.
Likewise, we can reuse other services to manage
other semantics for the wrapper object in the
CORBA abstraction level easily. For example, we
can reuse the Object Security Service to provide
these CORBA objects different levels of security.

5.3 System Performance

Amirbekyan and Zielinski's paper [18] shows that the
performance of handwritten wrapper objects is as good as
adapter ones. Table 8 shows the times of each method
invocation using wrapper and adapter techniques. Their
experiments were performed on a Sun SPARC station 514
running Solaris 2.5, ObjectStore4, Orbix 2.1c ST, and OOSA
201. Times of method invocation were measured from the
client side for pure ORB, pure OODB, and wrapper objects.
In our architecture, preprocessor wrapping mechanisms,
OODB and OTS will dominate the execution time of user
applications. Table 9 shows the performance of our
proposed architecture. Our experiments are performed on
Pentium II 400, Windows NT workstation 4.0, Orbix 2.02,
VC++ 5.0, and WOO-DB 2.0 Beta [21]. We do not measure
the execution time for delete operation because it is nonsense
to delete transient objects in a transaction context. And, it is
another of COSS's issues, such as Naming Service, to
provide a large number of CORBA objects to be queried, so
we do not measure the query operation execution here also.

SHEU ET AL.: A NEW ARCHITECTURE FOR INTEGRATION OF CORBA AND OODB 761

TABLE 8
Average Times of Method Invocations Using Wrapping and Adapter Techniques (in Milliseconds) [18]

TABLE 9
Average Times of Method Invocations in Our Proposed Architecture (in Milliseconds)

For the sake of different test environments, the measured
execution time does not mean the precise overhead of

integration techniques. The accurate and meaningful over-
head for integration systems should be measured relative to

pure systems. In this paper, the overhead of wrapper
objects is measured by comparing the operation execution

time with pure CORBA and OODB systems. The overhead
is represented as ratio, which is shown in Table 10.

In the current version of our design, each invocation

on objects is treated as an update operation, so there are
the same execution times for get and set operations. The

differences between create and other operations are that
we do not need to consider the concurrent access and

recovery control for create operation, but we do for other
operations. From Table 10, it is obvious that the efficiency

of create operation for nonoptimized preprocessor wrap-
per is almost the same as the optimized handwritten

wrapper one. While invocation get/set operation on
objects, we have to create Recovery Objects for them, so

we have a little higher ratio of overheads than hand-
written wrapper ones. It is usually a trade-off between

providing concurrent accesses and recovery capabilities to
each update operation or just arguing the operation

execution time. In our design, each operation execution
time includes the operation itself, the OTS 2PC, con-

current accesses control, and recovery procedures. It is
reasonable that the nonoptimized preprocessor generated

codes take more time than the specific, handwritten
optimized wrapper ones. According to the results of our

experiments, it is feasible to integrate these CORBA and
OODB through this new proposed-automatic model.

6 CONCLUSION

CORBA is a software bus, which provides a middle layer
for the interoperations between distributed object-oriented
components. Through the standard interfaces, it is easy to

plug new application components into the CORBA
environment. In this paper, we propose an integrated

architecture to plug OODB into CORBA. To integrate
CORBA and OODB, the first task to deal with is to map the

ODL to the standard IDL interfaces. We use a preprocessor
to solve the mapping problems. In addition, to reduce the

development cost and shorten the time to market, we use
the wrapping technique to reuse the existing legacy codes.

For regularity of the transactional programming models,

the preprocessor can generate all the necessary codes for
the integration.

In this paper, we propose a new architecture to integrate
CORBA and OODB. We consider the mapping of data
types, the management of transaction semantics, concurrent
object access, and functionality of recovery while failures
occur, especially the design of automatically code genera-
tion model. The most important feature of our design is that
the integrated OODB is ODMG compatible. The usage of
ODMG standard interfaces makes vendor specific ODMG
compliant OODB pluggable. In an open system, it is
significant to have standard interfaces to reduce the burden
for announcing the vendor specific application interfaces
and speed-up the time to market, as well as reduce the
development cost.

7 FUTURE WORKS

In the current version, we treat the OODB as the storage
manager for distributed objects. From a global viewpoint,
we need general meta information to represent the object
hierarchy and the relationship between distributed objects.
To build a distributed database management system, the
global view of schema is the most important issue.
Integrating schemas in different OODBs, even RDBs, is
vital for building a distributed database system in the
future, i.e., we might need another component like Naming
Service for schemas. There are many tasks for us to do in the
future to provide a truly open and complete architecture, for
example, the management of event, security, and version
control. We especially have to optimize the preprocessor to
get better performance. We can take advantage of the
integration architecture and reuse the services defined in
COSS [3], like the OQS, Relationship Service, Security
Service, as well as the Portable Object Adapter, to build a
distributed object management system on CORBA.

Appendix A

It is indeed helpful to understand the integration architec-
ture and application development scenarios clearly through
a simple example. The following example is written by C++
programming language and following the OTS specifica-
tion and ODMG standards (see Table 11). The development
environment is MSVC++ 5.0, Orbix 2.02, and WOO-DB 2.0
Beta version [19], [20], [21]. The registry program is not
shown here because of its vendor specific characteristics.

Because we use the explicit transaction propagation
mechanism, all methods in Factory must have a parameter

762 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 1999

TABLE 10
The Overhead Ratio of the Handwritten Wrapper and the Preprocessor Wrapper

SHEU ET AL.: A NEW ARCHITECTURE FOR INTEGRATION OF CORBA AND OODB 763

TABLE 12
The Corresponding IDL Generated by the ODL Preprocessor

TABLE 11
The ODL Class Definition

to specify the transaction context that the client wants to
join in. The generated IDL (see Table 12) must support the
essential featuresÐthe interfaces for object creation, dele-
tion, and query as mentioned in the previous section. The
client can use the Create and Query (see Table 16) methods to
get an RO object. Through the concepts of OML, which
concern the creation, deletion, modification, reference, and
relationship, the definition of RO Factory interface is
enough for CORBA server objects. The CORBA server
object serves as an agent to serve the transactional
operations from clients. The main difference from the
ODMG OML is the relationship of objects. We provide
three methods to get/set/clear the related objects for each
object when needed.

In the next step of application development in the
integration architecture, the developers use the IDL
compiler to generate codes for the CORBA programming

model. After compiling the IDL file, CORBA clients could
write their applications in CORBA environment based on
the generated stub and header files. We show a simple
CORBA client program in transaction style in Table 13.

The client first binds the necessary servers to serve the
further requests. For example, the client binds the OTS and
RO_Server (see Table 14) in the beginning and then calls
the Create operation to get a server object reference. The RO
Factory for the returned server object will automatically
register the object to OTS. After getting the server object
reference, the following transactional operations will affect
the state of the server object. In the client's point of view,
the operations will directly effect the state of the OODB
objects in the single-level store model. Finally, the client
commits the transaction. The detail interactions among the
client, RO_Factories, RO objects, OTS, and OODB are
shown in Fig. 13.

764 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 1999

TABLE 13
Sample of a Client Program in the CORBA Transaction Style

TABLE 14
The RO_Server Main Program

SHEU ET AL.: A NEW ARCHITECTURE FOR INTEGRATION OF CORBA AND OODB 765

Fig. 13. The detail interactions in a transactional program.

From the scenario in Fig. 13, we can see explicitly that

Factory maps the CORBA transaction to the proper OODB

transactions managed by OODB transaction manager. In

2PC protocol, the logged object in OODB will help the

recovery routines in the recovery phase. In the beginning,

the client starts a CORBA transaction and then invokes the

Create method (see Table 15) for the bound RO Factory

reference. When RO Factory receives the Create request, it

starts an OODB transaction for its first request and creates a

corresponding OODB object, as well as registers the created

object to OTS to join the CORBA transaction context. At the

same time, the created OODB object will automatically join

the OODB transaction through the OODB programming

language binding. In 2PC protocol, the recovery point is at

766 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 1999

TABLE 15
The Prototype Implementation of the Create Method for the RO Factory

TABLE 16
The Prototype Implementation of the Query Method for the RO Factory

the time when prepare method is called. In prepare and
commit phases, the RO object creates a Recovery Object to log
its states in OODB for consistency checking after the
occurrence of failures.

We provide a shared server for each client process. All
the subsequent requests to the server are served in the
same process. The main program is one of the automati-
cally generated files of ODL preprocessor. The variable
<class_name>_i means that it is the implementation of
server object. While the CORBA clients send requests to
bind RO Factory, this server process will be activated by
the Object Adapter and return the bound server object to
clients. The following tables are the implementation for the
CORBA_Person_i class (see Table 17), which implements
the CORBA object and serves as an agent to the OODB
object implementation of Person object defined in ODL.

After the preprocessor automatically generates files,
including the server main program, the RO Factory, RO
object implementation, and the necessary header files, the
OODB developers can compile the generated source codes
with their handwritten OODB object implementation codes
to create the RO. When everything in the server side is
ready, the CORBA client AP developer can run the
applications to get the services in the CORBA environment.

ACKNOWLEDGMENTS

We are grateful for the many excellent comments and
suggestions made by the anonymous referees. We also
thank the Institute for Information Industry of the
Republic of China for their financial support through the
project, No. 787143.

REFERENCES

[1] Object Management Architecture Guide, Object Management Group
Inc., OMG TC Document 92.11.1, Rev. 2.0, Sept. 1992.

[2] Common Object Request Broker Architecture and Specification, Object
Management Group Inc., Rev. 2.2, Feb. 1998.

[3] Common Object Services Specification, Object Management Group
Document 1996-7-15, 1996.

[4] W. Lo, D. Liang, Y.M. Kao, S.M. Yuan, and Y.S. Chang, ªA Fault
Tolerant Object Transaction Service in CORBA,º Proc. 21st Ann.
Int'l Computer Software and Application Conf. (COMSAC '97), pp.
115-120, Washington D.C., Aug. 1997.

[5] K.C. Liang, S.M. Yuan, D. Liang, and W. Lo, ªNested Transaction
and Concurrency Control Services on CORBA,º Proc. 1997 Joint
Int'l Conf. Open Distributed Processing and Distributed Platforms,
(ICODP '97), pp. 236-247, Toronto, May 1997

[6] K.C. Liang and S.M. Yuan, ªTransaction Programming in
CORBA,º Proc. Ninth Int'l Conf. Information Resource Management
Assoc. (IRMA '98), pp. 452-460, Boston, May 1998.

SHEU ET AL.: A NEW ARCHITECTURE FOR INTEGRATION OF CORBA AND OODB 767

TABLE 17
The Implementation of the CORBA_Person Server Object

[7] J. Kleindienst, F. Plasil, and P. Tuma, ªWhat We Are Missing
in the CORBA Persistent Object Service Specification,º Proc.
OOPLSA '96 Workshop, RL: http://www.infosys.tuwien.ac.at/
Research/Corba/archive/special/missing-persistence.ps.gz.

[8] S. Baker, ªCORBA and Database: Do You Really Need Both?º
ObjectExpert, May 1996, URL: http://galaxy.uci.agh.edu.pl/
~vahe/index.htm.

[9] W. Kim, Introduction to Object-Oriented Databases, Cambridge,
Mass.: MIT Press, 1990.

[10] ªThe Object Database Standard: ODMG 2.0,º R.G.G. Cattell, ed.,
San Francisco: Morgan Kaufmann, 1997.

[11] M.L. Griss and R.R. Kessler, ªBuilding Object-Oriented Instru-
ment Kits,º Object, vol. 6, no. 2, pp. 71-81, Apr. 1996.

[12] S. Mafeis and D.C. Schmidt, ªConstructing Reliable Distributed
Communication Systems with CORBA,º IEEE Comm., pp. 62-70,
Feb. 1997.

[13] V. Srinivasan and D.T. Chang, ªObject Persistence in Object-
Oriented Applications,º IBM System J., vol. 36, no. 1, pp. 60-87, 1997.

[14] P.A. Bernstein and E. Newcomer, Principles of Trans. Processing,
Morgan Kaufmann, 1997.

[15] V. Vasudevan and R. Anthony, Approaches for the Integration of
CORBA with OODBs, URL: http://www.infosys.tuwien.ac.at/
Research/Corba/archive/special/ORB_OODB.ps.gz, Aug. 1994.

[16] ªOrbix+ObjectStore White Paper,º IONA Technologies, Dublin,
1995.

[17] ªOrbix+Versant Adapter White Paper,º IONA Technologies, 1997.
[18] V. Amirbekyan and K. Zielinski, ªWhat CORBA/ODB Integration

Technique to Choose: Adapter vs. Wrapper,º Proc. OOPSLA '97
Workshop, http://galaxy.uci.agh.edu.pl/~vahe/ad_vs_wr.htm.

[19] ªProgramming Guide: Orbix 2 Distributed Object Technology,º
IONA Technologies Ltd., Release 2.0, Nov. 1995.

[20] ªReference Guide: Orbix 2 Distributed Object Technology,º IONA
Technologies Ltd., Release 2.0, Nov. 1995.

[21] ªThe Webbased Object OrientedÐDataBase C++ References,º
Inst. for Information Industry, Release 1.0, 1998.

Ruey-Kai Sheu received the BS and MS
degrees in computer and information science
from National Chiao-Tung University, Republic
of China, in 1996 and 1998, respectively. He is
now a PhD candidate in the Computer and
Information Science Department of National
Chiao-Tung University. His research interests
include distributed system design, databases,
and World Wide Web technologies.

Kai-Chih Liang received the BS degree in 1994
and the MS degree in computer and information
science in 1996, both from National Chiao-Tung
University, Republic of China. Currently, he is a
PhD candidate in computer and information
science at National Chiao-Tung University. His
research interests include distributed computing
systems, distributed object computing, distribu-
ted databases, networking, fault-tolerant com-
puting, the Internet, and real-time systems.

Shyan-Ming Yuan received the BSEE degree
from National Taiwan University, Republic of
China, in 1981, the MS degree in computer
science from the University of MarylandÐBalti-
more County in 1985, and the PhD degree in
computer science from the University of Mar-
ylandÐCollege Park in 1989. He joined the
Institute and Department of Computer and
Information Science, National Chiao-Tung Uni-
versity, Hsinchu, Taiwan, Republic of China, as
an associate professor in September 1990. He

was promoted to professor there in June 1995. His current research
interests include distributed system design, fault-tolerant computing,
network management, computer-supported cooperative work, multi-
media application environments, and intelligent computer-assisted
learning in distinct cooperative learning environments. He is a member
of the ACM, the IEEE, and the IEEE Computer Society.

Win-tsung Lo received the BS and MS degrees
in applied mathematics from National Tsing Hua
University, Taiwan, Republic of China, and the
MS and PhD degrees in computer science from
the University of Maryland. He is now an
associate professor of computer science at Tung
Hai University, Taiwan, Republic of China. His
research interests include architecture of dis-
tributed systems, data exchange in heteroge-
neous environments, and multicast routing in
computer networks.

768 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 1999

