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Abstract. Advances in networking and storage technology have made it possible to deliver on-demand services
over networks such as the emerging video-on-demand (VOD) applications. Although a variety of studies have
been focused on designing video servers suitable for VOD applications, the number of concurrent on-demand
services supported by such servers is often limited by the I/O bandwidth of the storage systems. Recently, several
researchers have focused on providingguaranteedservices instead of on-demand services in a VOD system. A
service is said to be guaranteed if every viewer can be served within a specified waiting time after the video
has been subscribed. This paper describes a model called abuffer-sharing autonomy, which combinesbatching
andbridging techniques to provide guaranteed services to VOD systems. We also describe howbuffer-sharing
techniques can be used in this model to provide the same services with fewer buffer resource through the use of
playback-rate alteration. Additionally, in order to make buffer sharing efficient, it is important to group appropriate
video streams together to share buffer resource. Four grouping policies are proposed for this purpose and the
benefits yielded are also analyzed and compared. Finally, the results of our experiments show that the proposed
buffer-sharing techniques promise the provision of guaranteed video services at low cost.
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1. Introduction

Advances in networking and storage technology have made it possible to deliver on-demand
services, such as catalog shopping, distance learning, and general information browsing
[7, 8], over networks. Recently, emerging video-on-demand (VOD) applications have
received enormous attention from the telecommunications, entertainment, and computer
industries. A variety of studies have focused on the design of high-performance VOD
systems capable of handling a large number of services simultaneously [9, 14]. A typical
VOD system consists of avideo archiveand a set ofvideo servers[6, 15, 20]. The video
archive maintains a collection of all available video files, and the video servers maintain
small sets of frequently requested videos. This paper focuses on the design of a video server.

The characteristics of digital video files and video traffic differ substantially from those
of conventional applications with regard tocontinuityandhigh bandwidthrequirement.
Continuity means that client stations must acquire the needed video data in time, namely,
video servers must support enough I/O bandwidth to accommodate all the video streams
so that they can be displayed uninterrupted. A variety of studies have focused on place-
ment and scheduling techniques to boost server I/O bandwidth [1, 17, 18]. Because I/O
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bandwidth is finite, the number of concurrent on-demand services a VOD system can sup-
port is often limited. Recently, studies aimed at resolving I/O problems have tended to
reduce I/O demands on video servers throughbatching, bridging, andadaptive piggyback-
ing. Batchingdelays video playback start time in order to serve multiple viewers using
a single I/O stream [5].Bridging reduces I/O demands by keeping recently used data in
memory so it can be reused by subsequent viewers [11, 19, 21].Adaptive piggybacking
adjusts in-progress video display rates, in order to merge their respective I/O streams into
a single stream [10]. Although these approaches create problems when providing VCR
functionality, several solutions have been attempted. Dan et al. solved the problem in the
context of batching by usingreserved channels[3]. Yu et al. solved a similar problem by
usinglook-ahead scheduling[23]. However, the I/O problem has not been solved yet.

In this paper, we focus on providing guaranteed services instead of on-demand services
for VOD systems. A service is said to beguaranteedif every viewer is assured of being
served within a specified waiting time after the video is subscribed. We first propose a
model, calledbuffer-sharing autonomy, which combinesbatchingandbridging techniques
to support guaranteed services on video servers. We also describe how buffer sharing can be
employed in this model to provide guaranteed services with less buffer requirement through
the use of playback-rate alteration. In order to make buffer sharing efficient, it is important
to share buffer resource by grouping appropriate videos together. Four grouping policies are
thus proposed, includingnon-sharing, non-grouping, symmetric grouping, andasymmetric
groupingpolicies. The benefits yielded by each of these grouping policies are also formally
described and compared. Through experiment analysis we observed that buffer sharing,
when used in conjunction with various grouping policies, saves a large number of buffers
on the video servers. Finally, we believe that the methods proposed in this paper show a
promise for providing guaranteed services to video servers at low cost.

1.1. Video server environment

Clients make requests for playbacks of movies at arbitrary times. A logical channel is
reserved prior to starting playback. This channel corresponds to the set of resources required
for the playback of a stream, i.e., network, disk, CPU processing power, etc. required to
guarantee continuous delivery of the video stream. In this paper, we assume that channels
in the video server are divided into three classes:dedicated, on-demand, andcontingency
channels.

The dedicated channels are used for movie playbacks at regular intervals to support
guaranteed service, i.e., each client for these movies is guaranteed to be served within
a pre-specified period of time. Since therenegingbehavior (a client withdraws his/her
request) of clients is influenced by the maximum waiting-time guarantee [5], we assume
that the dedicated channels are reserved for popular movies, referred to as hot movies, to
minimize overall reneging probabilities.

The remaining movies, called cold movies, share a common pool of on-demand channels.
An on-demand channel is allocated to each request for a cold movie so that a new stream can
be started, and is returned to the pool when the playback is completed. Because this common
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pool has limited resources, it is possible that no on-demand channel is available when a
playback request arrives, thus, the maximum delay cold-movie viewers may experience
cannot be guaranteed. Several approaches to optimizing utilization of on-demand channels
have been presented. In [2] it was proposed that more streams can be served concurrently
through a method calledInterval Caching Policy. Using this policy, data fetched by a
stream is retained in memory so that it can be reused by other closely following streams.
The data blocks between a pair of consecutive streams showing the same video is called
an interval. When an interval is cached, the next stream can avoid a disk access because
it can take advantage of a cache hit. In [4] an extended policy calledGeneralized Interval
Cachingwas proposed to handle mixed interactive and long video workloads while retaining
the benefits of interval caching such as superior performance and adaptation to changing
access patterns. In [22], the buffer size required for interval caching was reduced using a
method calledBuffer Shrinking.

Contingency channels are designated to handle VCR control operations. In [5], it was
proposed that pause and resume operations can be handled by setting aside a small pool of
contingency channels. Using this method, a paused stream returns its resources to the server
and re-acquires them from the contingency channel pool upon resumption. In [3], it was
shown that when sufficient contingency channels are set aside, this method can guarantee a
high probability of a resumption request being started within a short, pre-specified period
of time.

Dividing channels into these three classes (i.e., dedicated, on-demand, and contingency)
requires considering whether it is more beneficial to play back a movie at regular intervals,
or simply start a new stream on demand in order to reduce overall reneging probability. The
decision is also influenced by the probability that clients will pause while viewing movies
because resumption requests cannot be delayed for long periods of time. In this paper, we
assume that the channel allocation policy proposed in [3] is used for optimal allocation of
channels to these three classes. This policy guarantees that overall reneging probabilities
and resumption delays fall within certain pre-specified limits. In order to adapt to changes
in workload patterns, we also assume that the server periodically uses this policy for system
reconfiguration, i.e., the sets of dedicated, on-demand, and contingency channels may need
to be resized. Such a system reconfiguration can easily be done by reassigning channels that
are idle (i.e., not currently used by streams) to other classes. If not enough idle channels can
be found, the reconfiguration is delayed until a sufficient number of in-progress channels
have completed their playbacks.

Moreover, we assume that the interval-caching policy in [2, 4] is employed to opti-
mize utilization of on-demand channels, and that the contingency-channel method in [5]
is used to handle VCR control operations. Integration of the contingency-channel method
with the interval-caching policy can be found in [2, 4]. The objective of this paper is to
focus on optimizing the use of dedicated channels that play back hot movies at regular
intervals. The method we propose is calledbuffer-sharing autonomy, and it optimizes the
utilization of server resources by means of sharing. The contingency-channel method
can also be integrated with our method for providing VCR control operations, as shown
later.
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2. Buffer-sharing autonomy

In this section, we present a technique calledbuffer-sharing autonomy, which uses batching,
bridging, and buffer-sharing techniques to provide guaranteed services at low cost. Batching
is employed to support guaranteed services, combining bridging with batching reduces
required disk bandwidth, and buffer sharing further reduces required buffer resource costs.

2.1. Combining batching and bridging

As we have described, prior to starting the playback of a movie a logical channel is reserved
to guarantee continuous delivery of the video stream. If more than one viewer requests the
same movie within a short period of time, then they can all be batched together such that a
single channel serves them all. However, a viewer may withdraw his/her request (renege)
if the delay in starting the playback is significant. The probability of a viewer reneging
increases with the length of the starting delay. To minimize the overall starting delay, a
simple way for batching is to pre-allocate channels for movie playbacks at regular intervals,
referred to asbatch intervals(denoted byBt), thus satisfying viewers’ requests for movies.
To ensure that viewers who request specific movies are served withinT min, we can use
T as the batch interval for these movies. In this way, video servers can easily achieve
guaranteed services. In this paper, we refer to the channels offering guaranteed services as
dedicated channels. As we have described, video servers often reserve dedicated channels
for frequently requested movies (hot movies) to minimize the overall reneging probability.
The disk bandwidth required for a dedicated channel is called adedicated session.

Bridging has been proposed as a way of reducing I/O demands (disk session requirements)
through the use of buffers [11, 19, 21]. It keeps recently used video data in buffers so that
subsequent viewers who request the same video can acquire the data directly out of buffers
instead of initiating another disk session. The length (in time) of the video data held in the
buffers is called thebridge length(denoted byBr). Joining bridging with batching makes
it possible to use fewer disk sessions to provide the same levels of guaranteed services to
viewers. Consider a movie 100-min long. We can play this movie back every 20 min to
ensure that all the viewers who want to see the video can be served within 20 min. In this
case, 100/20= 5 dedicated sessions are required for this movie. Now consider another
case in which each session uses buffers to hold 5-min video frames (Br= 5 min). Thus,
viewers requesting within 5 min after sessions are initiated can also be served immediately
through the use of the data in the buffers, and do not need to wait for the next session to be
initiated. In this case, only 4 dedicated sessions are required to ensure that the maximum
delay viewers experience is also 20 min(100/4− 5= 20).

2.2. Buffer sharing

As we have described above, if we want viewers arrivingb min apart to be able to share
the same disk session, then a buffer holdingb min video frames is required for bridging. In
this section, we present a technique calledbuffer sharingwhich makes buffers as sharable
resources among in-progress sessions in order to reduce the total buffer requirement in
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video servers. The idea behind is to recognize that smaller buffer sizes are needed for
bridging when we reduce the temporal gaps between viewer requests. Such reductions can
be achieved by altering the playback rates of the video streams. For example, if viewer
B requestsb min after viewer A, ab min buffer is required to bridge between viewers A
and B. However, if the video playback for viewer B progresses at an accelerated rate (e.g.,
5% faster than normal), and that for viewer A progresses at a slower rate (e.g., 5% slower
than normal), then viewers A and B get temporally closer by one minute for every 10 min
of viewing, which means that one-minute buffer space can be released for every 10 min.
When this playback-rate alteration is applied ton sessions in the video server,n minutes’
worth of buffer space can be released for every 10 min of playback. Since these sessions
do not needb-sized buffers at all times through playback-rate alteration, a simple way to
minimize total buffer-space consumption and thus maximize buffer utilization is to allow
these sessions to share buffers. We refer to the group of sessions in which buffer sharing
is performed as abuffer-sharing autonomy. The benefits of combining buffer sharing with
the previously mentioned batching and bridging are described below.

Figure 1 shows a simple buffer-sharing autonomy consisting of four dedicated sessions,
i.e., at most four sessions can be in progress during each movie cycle. The black rectangles
in this figure represent the buffers in use and the gray ones, the buffers released. Every
d minutes, a session is initiated with ab-byte-long buffer for bridging.L denotes the movie
length (in minutes) andS∗ the buffer release rate (bytes/min) per session duration. Let us
consider the streams served by sessionss4. As this figure shows, these streams get closer
and closer through playback-rate alteration and, therefore, the amount of buffer being used
for bridging becomes lesser and lesser near the end of the video. A buffer ofdS∗ bytes
is released for everyd min. Consequently, although each of the four sessions is initiated
with a b-byte-long buffer for bridging, this autonomy need not use fourb-sized buffers at
all time through buffer sharing. Figure 2 depicts the buffer size required for each session

Figure 1. A simple buffer sharing autonomy.
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Figure 2. The benefits of buffer sharing.

Table 1. The buffer size needed at time 3d for each session in figure 2.

Session ss1 ss2 ss3 ss4

Buffer size needed b− 3S∗d b− 2S∗d b− S∗d b

of this autonomy as a function of time. Consider the buffer requirement at time 3d, i.e.,
four sessions are currently in progress and the 4th session has not yet released any buffer
space. The buffer requirement for each session at this time is depicted in Table 1. Summed
over the four sessions, the total buffer requirement is equal to 4b− 6S∗d. By comparison
with not using buffer sharing, we find that buffer space of size 6S∗d has been saved on
the video server. This can easily be extended ton sessions, as is discussed in Section 4.
Note that buffer measurement in this case is simplified by assuming that each session is
capable of releasing buffer space at a rate ofS∗ throughout the entire movie cycle (and thus
b > 3S∗d). In Section 4 we will analyze buffer requirement for more general situations
when sessions may not have enough buffer space to release throughout the entire movie
cycle, and when sessions may not be initiated at equal intervals, and may need unequal
buffer sizes for bridging.

2.2.1. Buffer release rate. According to Table 1, the amount of buffer space that can
be saved by using buffer sharing is dominated by the buffer release rateS∗ which further
depends on how fast the video streams (which use the same sessions through bridging)
get closer via playback-rate alteration. There are several techniques for streams to get
closer through rate alteration. Golubchik et al. proposed a technique calledpiggybacking
[10], which alters playback rates to merge video streams. Their method of rate alteration
adds or removes one frame for everyn original frames, wheren depends on the desired
playback rates. There is ample evidence showing that video playback rates within±5% of
the nominal rate can be achieved in such a way that it is not perceivable by viewers [10].
This implies that buffer release rates can be as high as 10% of the normal display rate. Tsai
et al. also proposed a technique calledbuffer shrinking[22], which alters playback rates
to save buffer resource. They altered playback rates by inserting advertisement frames or
skipping optional frames at predefined offsets in video streams. Their method was thus able
to achieve larger-scale alterations although these changes may not be constant over short
periods of time (because the rate changes occur only at predefined offsets). This implies that
the buffer release rateS∗ may not be constant over short periods of time either. In this paper
we require that the time of session initiation be multiples oftUnit relative to the initiation of
the first session in the respective autonomy.tUnit is the minimum period of time over which
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buffer release pertUnit minutes is constant. The selection oftUnit depends on the choice of
what playback-alteration methods to use as well as the video compression techniques used.
To ensure that sufficient buffer spaces are available for continuous playback, we also require
that each session must have at leastbmin-sized buffer space after buffers are released, where
bmin is the minimum buffer requirement for a stream to maintain continuous display. The
selection ofbmin depends on disk block size and the retrieval cycle time used by the server.

2.2.2. Sizing the batch interval and the bridge length.Let V(Bt, Br) denote a video V
characterized by abatch interval(denoted byBt) and abridge length(denoted byBr),
meaning that the server displays video V everyBt minutes and, for each display, a buffer
that can holdBr minutes’ worth of video frames is used for bridging. Note that in order to
save buffer resource,Bt must be greater thanBr so there will be no duplicate video frames
in the buffers. Assuming that viewer request rate follows a Poisson distribution, the average
waiting Wi for a video Vi (Bti , Bri ) would be approximatelyWi = (Bti − Bri )

2/2Bti (as
obtained from 0× Bri

Bti
+ Bti−Bri

2 × Bti−Bri
Bti

). Let WAvg denote the expected average waiting
time forN service-guaranteed videos in the system. This is measured asWAvg =

∑N
i=1 Wi pi ,

wherepi denotes the probability of video Vi being requested among theN videos. In or-
der to favor popular videos, we makeWi pi the same and equal toWAvg/N for all videos
and therefore, the average waiting time for a video will be inversely proportional to its
access probability, i.e.,Wi = WAvg/N pi . According to the definition ofWi , we have
(Bti − Bri )

2/2Bti = WAvg/N pi from whichBri is obtained as follows:

Bri =
{

Bti −
√

2Bti WAvg/N pi if positive;
0 otherwise.

(1)

From this equation we can see that the choice ofBri for video Vi (which determines how
many buffers must be dedicated to Vi ), is dominated by the size ofBti (which determines
how many sessions must be dedicated to Vi ). LetSSTotal denote the total number of sessions
dedicated to theN videos andSSi the number of sessions dedicated to video Vi . Note that, for
video Vi of lengthL, SSi means that we can makeBti equal toL/SSi . The problem at hand
is how to distributeSSTotal sessions among N videos to minimize total buffer requirement,
subject to the expected average waiting time for each video. The straightforward way for
doing so is to generate all possible values forSS1, SS2, . . . , SSN to find a combination such
that

∑N
i=1 SSi = SSTotal holds and

∑N
i=1 Bri SSi is minimum, where

Bri =
{

L/SSi −
√

2(L/SSi )WAvg/N pi if positive;
0 otherwise.

(2)

This equation is derived from Eq. (1) by substitutingL/SSi for Bti . Since the number of
sessions dedicated to a video must be positive (i.e.,SSi ≥ 1 must hold),P(SSTotal− N, N)
permutations must be generated in order to find the best one. Clearly this is a very complex
problem for a largeSSTotal and a largeN because we need to search through all possible
permutations before determining an optimal solution. Thus, we settle for ways for finding
sub-optimal solutions. Since a popular movie needs more dedicated sessions to minimize
overall average waiting time, and hence, more buffer space is required for bridging, we set
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SSi to be proportional top_i where p_i is a function ofpi , the access probability of video
V i . Instead of enumerating all permutations ofSS1, SS2, . . . , andSSN , we calculateSSi

according toSSi = 1+bp_i (SSTotal−N)c, where subtractingN fromSSTotal means reserving
one dedicated session for each of theN videos. When there arer residual sessions, they
are assigned tor different videos with highest access probabilities. As we will show later,
an appropriate selection ofp_i makes the sub-optimal solution approximating the optimal
one. After determiningSSi for a video Vi , the batch intervalBti can be obtained by using
Bti = L/SSi , and the bridge lengthBri can also be determined by using Eq. (2). Given the
expected average waiting timeWAvg, the number of dedicated sessionsSSTotal, and the access
probabilitiespi s for N service-guaranteed videos (usually, the N most popular movies), the
algorithm for choosing an optimalBti andBri for each video is summarized as follows:

1. Normalize the access probability for each of theN videos such that
∑N

i=1 pi = 1.
2. Generate all possible permutations forSS1, . . . , SSN , and search one such that

∑N
i=1 SSi

= SSTotal with SSi ≥ 1∀i holds and
∑N

i=1 Bri SSi for Bri defined in Eq. (2) is minimum.
3. For each video, derive the batch interval usingBti = L/SSi and the bridge length using

Eq. (2).

To find a sub-optimal solution forBti andBri , the above Step 2 is replaced as follows:

2∗. For 1≤ i ≤ N, determineSSi using the equationSSi = 1+ bp_i (SSTotal− N)c.

In the following, we show how the optimal solution can be approached using the sub-
optimal algorithm with an appropriatep_i . Consider a situation in which a video server
dedicates 26 sessions to the 12 most popular videos with the expected average waiting
time equal to 5 min. Figure 3 depicts the buffer size (i.e.,

∑N
i=1 Bri SSi ) required for

three sub-optimal solutions (SubOpt1, SubOpt2, and SubOpt3) and the optimal solution
(Optimal), as a function of video access patterns. The access patterns are modeled using a
Zipf distribution in which the access probability for thei th most popular video is given by

Figure 3. Comparison between optimal and sub-optimal algorithms.
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pi = c/ i (1−θ), and the parameterp_i used for the three sub-optimal solutions arepi ,
√

pi ,
and 4
√

pi , respectively. Note thatc in the above formula is the normalization constant andθ

is the skew factor. The details regarding Zipf distribution is described in Section 5.2. The
result in figure 3 shows that SubOpt3 using the sub-optimal algorithm withp_i = 4

√
pi most

approximates the optimal solution.

2.3. VCR control

A video-on-demand system may allow clients to pause and restart viewing videos at arbitrary
times. This section illustrates how PAUSE and RESUME operations are handled in the
proposed buffer-sharing autonomy approach. A pause request in a buffer-sharing autonomy
causes no action except ceasing to deliver video data to the client through the respective
stream. While the stream is paused, no resources are returned to the system and all dedicated
sessions keep on playing back toward the end of the video. Upon resumption of a paused
playback, a session is re-acquired to serve this paused stream and one of three events might
occur at this moment. First, the resumed stream may happen to lie in a range already being
served by a session so it will be served immediately. Second, the temporal distance between
the resumed stream and the closest session running behind it is less than a pre-specified
time interval (referred to as themaximum resumption delay) and the stream will wait for the
session to progress and then begin service. Third, there may be no sessions within the time
interval required to re-start the resumed stream while honoring the pre-specified maximum
resumption delay. In this case, a channel from the contingency pool is allocated to serve
the resumption request.

Figure 4 gives an example in which a buffer-sharing autonomy consists of four dedicated
sessions,ss1, ss2, ss3, andss4. The movie length isL and the maximum resumption delay is
Tresume. The shaded rectangles in this figure represent the ranges served by the corresponding

Figure 4. Handling PAUSE and RESUME operations.
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sessions. Note that these “ranges” are formed through bridging and may become shorter
near the end of the video due to rate-alterations (i.e., the ranges are time-compressed to
release buffer space for sharing as described in the previous section). Figure 4(a) shows
that streamsti served by sessionss2 was paused at some time and figures 4(b) through (d)
show three events that might occur upon resumption ofsti . In the case shown in figure 4(b),
sti will be served byss3 immediately and, in the case shown in figure 4(c), it will be served
by ss4 after a delay of less thanTresume. A contingency channel is required to resumesti in
the case shown in figure 4(d).

As we have described above, the channel allocation algorithm proposed in [3] can be
used to determine the number of channels that should be set aside for contingencies such
that a resumed stream has a very high probability of being re-started after a short time
delay.

3. Autonomy grouping

Video servers cannot take full advantage of buffer sharing to save buffer resource when their
dedicated sessions are not initiated at proper times. Consider a situation in which all the
dedicated sessions are initiated at the same time. In this case, all sessions need buffers for
bridging at the same time before any buffer space has been released, and thus the released
buffer spaces cannot be reused to save resource costs. In order to make buffer sharing
efficient, this section describes four grouping policies for choosing appropriate videos in
autonomies that will share buffers. For all policies, the batch interval (Bt) and the bridge
length (Br) for each video are assumed to be constant and known. (Note that both can be
determined using the method described in Section 2.2.2) The grouping policies are designed
to fulfill the following requirements: (1) Each video must be displayed in accordance with
its original batch interval and bridge length; (2) Fewer buffers are required after grouping.
Before describing these grouping policies, we first summarize the notation used.

L movie length (in min)
n the number of sessions in an autonomy (denoted from 0 ton− 1)
ssi the video served by sessioni
ci the initiation time of sessioni , relative to the initiation of the first session in the

autonomy
di, j the interval (in min) between sessionsi and j , i.e.,di, j = cj − ci

d If all the di ,i+1 with (0≤ i ≤ n− 2) are equal then we used instead ofdi ,i+1 to
simply the notation

Bi the bridge length (in min) used for sessioni
S∗ buffer release rate (bytes/min) which depends on the rate alteration technique used
R video display rate (bytes/min) at normal speed
Bneed buffer size needed for an autonomy
Bmin minimum buffer requirement for a session to maintain continuous display of a

video
tUnit minimum temporal gap (in min) between successive sessions in an autonomy
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3.1. Baseline policy

This is the normal situation. When a session is initiated, there is no attempt to release its
buffer resource, i.e., all sessions use their assigned buffers throughout the entire movie cycle
and there is no buffer sharing.

3.2. Non-grouping

This policy groups the sessions displaying the same movie into an autonomy to share
buffers. With this policy, every autonomy consists of only one video. Within autonomies
all sessions use equal amounts of buffer space for bridging, and the intervals between
successive sessions are constant. For a video Vx(Bt, Br), the corresponding autonomy
hasn = dL/Bte and other parameters are derived as follows:si = Vx, ci = i × Bt,
bi = Br × R for 0≤ i ≤ n− 1, anddi,i+1 = Bt for 0≤ i ≤ n− 2.

3.3. Symmetric grouping

The symmetric grouping policy groups multiple videos into anequal-interval autonomy,
defined as an autonomy within which the intervals between successive sessions are all equal.
There are several ways to achieve this goal. The simplest one, calledsimple grouping, is
to group those videos with the same batch intervals into a single autonomy. For example,
m videos of batch intervalBt can easily form an equal-interval autonomy if display of
each video is initiated in an interleaved manner at intervals ofBt/m. A simple example
of this is illustrated in figure 5(c) which shows an autonomy resulting from grouping two

Figure 5. Symmetric grouping policy—simple grouping.
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videos A and B depicted in figures 5(a) and 5(b), respectively. The batch intervals of
both are assumed to bed anddL/de = 4. As figure 5(c) shows, initiating the display of
videos A and B in such an interleaved manner ensures that the result of grouping is an
equal-interval autonomy and that each video is displayed in accordance with its own batch
intervald. This technique can easily be extended to group more videos of the same batch
intervals. Assumingm videos V1(Bt, Br1), V2(Bt, Br2), . . . , Vm(Bt, Brm) are grouped,
the resulting autonomy hasn = mdL/Bte and other parameters are derived as follows:
si = V(i mod m), ci = i ×Bt/m, bi = Br(i mod m)×R for 0≤ i ≤ n− 1 anddi,i+1 = Bt/m
for 0 ≤ i ≤ n− 2. Let amovie cyclebe defined as the duration of a movie showing. It is
a time interval of lengthL and starts when any session is initiated. In order to ensure that
the playback sequences are identical in any two non-overlapping successive movie cycles,
the abovem videos can only be grouped if the following condition holds:

L − (n− 1)Bt >
m− 1

m
Bt. (3)

Figure 5(d) shows a situation in which three videos A, B, and C are grouped in an autonomy
that fails to satisfy inequality (3). As this figure shows, the playback sequence in the first
movie cycle (starting at time 0) is{A1, B1, A2, . . . } and that in the next non-overlapping
movie cycle (starting at time 11d/3) is {C4, A1, B1, . . . }. The two sequences are not
identical. Such a situation never occurs when inequality (3) is satisfied in grouping. Subject
to inequality (3), there is an upper bound on the number of videos grouped because of
m < Bt

dL/BteBt−L . This constraint dramatically decreases the complexity of measuring
buffer requirement as described in Section 4.

An alternative to grouping multiple videos into equal-interval autonomies is repeatedly
grouping the results of simple groupings, calledmulti-level grouping, which enables the
accommodation of more videos in a single equal-interval autonomy. As mentioned above,
m videos with the same batch interval (sayBt) can form an equal-interval autonomy (say
EDA1) with d = Bt/m after a simple grouping is performed. Using multi-level grouping,
other equal-interval autonomies withd being equal toBt/mcan also be merged with EDA1,
if they exist. As a result, more videos can be grouped into a single autonomy. Consider four
videos, A, B, C, and D with batch intervals (Bt) equal to 45, 45, 45, and 15 min, respectively.
The video length is 90 min. According ton = dL/Bte defined in non-grouping policy, the
numbers of sessions dedicated to videos A, B, C, and D, are 2, 2, 2, and 6, respectively, as
shown in the first column of Table 2. By using simple grouping, only videos A, B, and C

Table 2. Symmetric grouping policy.

Non-grouping Simple grouping Multi-level grouping

GA = {A1,A2}Bt=45 GA,B,C = {A1,B1,C1,A2,B2,C2}Bt=15 GA,B,C,D = {A1,D1,B1,D2,C1,D3,A2,
GB = {B1,B2}Bt=45 GD = {D1,D2,D3,D4,D5,D6}Bt=15 D4,B2,D5,C2,D6}Bt=7.5

GC = {C1,C2}Bt=45

GD = {D1,D2,D3,

D4,D5,D6}Bt=15



BUFFER-SHARING TECHNIQUES 133

can be grouped into an autonomy because they have the same batch interval and inequality
(3) holds for them. The results shown in the second column of Table 2 show six sessions in
the autonomy withBt = 15 and A, B, and C being initiated in an interleaved manner. Now,
using multi-level grouping, this autonomy can be made to include video D, which also has
Bt = 15. Their resulting autonomy has 12 sessions withBt = 7.5, as depicted in the third
column of Table 2. Note that all the sessions in this autonomy will be initiated at equal
intervals, and videos A, B, C, and D will be displayed in accordance with their original
batch intervals 45, 45, 45, and 15, respectively. It is interesting to observe in this table
that, through repeated use of the simple grouping, the multi-level grouping policy enables
grouping of videos with different batch intervals into a single equal-interval autonomy. The
multi-level grouping algorithm is summarized as follows, whereu∗ is the maximum number
of autonomies that can be grouped at a time using simple grouping policy.

Multi-level grouping algorithm
Begin

while (more than one (sayu) autonomies of the same batch interval (sayv) are found){
Derive the maximumm for v according to the inequality (3).
while (u > 0) {

Let u∗ =min(u, m);
From theu autonomies, performsimple groupingonu∗ autonomies;
Set the batch interval of the resulting autonomy to bev/u∗;
u = u− u∗;

}
}

End

3.4. Asymmetric grouping

As opposed to symmetric grouping, which is aimed at obtaining equal-interval autonomies,
asymmetric grouping allowsgeneral autonomiesto be the result of grouping in order to
accommodate more videos in a single autonomy. A general autonomy is one in which the
playback intervals between successive sessions need not be equal. A simple example of this
is illustrated in figure 6(c) which shows a general autonomy resulting from grouping two
videos A and B depicted in figures 6(a) and 6(b), respectively. The batch interval of video
A is assumed to beL/4 and that of video B beL/3. In order to playback each video in
accordance with its own batch interval, figure 6(c) shows that grouping videos of different
batch intervals may result in an autonomy consisting of non-equal playback intervals. We
refer to this asasymmetric grouping.

Let V1(Bt1, Br1), V2(Bt2, Br2), . . . , and Vm(Btm, Brm) denotemvideos, andBtLCM de-
note the lowest common multiple (LCM) of them batch intervals; i.e.,BtLCM = LCM(Bt1,
Bt2, . . . , Btm). Using asymmetric grouping, thesem videos can only be grouped if there
is an integerk such that the following condition holds:

k BtLCM > L and k BtLCM − Bti < L for 1≤ i ≤ m. (4)
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Figure 6. Asymmetric grouping policy.

The above condition ensures that, after a multiple of timeL, the playback sequence will
eventually return to the first playback sequence. This simplifies buffer measurement for
the resulting autonomy. The asymmetric grouping policy works as follows. Consider two
videos to be grouped, V1(Bt1, Br1) and V2(Bt2, Br2). Let V1 be the only video in an
autonomy as in the non-grouping policy, thereby allowing V1 to be displayed in accordance
with its batch intervalBt1. To take full advantage of buffer sharing in the autonomy, the
displays of video V2 must start in the temporal gaps between the initiation times of V1.
The constraint on the process of grouping V2 with V1 is that V2 must also be displayed in
accordance with its own batch interval. The simplest way to lay out V2’s initiation times is
to fill them into V1’s temporal gaps starting from the very first gap. After setting the first
initiation time for V2, the remaining times are all set subject to the batch interval of V2 (i.e.,
Bt2). If some initiation time does not fall into a temporal gap between showings of V1,
all initiation times for V2 are delayed withtUnit and verified again. This process continues
until all the initiation times for V2 can be accommodated within the temporal gaps between
showings of V1 (which we call afeasible patternfor V2). If a feasible pattern is found,
the grouping of V1 and V2 yields a valid autonomy; otherwise, asymmetric grouping fails
to group V2 with V1. Assuming that two videos, Vx(Btx, Brx) and Vy(Bty, Bry), are to
be grouped, the algorithm for grouping videos by means of this policy is given as follows.

Asymmetric grouping algorithm
Begin

if (videos Vx and Vy meet inequality (4), the asymmetric grouping condition.)
{

settle Vx and Vy in two autonomies (say Ax and Ay respectively) using
non-grouping policy;
offset:= 0;
conflict:= TRUE;
while ((conflict= TRUE) and (cmax+ offset< L holds for the max initiation
timecmax in Ay)) {

for each initiation timeci in Ay, deriveci
′
:= ci + offset;
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check if there is any conflict betweenci
′
in Ay and each initiation time

in Ax;
if (yes){

increaseoffsetby tUnit;
conflict:= TRUE;

} else{
conflict:= FALSE;

}
}
if (conflict= FALSE) {

for each initiation timeci in Ay, increaseci by offset;
merge autonomies Ax and Ay into a single autonomy, say Ax,y;

} else{
return the two autonomies cannot be grouped;

}
}

End

Note that the above binary grouping techniques can be easily extended to group three or
more videos. Let us suppose we have to groupm videos, V1, V2, . . . , Vm. After the first
two videos V1 and V2 have been grouped, the resulting autonomy can be viewed as that
of a composite video V1,2. The grouping of V3 with V1,2 can be carried out using binary
grouping techniques to yield the autonomy V1,2,3. Continuing the grouping operation in
this fashion, them videos can be grouped using a sequence ofm − 1 binary grouping
operations, resulting in a final autonomy of V1,2,...,m.

4. Performance analysis

This section presents analytic solutions for measuring the buffer requirement for the base-
line, non-grouping, symmetric grouping, and asymmetric grouping policies.

4.1. Analysis of the baseline policy

We begin with the analysis of the baseline policy, which is very simple because there is no
buffer sharing between sessions in progress. For a video V(Bt, Br), since there are at most
dL/Bte sessions that can be activated within a movie cycle and each session uses a buffer of
sizeBr×R for bridging, the needed buffer size is determined byBneed= dL/Bte×Br×R.

4.2. Analysis of the non-grouping policy

With a non-grouping policy, each video forms an autonomy that has equal intervals between
successive sessions and has equal bridge lengths for all sessions. Letd and b denote
respectively the batch interval and the bridge length of the resulting autonomy; i.e.,dj, j+1 =
d for 1 ≤ j ≤ n − 1 andbi = b for 1 ≤ i ≤ n. We first consider the case in which the
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Table 3. Buffer needed for each of then sessions.

Sessions ss1 ss2 . . . ssn−1 ssn

Buffer needed b− (n− 1)S∗d b− (n− 2)S∗d . . . b− S∗d b

b-sized buffer assigned to each session can be released at a rate ofS∗ over the entire movie
cycle; i.e.,b− Bmin ≥ S∗L. The maximum buffer size this autonomy requires occurs when
then sessions are all in progress and before thenth session has released any buffer space.
We compute the buffer size needed at this time for each session and show them in Table 3.
Summed over then sessions, the needed buffer size is equal toBneed=

∑n−1
i=0 [b− i S∗d].

However, since it is possible that the buffer space dedicated to each session cannot be
released at rateS∗ over the entire movie cycle due tob− Bmin < S∗L, the needed buffer
sizeBneedis modified as follows

Bneed=
n−1∑
i=0

Bi , wherebi =
{

b− i S∗d if greater thanBmin;
Bmin otherwise.

(5)

For a video V(Bt, Br), using a non-grouping policy, the buffer size needed for the corre-
sponding autonomy can be easily derived from Eq. (5) by usingn = dL/Bte, d = Bt,
b = Br R.

4.3. Analysis of the symmetric grouping policy

Measuring buffer requirement for the symmetric grouping policy is different from that for
non-grouping policy because symmetric grouping may result in an autonomy consisting of
multiple videos and, therefore, different bridge lengths may be used at the same time by
different sessions belonging to this autonomy. When there are different bridge lengths in an
autonomy, the needed buffer size depends on the sequence that videos are displayed. First
we consider the case in which two videos with the same batch interval have been grouped
into an autonomy. Let VA(Bt, BrA) and VB(Bt, BrB) denote these two videos. With a
symmetric grouping policy, the resulting autonomy hasn = 2dL/Bte, d = Bt/2, and
b = BrA R or BrB R. The maximum buffer space needed for this autonomy occurs when
then sessions are all in progress. Since the display of the two videos will be initiated in
interleaved fashion as follows

SA, SB, SA, SB, SA, SB, SA, SB, SA, SB, . . . ,

at any time instant the sequences ofn in-progress sessions will be either{SA, SB, SA, SB, . . .

SA, SB} or {SB, SA, SB, SA, . . . SB, SA}. whereSA denotes the session for video A andSB

that for video B. Note that the buffer size needed for these two sequences would be unequal
if videos A and B use different amount of buffer space for bridging. For each sequence
(referred asactive sequence), the maximum buffer space requirement occurs when the
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last session has just been initiated and before any buffers are released. In the first active
sequence, in which the last session shows video B, the required buffer size (say,bB

need)
can be derived from Eq. (5) by usingb = BrB R if ( i mod 2)= 0, andb = BrA R if
(i mod 2)= 1. In the second active sequence, in which the last session shows video A,
the required buffer size (say,bA

need) can also be obtained from Eq. (5) by usingb = BrA R
if ( i mod 2)= 0 andb = BrB R if ( i mod 2)= 1. As a result, the buffer size required
for this autonomy is determined to be the larger of buffer sizes required by either of these
sequences; i.e.,Bneed= max(bA

need, b
B
need). The result can be easily extended tom videos.

Using symmetric policy, groupingm videos of the same batch interval will result in an
autonomy which has exactm different active sequences, each ended with different video.
Namely, when measuring the needed buffer size, at mostmsituations need to be considered.
However, measuring buffer space requirement is more complicated if the autonomy results
from multiple levels of simple grouping. We now consider a two-level symmetric grouping
in which three videos, A, B, and C, have been grouped on level one, and later grouped with
video D on level two. The playback sequence can be

SA, SD, SB, SD, SC, SD, SA, SD, SB, SD, SC, SD, . . .

Sequence 1 | |
Sequence 2 | |

...
...

Sequence 6 | |

Assuming the resulting autonomy hasn = 6, there are six different active sequences
{SA, SD, SB, SD, SC, SD}, {SD, SB, SD, SC, SD, SA}, . . . , and{SD, SA, SD , SB, SD, SC} as the
above shows. It is interesting to observe that the number of active sequences may not be
equal to the number of videos grouped when multi-level grouping is used. More different
active sequences may exist when more grouping levels are used and more videos are grouped.
Fortunately, this situation is simplified by inequality (3), which ensures that each time a
multiple of L minutes passes (and, therefore, a multiple ofn sessions has been initiated)
after the autonomy starts, the active sequence will eventually return to the first one. Namely,
there are at mostn different active sequences for the resulting autonomy and they can be
easily derived as follows. Let{S1, S2, . . . , Sn} be the first active sequence of an autonomy.
By regarding this sequence as a circular one, the othern − 1 different active sequences
are then then− 1 sequences ended withS1, S2, . . . , Sn−1, respectively. Since each active
sequence hasn elements, the one ended withSi starts fromS(i+1)modn. Accordingly, the
buffer size(Bneed) required for an autonomy resulting from the symmetric grouping policy
can be measured as follows:

Begin
Bneed:= 0; /* the buffer size needed for the autonomy using symmetric grouping policy */

bi
need:= 0; /* the buffer size needed for the active sequence ended with si */

for i := 0 to n− 1 {
bi

need=
n−1∑
j=0

Bj ,whereBj =
{

b(i− j+n)modn − j S∗d if greater thanBmin;
Bmin otherwise;
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if (bi
need> Bneed) Bneed:= bi

need;
}

End

4.4. Analysis of the asymmetric grouping policy

The major difference between the symmetric and asymmetric grouping policies is that the
result yielded from asymmetric grouping is a general autonomy instead of an equal-interval
one. Analyzing buffer requirement for a general autonomy is more complicated because
two identical active sequences may require different buffer sizes if the intervals between
successive sessions are different. Fortunately, this problem is simplified by inequality (4),
which ensures that, even when interval is considered, at mostn different active sequences
exist for the resulting autonomy. The buffer size required for an autonomy resulting from
the asymmetric grouping policy is derived as follows:

Begin
Bneed:= 0; /* the buffer size needed for the autonomy using asymmetric grouping policy */

bi
need:= 0; /* the buffer size needed for the active sequence ended with si */

for i := 0 to n− 1 {
bi

need=
n−1∑
j=0

Bj , where

Bj =
{

b(i− j+n) mod n − S∗((d(i− j+n) mod n,i + L) mod L) if > Bmin;
Bmin otherwise;

if (bi
need> Bneed) Bneed:= bi

need;
}
End

5. Results and discussion

This section presents the results of studies on buffer-sharing autonomies. Four grouping
policies, baseline(BL), non-grouping(NG), symmetric grouping(SG), andasymmetric
grouping(ASG), were examined. We conducted two sets of experiments. For the first set,
the four policies were examined for different buffer release rates, bridge lengths, and batch
intervals. The bridge lengths and the batch intervals used in this set were randomly generated.
For the second set, the four policies were examined for different numbers of dedicated
sessions, average waiting times, and access patterns. In this set the bridge lengths and the
batch intervals used for each video were determined according to the method presented in
Section 2.2.2. The default values of parameters used are summarized in Table 4. In the
following discussion, we considered the total buffer requirement the video server needed
to reserve for popular (service-guaranteed) videos as the measurement of interest. To be
independent of video formats, the sizes of buffers were all measured in time (minute).
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Table 4. The default values of parameters used.

Parameters Default value

Total number of videos 1000

Number of service-guaranteed videos 15

Movie length 90 (min)

Mean release rates 10% of the normal rate

Mean bridge lengths 8 (min)

Mean batch intervals 30 (min)

Bmin 1 (min)

Figure 7. Effects of buffer release rates.

5.1. The effects of buffer release rate, bridge length, and batch interval

For the first set of experiments, figures 7–9 show the effects of buffer release rates, bridge
lengths, and batch intervals on buffer-sharing autonomies, respectively. After comparing
these figures, the following observations can be made.

1. We first consider the effects of buffer release rates on various grouping policies. The
comparison is illustrated in figure 7, which shows the buffer requirement for various
policies as a function of buffer release rates. This figure shows that, as the release
rate increases, the total buffer requirement decreases quickly for all policies except
the baseline policy which does not share buffers between different sessions. The result
indicates that the proposed buffer-sharing technique does work to save buffer resource.
This figure also implies that a greater reduction in buffer requirement can be achieved
by using the symmetric grouping policy, than by using the asymmetric grouping policy.

2. Figure 8 depicts the buffer requirement for various grouping policies as a function of
bridge lengths. In this figure it can be seen that, as the bridge length increases, more
buffers are saved for policies NG, SG, and ASG as compared with the baseline policy.
This is because using buffer sharing allows sessions with larger bridge lengths to release
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Figure 8. Effects of bridge lengths.

Figure 9. Effects of batch intervals.

more buffer space to other sessions. However, since the maximum buffer size that can
be reused by other sessions is bounded byS∗L for each session, the maximum reduction
in total buffer requirement is also bounded. That is why the curves of NG, SG, and ASG
go in parallel with the curve of the baseline policy when the bridge length is greater than
10 min (In figure 8,S∗L + Bmin = 10). Figure 8 also shows that SG performs better
than ASG because it saves more buffer spaces.

3. For a fixed movie lengthL, a smaller batch interval implies a larger number of sessions
can be initiated within a movie cycle. Therefore, the buffer space released by one session
can be reused by more sessions and fewer total buffer spaces are required. The result
is illustrated in figure 9 which depicts the buffer requirement for various policies as a
function of batch intervals. In this figure, buffer requirement is reduced more substantially
for NG, SG, and ASG than for the baseline policy when the batch intervals were small.
Moreover, since the number of videos that can be grouped using symmetric grouping is
subject to inequality (3), an inappropriate batch interval selection may result in only a
small number of videos being grouped together. For example, in the case thatL = 90
andBt = 40, the maximumm that satisfies inequality (3) is only 1. This shows that for
some particular batch intervals in figure 9, there is only a small (or even none) reduction
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in buffer requirement for SG as compared with NG. The results in this figure also show
that the ASG policy is less affected by batch interval selection.

5.2. The effects of dedicated sessions, average waiting time, and access patterns

In the second set of experiments, the grouping policies were examined for different num-
bers of dedicated sessions, average waiting times, and access patterns. We assumed that
guaranteed services were required for the 15 most popular videos in a video server that
contained 1000 videos. The bridge lengths and the batch intervals used for popular videos
were determined according to the method presented in Section 2.3. The access probabili-
ties of videos were modeled using a Zipf distribution. In a Zipf distribution, ifN videos
are sorted according to the access frequency, then the access probability for thei th video
is given by pi = c/ i (1−θ), whereθ is the distribution parameter andc the normalization
constant. In our experiments,θ = 0.271 which has been shown to approximate the user
behavior at conventional video stores [5].

We first consider the effect of the number of sessions dedicated to the popular videos.
This is illustrated in figure 10(a), in which the desired average waiting time was assumed
to be 5 min. This figure shows that as the number of dedicated sessions increases, buffer
spaces required to provide guaranteed services decreases as expected, no matter which

Figure 10. Effects of dedicated sessions, average waiting time, and access patterns.
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policy is used. This figure also shows that, in comparison with the baseline policy, the
NG, SG, and ASG policies can save a large amount of buffer spaces on the server. These
reductions ranges from 20% to 30%, depending on the buffer-sharing technique and the
grouping policies used.

We now consider the effect of the desired average waiting time. Average waiting time
illustrated in figure 10(b) was measured on the assumption that the server dedicated 26
sessions to the 15 most popular videos. We observe that, the smaller the average waiting
time, the more buffers are saved by NG, SG, and ASG, but not the baseline policy. For
large average waiting times, since only few buffer spaces are needed to provide guaranteed
services, no buffer sharing could be performed to further reduce buffer requirement.

When considering the effect of video access patterns, we also assumed that the server
dedicated 26 sessions to the 15 most popular videos and the expected average waiting time
was 5 min. The result is illustrated in figure 10(c) which depicts the buffer requirements for
various policies as a function skew factorθ of Zipf distribution. In this figure we observe
that SG performs best over all the values ofθ , and then is ASG. The BL policy has the
worst performance in all cases. This shows that our buffer-sharing technique and grouping
policies do work in reducing buffer requirements for various access patterns. Asθ varies
from 0 to 1, the access probabilities vary from a highly skewed distribution to a uniform
distribution. Figure 10(c) also implies that the more skewed access patterns (the smaller
θ ), the less buffers are required to achieve the desired average waiting time.

5.3. Equal-interval autonomy vs. unequal-interval autonomy

According to inequalities (3) and (4), the asymmetric grouping policy, being able to group
more videos into a single autonomy, should save more buffer spaces than the symmetric
grouping policy. However, in figures 7–10, we see that the asymmetric grouping policy
always consumes more buffer spaces than the symmetric does. This is because the asym-
metric grouping policy may result in an unequal-interval autonomies which often need
more buffer resource than equal-interval ones (the result of the symmetric grouping policy).
We explored this by investigating the buffer size required by individual active sequences
belonging to these two kinds of autonomies. Figure 11(a) presents the buffer requirement
for each active sequence belonging to six different autonomies withn = 10. Note that an
autonomy withn = 10 means that it has ten different active sequences. The six autonomies
are differentiated by the variations in the intervals between their successive sessions. Six
variations 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 are shown in this figure. Note that variation 0.0
means an equal-interval autonomy and the others unequal-interval ones. For the case of
variation 0.0, figure 11(a) shows that all the active sequences need equal buffer sizes and,
as the variation increases, the difference between the buffer sizes required by different ac-
tive sequences also increases. Since the buffer requirement for an autonomy is determined
to be the maximum among the required buffer sizes of its active sequences, the result in
figure 11(a) shows that the autonomies with larger interval variations need more buffer
spaces than those with smaller interval variations. That is, an unequal-interval autonomy
needs more buffer resource than an equal-interval one. Similar results are also shown in
figure 11(b), which uses autonomies withn = 6 for illustration.
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Figure 11. Equal-interval autonomy vs. unequal-interval autonomy.

6. Conclusions

The advances in RAM technology have made it feasible to design a video server equipped
with large-sized buffers. This paper examined the issues of buffer management in a video
server that provides guaranteed services for viewers. We first proposed a model that uses
batchingcombined withbridging in video servers to support guaranteed services with
fewer I/O requirement. In order to reduce buffer spaces required for bridging, we proposed
abuffer-sharingtechnique that enables this model to provide the same services with fewer
buffer resource through the use of playback-rate alteration. We also presented how to de-
termine the bridge lengths and the batch intervals in this model according to the desired
average waiting time and the number of dedicated sessions. Additionally, in order to make
buffer-sharing efficient, several grouping policies were proposed, including baseline, non-
grouping, symmetric grouping, and asymmetric grouping policies. The benefits that each
policy yields were also analyzed and compared. The experimental results reveal that, by
using buffer-sharing techniques, a large number of buffer spaces can be saved on the video
server. This reduction in buffer requirement ranges from 20% to 30%. The results also indi-
cate that the symmetric grouping policy performs better than the asymmetric because more
buffers can be saved. In conclusion, we believe that our buffer management mechanism
provides guaranteed services on a video server with low cost.
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