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SUMMARY

This paper presents a micromechanics model for the elastic sti!ness of a non-spherical granular assembly.
The microstructural continuum model of ideal spherical assembly is extended for non-ideal assembly. The
presented work takes the e!ects of gradation, shape, and preferred orientation into account by introducing
a directional distribution function of branch-vector length. The microstructure of a granular assembly is
described by the distributions of packing structure, branch-vector length, and particle number per unit
volume. These distributions account or the random nature of a realistic granular material. The microfeatures
relevant to the description of non-deal particle assembly are elaborated. The in#uences of various direction-
dependent and direction-independent microfeatures on the elastic sti!ness are demonstrated. Hypothetical
non-ideal granular assemblies are used to study the e!ects of gradation, shape and preferred orientation.
Based on the proposed model, the paper discusses the inherent anisotropy in a non-ideal granular assembly.
The presented work also makes use of a generalized static hypothesis to estimate the contact-force
distribution for speci"c microstructure and stress state. With the estimated contact-force and the
Hertz}Mindlin contact theory, the elastic sti!ness of a particulate assembly can be evaluated. Hence, the
e!ects of geometric fabric and anisotropic stress state on the elastic sti!ness can be deliberated. Conse-
quently, the e!ects of geometric fabric and kinetic fabric of a natural granular material can be evaluated
independently. It is shown that the proposed model can reasonably capture the phenomena of inherent
anisotropy and stress-induced anisotropy of a non-spherical granular assembly under small strain. Copy-
right ( 1999 John Wiley & Sons, Ltd.
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INTRODUCTION

For the last two decades, many researchers have used micromechanics to study the mechanical
behaviours of granular materials from the microscopic view. In general, two types of micro-
mechanics approach have been widely used. Numerical simulation approach, such as the
discrete-element method1~4 or the discontinuous deformation analysis,5 takes particle interac-
tion into account explicitly by treating contact mechanisms numerically. The microstructural
continuum approach on the other hand, formulates the stress}strain relationship implicitly by



Figure 1. Framework and hypothesis of microstructural continuum approach: (a) upper bound; and (b) lower estimate

averaging over the microfeatures of granular assembly.6~9 The numerical approach is only
appropriate for simulating laboratory experimental result with relatively limited particle number
and boundary conditions. For solving practical engineering problems with numerous particles,
this approach becomes very ine!ective and is rarely used. Relatively, the microstructural con-
tinuum approach seems more appropriate for engineering applications.

The theoretical basis of microstructural continuum approach has become increasingly solid
owing to the e!orts devoted to granular materials from microscope view by the pioneers in
various research "elds. One of the fundamental works for simulating the global stress}stain
relationship by micromechanics is to link the global variables (e.g. stress or strain) with local
variables (e.g. contact force or relative contact displacement) in a concerned scale.10,11 The energy
conservation principle and equilibrium condition can be adopted to derive the localized relative
contact displacement in terms of strain and averaged stress with respect to contact force,
respectively.9 The uniform strain theory12 and the principle of virtual work6 are also e!ective for
deriving similar relationships. Consequently, the global constitutive law of a randomly packing
granular assembly can be derived in terms of microfeatures with a speci"ed local constitutive
law.13

Recently, more rigorous homogenization processes are developed for deriving the global
constitutive law. Three homogenization processes (de"ned as the process 0, 1 and 2, respectively)
are proposed by Emeriault and Cambou11 using three di!erent averaging and localization
operators. In an independent study, Chang et al.14 derive the upper bound and the lower
estimate, respectively, of the elastic constants of an ideal assembly (with mono-size spheres)
through the static and kinematic hypothesis, respectively. The kinematic hypothesis corresponds
to the strain localization, and the static hypothesis corresponds to the stress localization. Figure
1 illustrates the framework and hypothesis for deriving the upper bound and the lower estimate of
the initial elastic constants proposed by Chang et al.14

Some limitations still exist for applying the micromechanics model to engineering practice in
spite of the sound theoretical background. First, it is di$cult to experimentally determine the
microstructure of a granular material. The development of the technique for measuring micro-
structure of ranular materials in laboratory or in situ experimentally is far behind the develop-
ment of micromechanics theory. Pan and Dong15 presents a methodology for evaluating the
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geometric fabric of granular assembly from measured wave velocity. The enhancement of the
fabric characterization of natural granular material can make the microstructural continuum
model more attractive and applicable. Secondly, most of the micromechanics models assume that
the granular assembly is composed of equal-sized spherical particles. However, naturally depos-
ited granular materials are rarely mono-sized and spherically shaped. Due to the consequence of
deposition, a natural granular deposit tends to form a packing structure with more contact
normally distributed in the vertical direction.16 Also, the long-axis of non-spherical granular
particles in a natural deposit tends to align in the orientation of horizontal plane. The micro-
mechanics models for ideal assembly may miss the true fabric nature and fail to characterize the
microstructure of a natural deposit.

Very few researchers have studied the micromechanics of a granular assembly containing
non-spherical particles. Rothenburg and Bathurst3 as well as Ng4 use the discrete-element
stimulation to study the mechanical behaviour of the two-dimensional granular assemblies
composed of planar ellipitcal particles. The in#uences of particle's shape and preferred orienta-
tion on the mechanical behaviour of natural granular materials appear predominant. The e!ects
of shape and orientation also result in a certain degree of inherent anisotropy.17 Thus, the
microstructure (also termed &geometric fabric') of naturally formed granular materials involved in
a micromechanics-based model should include the distribution of branch-vector length (i.e. the
distance between the two adjacent particles' centroids) in order to account for the preferred
orientation of particles.

In this paper, the microstructural continuum model of the ideal assembly7 is extended for
non-ideal assemblies. The microstructure of the granular assembly includes the distributions of
packing structure, branch-vector length, and particle number per unit volume. They are repre-
sented by statistical expressions. The presented work implicitly takes e!ects of gradation, shape
and preferred orientation into account by a direction-dependent function of branch-vector length
distribution. Along with the contact normal distribution, the particles' shapes and orientations
a!ect the inherent anisotropy of a non-spherical granular assembly. In addition to the e!ect of
microstructure, the e!ect of anisotropic stress state on the elastic sti!ness is also elaborated.
A generalized static hypothesis is proposed to estimate the distribution of averaged contact-forces
magnitude in various direction (termed &kinetic fabric', as de"ned by Chen et al.18). Consequently,
the inherent anisotropy and the stress-induced anisotropy (a kind of the &induced anisotropy') of
a natural granular material under small strain can be evaluated independently.

MICROMECHANICS ELASTIC MODEL OF GRANULAR ASSEMBLY

Model for ideal granular assembly

The microstructural continuum approach can be used to model the macroscopic mechanical
behaviours of a randomly packing granular assembly.7 One can derive the homogenized (aver-
aged) constitutive law by combining the local constitutive law and the relations between the
averaged and local features of granular assembly in a representative volume. A complete
stress}strain curve of granular materials can be simulated incrementally through the homogeniz-
ation process as long as the microstructure and its evolution can be updated reasonably.19,20 The
microstructure evolution (accompanied with particle sliding, separation, and rotation) may result
in the non-linear behaviour of granular materials under large strain. The microstructure of
granular materials changes negligibly if the strain is small (e.g. 10~5}10~6). Hence, the initial
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Figure 2. The global and local coordinate system

elastic sti!ness tensor of granular assembly can be derived assuming an unchanged microstruc-
ture under low strain.

Chang7 derives the general form of granular assembly's sti!ness tensor as follows:
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where < is the representative volume of the granular assembly, M is the total contact number in
the volume <, lc
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in which k c
n
, kc
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, respectively, are the constant sti!nesses along the direction of n c

j
, s c

j
and t c

j
,

respectively. The three orthrotropic unit vectors n c
j
, sc

j
and tc

j
, shown in Figure 2, de"ne the local

co-ordinate system at the contact point. A discussion of the contact sti!ness will appear in the
latter part of the paper.

For an ideal assembly, the unit contact normal n c
j
and the unit branch vector nlc

i
are identical;

and the branch-vector length l c is twice of the sphere radius. As a result, the homogenized
sti!ness tensor of an ideal assembly has the following form:
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where r is the particle radius.
For a representative volume with a lost of contacts, a continuous density function E (nJ ) can be

introduced in equation (3) to account for the random variation of contact-normal directions in
the volume. The contact-normal density function E(nJ ) de"nes the contact density along the
nJ ("n

i
) direction among total contacts. E (nJ ) can be expressed as E (nJ )"NnJ /2M in which NnJ is the

total contact number along the nJ direction. Rewriting equation (3) in an integral form and
including E (nJ ), one can obtain the following expression:
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In the above equation, :
)
( ) ) )E (nJ ) d)":n

0
:2n
0

( ) ) )E(a, b ) ) sinbdadb, d) denotes an elementary

angle equal to sinbdadb ; and ) is the unit sphere de"ned by 0)a(2n, 0)b(n. The density
function E(nJ ) is centro-symmetric.

Assuming a linear local constitutive law, Chang and Misra13 adopted the kinematics hypothe-
sis to derive a closed-form solution of equation (4) for randomly packing assemblies. Their
homogenized sti!ness tensor is an upper bound solution. Recently, Chang et al.14 derived a lower
estimate of elastic tensor in an analytical form under the static hypothesis.

Extended model for non-ideal granular assembly

Naturally deposited granular materials are seldom mono-sized and spherical. Only limited
researchers3,4,21 have studied the mechanical behaviour of two dimensional granular assemblies
composed of planar elliptical particles. The in#uence of particle's shape and orientation on the
mechanical behaviour of natural granular materials appear predominant. Using statistical
approach, Oda et al.22 studied the microstructure of random assemblies composed of graded
spherical particle. They suggested a density function to estimate the distribution of the branch
lengths in terms of the particle-size distribution. Moreover, the microstructure of an assembly
composed of graded non-spherical particles is far more complicated. By introducing statistical
fabric distributions, the foregoing elastic sti!ness of an ideal assembly will be extended to model
the materials composed of graded and non-spherical particles.

The branch-vector lengths in equation (1) are no more constant for a graded, non-spherical
particles' assembly. To account for the e!ects of gradation, shape and preferred orientation, the
summation in equation (1) over contacts (from 1 to M ) in the representative, volume should be
replaced by summing over each direction of contact normal and each length of branch vector. Let
us divide all the directions of contact normal into P sets and divide all the branch-vector lengths
along each nJ a direction into Qa sets. Equation (1) can be expressed in the following summation
form:
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In the above equation, NnJ al is the contact number along the nJ a direction with a branch-vector
length equal to l. The deviation tensor r

pqik
accounts for the deviation of branch vector and the

contact-normal directions for a non-spherical granular assembly, it satis"es the condition
nlI

i
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q
. In addition to E(nJ ) which is de"ned previously, a density function

gnJ (l)"NnJl /NnJ can be introduced in which NnJ a is the contact number along the nJ a direction. The
function E (nJ ) is the contact-normal density function. The function gnJ (l) is the distribution
function of branch-vector length. Consequently, equation (5) can be formulated in an integral
form as follows:
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The branch-vector length distribution function gnJ (l) implicitly re#ects the e!ects of gradation,
shape and preferred orientation; it also accounts for the orientation of particles. The integration
of branch-vector length over l enables the consideration of branch-vector length #uctuation.
Clearly, the function gnJ (l ) must be direction dependent for a randomly distributed non-ideal
granular assembly. A Fourier series expansion can describe the two-dimensional directional data.
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Similarly, a spherical harmonics expansion, works for three-dimensional directional data. Fabric
tensor,23 i.e. the polynomial expansion of the unit vector, is an another way of expression. In
literature the ways for describing contact-normal distribution has extensively been dis-
cussed.13,23~25 A discussion on the representation of branch-vector length distribution function
gnJ (l) will appear in the next section.

Equation (6) takes into account the gradation and orientation e!ects on the elastic behaviour
of a graded and non-spherical granular assembly. If the deviation between the contact-normal
and branch vector is neglected (i.e. assuming that the contact normal and the branch vectors are
collinear, or r

pqik
"I

pqik
), equation (6) reduces to
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For an uniform spherical granular assembly, the branch-vector length is unique. Thus, equation
(7) further reduces to equation (4).

STATISTICAL DESCRIPTION OF MICROSTRUCTURE OF A NON-IDEAL
GRANULAR ASSEMBLY

From equation (6), the e!ects of gradation, shape, and preferred orientation of natural granular
materials on the elastic sti!ness tensor mainly arises from (1) the total contact number per unit
volume M/<, (2) the distribution function of branch-vector length gnJ (l ), and (3) the deviation
tensor r

pqik
. These items are discussed in the following context, separately.

The total contact number per unit volume M /V

Oda et al.22 express the total contact number per unit volume M/< by the following equation:

M

<
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<
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M

Pl
"dl )

NM t
2

(8)

where Pl is the total particle number in the volume <, dl is the total particle number per unit
volume, and NM t is he average co-ordination number. Oda26 shows that NM t does not depend on the
grain-size distribution. Experimental data also shows that the average co-ordination number NM t
has a good correlation with void ratio e.26 Many empirical equations are proposed to correlate
e with NM t.26,27

The particle number per unit volume dl is

dl"
Pl

(1#e) )<
4

(9)

where <
4
is the volume of solid. The microfeatures, including particle's packing, gradation, shape,

and preferred orientation determine the void ratio of a granular assembly. The volume of solid
<
4
can be calculated by integrating over the production of (i) the volume of a particle with the size

r, (ii) the total particle number, and (iii) the size density function. Thus, this integration yields

<
4
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rM
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where r
.

and r
M
, respectively, are the minimum and maximum of particle radius, respectively;

l
4
(r) is the volume of a particle with the size r; f p (r) is the size density function satisfying

:rM
r.

f p (r) dr"1. The size density function f p(r) accounts for the gradation e!ect in a non-uniform
sized assembly.22

For an arbitrarily shaped particle, one may consider an equivalent spherical particle with the
same volume. An equivalent radius r
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satisfying l
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, is de"ned. Using the equivalent

radius, the particle number per unit volume dl yields the following form:
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where f p (r
%
) is the modi"ed size density function for a non-spherical granular assembly. With

equation (11), the parameter dl can take the e!ects of gradation and shape into account.
The formulation of f p(r) and f p (r

%
) follows. The (particle-) size density function f p (r) in equation

(10) is direction independent. For a spherical granular assembly, f p (r) can be derived from the
(particle-) size density function by volume f l (r) as follows:

f p (r)"
f l (r)/r3

:rM
r.

f l (r) dr/r3
(12)

By integrating f l(r) over r, the gradation function F (r) represents the particle-size-distribution
curve of natural granular materials.

F (r)": r
r.

f l(r) dr (13)

The density function f l (r) and the gradation function F (r) are usually expressed as functions of
particle diameter o instead of radius r. A conversion can be made by F(o)"F (r) and
f l(o)"f l(r)/2. Feda28 presented analytical expression of f l(r) of natural granular materials by
adopting the normal distribution, log-normal distribution or semi-empirical formulas. Each
di!erent distribution function will simulate a di!erent type of gradation curve for a material
formed in a di!erent genetic process.

For a non-spherical granular assembly,the equivalent size density function of f p(r
%
) in equation

(11) can be deduced from the gradation curve with a modi"cation on particle sizes. A gradation
curve correlates the accumulated volume faction to the particle size in the shortest dimension.
Feda28 estimated this grain size by multiplying the equivalent diameter o

%
("2r

%
) by a reduction

coe$cient dependent on particle shape.29 The conversion of mass fraction into volume fraction
for a gradation curve has no problem as long as the speci"c gravity of the granular material is
known. As a result, one can easily derive the equivalent size density function f p (r

%
) from the

gradation curve of a natural granular material.

The distribution function of branch-vector-length gnJ (l)

The function gnJ (l ) represents the variation of the branch-vector length in various directions.
This function depends on the particle size, shape and orientation. For a spherical particle
assembly, gnJ (l) is directly related to a function of the material's gradation curve. For a non-
spherical particle assembly, gnJ (l) can be represented by combining a direction-independent
distribution function g (l) and a direction-dependent weighting function= (nJ ), as follows:

gnJ (l)"g(l ) ?=(nJ ) (14)
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where ( ) )? ( ) ) denotes a certain form of mathematical operation. For an isotropic branch-vector
length distribution (=(nJ )"1), equation (14) can reduce to

gnJ (l)"g(l ) (15)

Taking the total particle contacts in a granular assembly as the statistical sample, a distribution
function of branch-vector length g505!-(l) can be evaluated. This distribution function is direction
independent and can be calculated from the size density function f p(r).22

g505!- (l)"
:l~rM
l~r.

f p (r) ) f p(l!r) dr

:2rM
2r.

:l~rM
l~r.

f p(r) ) f p (l!r) drdl
(16)

Using equations (12), (13) and (16), one can derive g505!-(l) from the gradation curve of a granular
assembly.

The term gnJ (l ) represents a distribution function of the branch-vector length in a speci"c
direction nJ . Hence, the statistical sample represents all the branch vectors in the nJ direction. If the
branch-vector length distributes equally in all directions, the branch-vector length distribution
function gnJ (l )"g (l) can be approximated by the following equation:

g (l)"
[g505!-(l)]1@3

: [g505!-(l )]1@3dl
(17)

For a long-normal distribution function f l(r) such as
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the function g (l) remains a long-normal distribution function as follows:
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where A and A@ are constants satisfying : f l(r) dr": g(l ) dl"1, r
50

and l
50

are the sample means,
s
r

and sl are the standard deviations of f l (r) and g (l) calculated for hypothetical granular
assemblies of long-normal distributed f l(r) are presented. Table I lists the r

50
and s

r
for each

hypothetical granular assembly. Six distribution curves calculated from equation (13) are shown
in Figure 3. Figure 4 shows the calculated curves of f p (r), g505!-(l ), and g(l ) with the curve
numbered in Figure 3.

Due to the process of natural deposition, the branch-vector length distribution along various
directions can be di!erent. Oda et al.22 discussed branch-vector length distribution only for
isotropic distributed spherical particulate assembly. So far, the in#uence of geometric fabric on
the elastic constants for non-spherical assembly was only studied by means of numerical
stimulation.3,4 It is also possible to investigate this problem using the extended model, equations
(6) and (7), incorporating a statistical representation of equation (14).

The distribution of the branch-vector length gnJ (l) can be described by a direction-dependent
density function such as equation (14). A possible form of equation (14) is to introduce a direction-
dependent lnJ

50
and snJl into equation (19), lnJ

50
and snJl are the l

50
and sl , respectively, along the

direction nJ . Both a preferred orientation of non-spherical particles and a directionally distributed
gradation may result in the dependency of lnJ

50
on direction. The direction-dependent snJl re#ects

the variation of branch-vector length in the various direction arising from gradation. Both the
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Table I. Sample mean and standard deviation of hypothetical granular assemblies in Figure 3

Curves in Figure 3 1 2 3 4 5 6
Mean size r

50
10 mm 2 mm 1 mm 5 mm 5 mm 5 mm

Standard deviation of size s
r
(C

u
) 1)5(1)9) 1)5(1)9) 1)5(1)9) 2)0(2)9) 1)5(1)9) 1)2(1)3)

Figure 3. Gradation curve of hypothetical granular assemblies

sample mean and the standard deviation of branch-vector length distribution function are
independent of direction if the particles' gradation and orientation are uniformly distributed.

The deviation tensor r
pqik

For a non-spherical particle assembly, the directions of contact normal and branch-vector are
di!erent. Their deviation is due to the shape and orientation of non-spherical particles. The
deviation tensor r

pqik
in equation (6) accounts for this e!ects of shape and orientation. However, it

is very di$cult (if not possible) to evaluate r
pqik

analytically or quantitatively due to the random
nature of particle shapes and orientation. Microscopic observation and numerical simulation
may be the possible means for exploring this problem. Rothernburg and Bathurst3 formulated the
stress homogenization (averaging over the contact forces) of a bi-axially loaded elliptical partic-
ulate assembly. In their formulation, the deviation between the contact normal and the contact
vector (i.e. the vector connecting the contact point and the particle centroid) is neglected. They
found that the discrepancy between the DEM simulated results and the calculated results of stress
is negligible before failure. The e!ect of r

pqik
on the elastic sti!ness tensor needs further investiga-

tion. However, the presented study does not attempt to explore this aspect in detail. In the latter
parametric study, we are going to assume r

pqik
"I

pqik
(i.e. the collinear of contact normal and

branch vectors) for the sake of convenience. Rothenburg nd Bathurst3 data supports the
adequacy for assuming r

pqik
"I

pqik
in a small strain condition. It should be pointed out that, only

under this assumption, equation (6) can reduce to equation (7). The collinear assumption is not
required in the extended model if one adopts equation (6) instead of equation (7) with a deter-
mined r

pqik
for a non-spherical particulate assembly.
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Figure 4. Density functions of hypothetical granular assemblies in Figure 3

ANISOTROPY DUE TO STRESS STATE

The initial kinetic fabric results in the anisotropy of elastic sti!ness of a granular assembly if the
force-dependent contact sti!ness is adopted in equation (6). This type of material anisotropy is
stress-induced.

Force-dependent contact stiwness

The contact sti!ness can be assumed to be either contact-force independent (linear local
constitutive law) or contact-force dependent (non-linear local constitutive law). The
Hertz}Mindlin contact theory30 constitutes a relation of the force-dependent contact
sti!ness. One may further take particle sliding and separation into account by imposing a
local yielding condition on the contact point.31 The Hertz}Mindlin contact theory is adopted
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in the study. Based on this theory, the normal and shear contact sti!nesses take the following
forms:

k
n
"1)4423 )G2@3

4
) (1!l
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)~2@3 ) (2 )R
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)1@3 ) ( f
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)1@3 (20)
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4
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where G
4
and l

4
are the elastic constants of particle solid; f

n
and f

r
"J f 2

4
#f 2

t
are the normal

and shear contact-forces, respectively; /k is the particle friction angle; and R
%

is the equivalent
relative radius. The terms f

n
, f

4
and f

t
are the contact-force components acting at the contact

point in the local co-ordinate system. The contact sti!ness ratio j is equal to 2(1!l
4
)/ (2!l

4
) if

local slippage at the contact region is ignored. The relative radius of each contact of spherical
granular assembly, de"ned as R"1/(1/R

1
#1/R

2
), depends on the neighbouring particles sizes.

R is equal to r/2 for an ideal granular assembly with the particle radius equal to r. In this study,
a direction-dependent equivalent relative radius R

%
"(1/4) ) l is proposed to account for the

e!ects of particle size, shape and preferred orientation of a non-ideal granular assembly on the
contact sti!ness. The contact sti!nesses calculated from equations (20)}(21) are stress dependent
and non-linear. By adopting these equations for contact sti!ness, equation (6) can capture the
stress-induced anisotropy in the granular assembly once the contact-force distribution is known.
The contact-force distribution in a granular assembly depends on the geometric fabric, local
contact sti!ness, and stress (or strain) history of the particulate assembly. For a non-ideal
assembly (e.g., graded, non-spherical, random distributed, stress-dependent, etc.), it is hardly
possible to obtain an exact (closed-form) solution of the contact-force distribution. The contact-
force distribution, however, may be estimated by the method presented subsequently.

Estimation of contact-force distribution

It is possible to estimate the contact-force distribution in a representative volume by the
concept of homogenization. Neglecting the angular deviation of branch vector and contact
normal, the contact-force distribution fM nJ

j
(l) can be estimated by the following equation (derived

in the Appendix I):

fM nJ
j
(l)"

1

(M/< ) ) l
) p

pj
)A

p i2i32i2m
) n

i2
n
i3
2n

i2m
(22)

where fM nJ
j
(l ) is the contact force in the nJ direction with a branch-vector length equal to l;

fM nJ
j

(l)"fM nJ
n
(l ) ) n

j
#fM nJ

4
(l) ) s

j
#fM nJ

t
(l) ) t

j
. The tensor A

p i2i32i2m
is the inverse tensor of the "rst-kind

fabric tensor of rank n; hence the relation A
p i2i32i2n

)N
i i2i32i2m

"d
ip

holds.
For the fabric tensor of rank 2, equation (22) becomes

fM nJ
j
(l)"

1

(M/< ) ) l
) p

ij
)A

ik
) n

k
(23)

where A
ik
)N

kq
"d

iq
. Equation (23) is identical with the static hypothesis for the ideal granular

assembly proposed by Chang et al.14 Kanatani23 expresses the fabric tensor of the "rst kind in the
form of N

ij
" 2

15
) d

ij
#1

3
)D

ij
; this tensor represents the sample mean of a directional data set, i.e.

N
ij
"::

)
n
i
) n

j
)E(nJ ) d). Then, the tensor A

ik
is equal to ( 2

15
) d

ik
#1

3
)D

ik
)~1 . Equation (22) is

a generalized form of the static hypothesis. As a result, equation (22) can account for the
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anisotropy induced by the anisotropic stress state and can approximate the contact-force
distribution. The calculation using equation (22) can only be regarded as an estimation of the
exact contact force in a small strain condition. The estimated contact force is used to evaluate the
stress-dependent local sti!ness. It has to be pointed out that the real distribution of contact forces
in a stressed granular assembly is stress path dependent and highly complicated.52 The fomula-
tion of the present micromechanics model is based on the kinematic hypothesis, while the
estimation of contact force distribution is based on a static hypothesis. This aspect may result in
a discrepancy of the estimated contact force and the real ones. Hence, equations (22)}(23) may
not be generally applicable for complex stress (or strain) paths. For the sake of simpli"cation,
equation (23) is adopted in the parametric study. The estimated contact-force is utilized to
evaluate the force-dependent local sti!ness.

The anisotropy of the granular materials' mechanical behaviour can be categorized into (i)
inherent anisotropy, and (ii) induced anisotropy. The inherent anisotropy is a physical character-
istic inherent of a material independent of the applied strains. On the contrary, the induced
anisotropy is a physical characteristic exclusively due to the strains associated with an applied
stress state.33,34 The presented model simulates the inherent anisotropy of natural granular
materials by taking material's anisotropic microstructure into account; the anisotropic e!ect of
geometric fabric is modelled by the anisotropic distributions of contact-normal and branch-
vector length. On the other hand, the initial kinetic fabric (i.e. the anisotropic contact-force
distribution) takes the e!ect of the anisotropic initial stress on the elastic sti!ness into account.
The subsequent section examines the e!ects of the microfeatures including geometric and kinetic
fabric on the initial elastic sti!ness of natural granular materials.

PARAMETRIC STUDY OF MICROFEATURES

In the following parametric study, the stress}strain relationship adopts the Voigt's notation, i.e.
*p

m
"C

mn
)*e

n
, in which *p

m
"[*p

11
, *p

22
, *p

33
, *q

12
, *q

13
, *q

23
,]T is the stress increment

vector and *e
m
"[*e

11
, *e

22
, *e

33
, *c

12
, *c

13
, *c

23
,]T is the strain increment vector. Both

m and n are tensor index (1}6). Figure 2 illustrates the global co-ordination system.

The ewect of geometric fabric

The e!ects of gradation, shape, and preferred orientation on the elastic relation of a non-ideal
particular assembly are demonstrated subsequently. To simplify microstructure description, the
following assumptions are made in this sub-section.

(a) The contact-normal distribution function E (nJ ) can be approximated by the third kind
fabric tensor of rank two,23 i.e. E (nJ )"(1#D

r4
) n

r
) n

4
)/4n.

(b) With an initial isotropic compression p
c
, the normal contact-force distributes uniformly

and the shear contact-force does not exist.

In the following calculation for the parametric study, material parameters t
4
"0)21,

G
4
"31 Pa, and e"0)5744 are used. The average co-ordination number NM t is calculated from an

empirical relationship e"1)66!0)125 )NM t, suggested by Chang et al.35
(1) E+ect of gradation: Hypothetical granular assemblies composed of graded and randomly

distributed spheres with branch-vector length distributions representing in the form of equation
(14) are utilized for demonstrating the gradation e!ect. The packing structure and branch-vector-
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length distributions are assumed isotropic; hence, equation (14) reduces to equation (15). The
initial sti!ness for the hypothetical assemblies presented in Figure 3 are calculated for
p
#
"28 kPa. For the assemblies corresponding to the curves 1}3 in Figure 3, the uniformity

coe$cients are identical (C
6
"1)9) but their mean grain sizes are di!erent. For assemblies

corresponding to curves 4 (C
6
"2)9), 5 (C

6
"1)9) and 6 (C

6
"1)3), the mean grain sizes are

identical, but their uniformity coe$cients are di!erent. The calculated sti!ness components for
all the hypothetical assemblies are C

33
"C

11
"C

22
"5465 MPa, C

44
"C

55
"C

66
"2665 MPa,

and C
13
"C

23
"C

12
"134 MPa, despite the di!erence in either uniformity or mean grain

size.
The above results reveal a few phenomena. First, it appears that the initial sti!ness of

a granular assembly with a constant void ratio remains unchanged even with di!erent mean grain
sizes. Chang et al.27 also "nd that the elastic sti!ness of an ideal granular assembly is independent
of the particle size if the Hertz contact theory is adopted in a micromechanics-based model.
Second, the initial elastic sti!ness is independent of the uniformity of granular assembly in case
that e and NM t remain constant. This argument is supported by the experimental data of
Iwasakiand Tatsuoka.36 Their data comes from the resonant-column tests on uniform clean sand
(with 1)31(C

6
(1)80 and 0)162 mm(D

50
(3)2 mm). Iwasaki and Tatsuoka36 report that the

particle size and gradation have little e!ect on the dynamic shear modulus (eiquivalent to the
initial shear modulus) of sands. Since NM t correlates very well with the void ratio and does not
depend on the grain-size distribution,26 it can be argued tht the primary e!ect of gradation (on
the dynamic shear modulus) arises from its in#uence on the void ratio which largely a!ects the
magnitude of the sti!ness tensor. Chang et al.35 demonstrated the similar e!ect of void ratio on
the dynamic shear modulus.

It should be noted that the presented model does not consider the deformation mechanism of
a gap-graded granular assembly (such as bimodal particle size distribution). Nor does it take
clay-sized "nes contained in an assembly into account.

(2) E+ects of shape and preferred orientation: Hypothetical non-spherical assembly with
a branch-vector length distribution represented in a special form of equation (14) is used to study
the e!ects of particle's shape and preferred orientation. The function gnJ (l) accounts or the e!ects
of the particle shape and preferred orientation. For a mono-sized non-spherical assembly, there is
no #uctuation of branch-vector length along nJ . Hence, gnJ (l) can be represented as a Dirac delta
function,15 such as gnJ (l)"d(l!lN

%
)=r (nJ )), in which =r(nJ )"(1#Dr

r4
) n

r
) n

4
) is a weighting

function re#ecting the combined e!ects of particles' #atness and preferred orientation; Dr
r4

is
a third kind fabric tensor of rank two; lN

%
is the equivalent (averaged) branch-vector length. For

a horizontally deposited granular material, the direction-dependent weighting function
=r(nJ )"(1#Dr

r4
) n

r
) n

4
) is transversely isotropic; it requires Dr

ij
"0 for iOj and

2Dr
11
"2Dr

22
"!Dr

33
. Figures 5(a)}5(d) are the three-dimensional plots of the direction-depen-

dent weighting functions approximated by various fabric tensors Dr
ij
. Figure 5(a) (Dr

33
"0)

displays a uniform (isotropic) distribution of average branch-vector length. In the cases corres-
ponding to Figure 5(b) (Dr

33
"!0)3), Figure 5(c) (Dr

33
"!0)6), and Figure 5(d) (Dr

33
"!0)9),

the average branch-vector length along the horizontal direction is longer than that along the
vertical direction (implying that the preferred orientation of the particles' long axis is along the
horizontal direction). The direction-dependent weighting functions in Figure 5(a)}(d) represent
mono-sized granular assemblies with various particles' #atness and preferred orientation. Figure
5(e) shows a transversely isotropic distribution function E (nJ )"(1#D

r4
) n

r
) n

4
)/4n of contact

normal with the fabric tensor D
33
"0)3.
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Figure 5. (a)}(d) Weighting function= (nJ ) for (a) Dr
33
"0; (b) Dr

33
"!0)3; (c) Dr

33
"!0)6; (d) Dr

33
"!0)9; (e) Distribu-

tion of contact normal E(nJ ) for D
33
"0)3

Figure 6. Calculated sti!ness components versus fabric tensor Dr
33

The distribution of the branch-vector length in various directions implicitly takes the e!ects of
shape and preferred orientation into account. Figure 6 illustrates the in#uence of anisotropic
distribution of branch-vector length on the elastic sti!ness of granular assemblies. The packing
structure of the assembly is assumed isotropic. Despite of isotropic packing structure and stress
state ("28 kPa), it is noted that the degree of anisotropy correlates with the anisotropy resulted
from the combined e!ects of shape and preferred orientation. The e!ect of geometric fabric
(including packing structure and branch-vector length distributions) is shown in Table II.
The degree of anisotropy is evaluated by the sti!ness ratio C

11
/C

33
and C

66
/C

44
. C

11
and C

33
are the normal sti!ness on the horizontal plane and vertical plane, respectively; C

66
and C

44
are
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Table II. The e!ect of geometric fabric on the sti!ness ratio (ignoring kinetic fabric)

Components of fabric tensors describing the packing Sti!ness ratio Sti!ness ratio
structure and distribution of branch-vector length C

11
/C

33
C

66
/C

44

Case 1 D
33
"0)0, Dr

33
"!0)3 1)452 0)845

Case 2 D
33
"0)3, Dr

33
"0)0 0)833 1)099

Case 3 D
33
"0)3, Dr

33
"!0)3 1)226 0)909

Table III. E!ect of kinetic fabric on the sti!ness ratio (for D
33
"0)3, Dr

33
"!0)3)

Conditions Sti!ness ratio C
11

/C
33

Sti!ness ratio C
66

/C
44

Case 1 Kinetic fabric is isotropic 1)226 0)909
Case 2 Kinetic fabric is considered,

no local partial slippage 1)254 0)900
Case 3 Kinetic fabric is considered,

with local partial slippage 1)279 0)902

the shear-sti!ness component on the vertical plane and horizontal plane, respectively. It is noted
in case 1 of Table II that the sti!ness ratio C

11
/C

33
of a granular assembly with isotropic packing

is larger than 1)0 if the distribution of the branch-vector length is anisotropic and the major
principal plane is horizontal. As seen in case 3 of Table II, a packing structure even with more
contact normal in the vertical direction can still have higher sti!ness in the horizontal direction as
long as the branch-vector length is longer in the horizontal direction. Using the presented
statistical description of microstructure, the calculated shear wave velocity propagating along the
horizontal direction is higher than the shear wave velocity along all other directions.15 This trend
satisfactorily agrees with the experimental evidence,37 quantitatively. It also demonstrates the
appropriateness of using two separate fabric tensors, D

ij
and Dr

ij
, respectively, to account for the

contact normal distribution and the branch-vector length distribution of a non-spherical granu-
lar assembly. Statistical expressions of these distributions can reasonably account for the random
nature of a realistic granular material.

The ewect of kinetic fabric

The kinetic fabric (contact-force distribution) results in the stress-induced anisotropy in initial
sti!ness. The initial kinetic fabric is a function of microstructure and the initial stress state of
granular assembly (noticeable from equations (22)}(23)). A demonstration and discussion of the
e!ect of kinetic fabric on the elastic sti!ness of granular assembly follow. Two cases are discussed,
they are (1) anisotropic geometric fabric under isotropic stress state and (2) isotropic geometric
fabric under anisotropic stress state. Assumptions (a) and (b) in the last sub-section remains in the
following demonstration.

(1) Isotropic stress state with anisotropic geometric fabric: To begin with, Table III demon-
strates the e!ect of kinetic fabric assuming the same microstructure of the granular assembly in
the case 3 of Table II. The granular assembly has the packing structure as Figure 5(e) and the

MICROMECHANICS MODEL FOR GRANULAR ASSEMBLY 1089

Copyright ( 1999 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech., 23, 1075}1100 (1999)



Figure 7. (a) Normal contact-force distribution for granular assemblies with di!erent D
33

and Dr
33

. (b) Shear contact-
force distribution for granular assemblies with di!erent D

33
and Dr

33
. (c) Normal contact-sti!ness distribution for granular

assemblies with di!erent D
33

and Dr
33

. (d) Shear contact-sti!ness distribution for granular assemblies with di!erent
D

33
and Dr

33

density function accounting for the e!ects of shape and preferred orientation as Figure 5(b). The
isotropic con"ning stress is 28 kPa and the friction angle /k is 123. In case 2 of Tables III local
partial slippage at the contact region is ignored (i.e. no consideration on the reduction in the shear
contact sti!ness due to the contact shear) for calculating the sti!ness ratio j. By comparing cases
1 and 2 of Table III, it is noted that the degree of anisotropy is slightly higher when the kinetic
fabric is considered. Case 3 of Tables III shows the initial sti!ness ratio when local partial
slippage is considered. It can be noted from equation (21) that the shear contact sti!ness decreases
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Figure 7. (continued)

as local partial slippage occurs. The local partial slippage in the contact region obviously
in#uences the degree of anisotropy.

The normal and shear contact force are normalized by fM o
n

("3 )< )p
#
/2 ) r )M) (i.e. the normal

force for an ideal assembly subjected to an isotropic stress p
#
) in order to demonstrate the kinetic

anisotropy of granular assembly. Figures 7(a) and 7(b) present the distribution of the normalized
normal and shear contact force for various microstructures. The kinetic fabric is anisotropic
despite of the isotropic stress state. It is noted in Figure 7(b) that no shear contact force exists for
isotropic packing structure. The in#uence of kinetic fabric on the contact sti!ness is also
demonstrated. The normal and shear contact sti!nesses are normalized by k

n
"1)4423 )

G2@3
4

) (1!l
4
)~2@3 ) r1@3 ) ( fM o

n
)1@3 (i.e. the normal contact sti!ness for an ideal assembly subjected to
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Figure 8. (a) Normal contact-force distribution for ideal granular assemblies with di!erent D
33

under isotropic stress.
(b) Shear contact-force distribution for ideal granular assemblies with di!erent D

33
under isotropic stress. (c) Normal

contact-sti!ness distribution for ideal granular assemblies with di!erent D
33

under isotropic stress. (d) Shear contact-
sti!ness distribution for ideal granular assemblies with di!erent D

33
under isotropic stress

isotropic stress p
#
). Figure 7(c) compares the normalized normal contact-sti!ness distribution of

the granular assemblies with various microstructures. It shows that the normal contact sti!ness is
hardly in#uenced by the shape-induced fabric, Dr

33
, regardless of what has the local partial

slippage is considered or not Figure 7(d) shows that the local slippage at the contact region has
a reducing e!ect on the normalized shear contact sti!ness.

Figures 8(a)} (d) demonstrate the e!ect of kinetic fabric clearly. These "gures present the
distribution of normalized contact force and contact sti!ness of an ideal granular assembly with
anisotropic packing structure under isotropic stress state. It is noted in Figure 8(a) that the
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Figure 8. (continued)

distribution of normalized normal contact force is not isotropic even under an isotropic stress
state. The more contact normal distributed in the vertical direction, the less the contact force
needs to be shared for each contact point. The normalized shear contact force of granular
assembly increases with the increasing degree of anisotropy in packing structure, which is shown
in Figure 8(b). The normalized normal and shear contact sti!nesses are shown in Figures 8(c) and
(d), respectively. Table IV lists the sti!ness ratio of the three di!erent packing structures. It
illustrates that the anisotropy of deformation increases with an increasing D

33
.

(2) Anisotropic stress state with isotropic geometric fabric: The e!ect of the anisotropic stress
state on the elastic sti!ness of an ideal granular assembly with isotropic geometric fabric is further
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Table IV. E!ect of packing structure on sti!ness ratio of ideal granular assembly under isotropic con"ning
pressure

Components of fabric tensors Sti!ness ratio C
11

/C
33

Sti!ness ratio C
66

/C
44

D
33
"0)0 1)000 1)000

D
33
"0)3 1)857 1)091

D
33
"0)5 1)744 1)160

Figure 9. (a) Normal contact-force distribution for ideal granular assemblies with isotropic packing structure under
anisotropic stress. (b) Shear contact-force distribution for ideal granular assemblies with isotropic packing structure under
anisotropic stress. (c) Normal contact-sti!ness distribution for ideal granular assemblies with isotropic packing structure
under anisotropic stress. (d) Shear contact-sti!ness distribution for ideal granular assemblies with isotropic packing

structure under anisotropic stress
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Figure 9. (continued)

studied. The friction angle /k is also set 123 in the following illustration. The assembly's packing
structure is assumed isotropic. Figures 9(a) and (b) show the in#uence of anisotropic stress state
on the normalized contact forces. An anisotropic initial stress state tends to induce an anisotropic
distribution of the normal and shear contact forces. The stress ratio (SR) in Figure 9 is de"ned as
the major principal stress over minor principal stress, i.e. p

33
/p

11
(p

11
"p

22
, under a biaxial

condition). The "rst invariant of stress tensor I
1
"(p

33
#2p

11
)/3 remains constant. The higher

the stress ratio (SR), the more concentration of normal contact force in the major principal
direction. The pattern of normal and shear contact-for distribution agrees with the DEM
simulated results.3 The resulting normalized contact sti!ness is anisotropic (see Figures 9(c) and
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Table V. E!ect of stress ratio on sti!ness ratio of ideal granular assembly

Stress ratio SR Sti!ness ratio C
11

/C
33

Sti!ness ratio C
66

/C
44

1)0 1)000 1)000
1)5 0)972 1)082
2)0 0)940 1)181

(d)) according to equations (20 and (21). The initial sti!ness of an ideal granular assembly is also
anisotropic for an anisotropic initial stress state. Table V lists the sti!ness ratio of the three
di!erent stress ratio SR. It shows that the anisotropy of deformation increases with an increasing
SR.

SUMMARY AND CONCLUSIONS

This paper presents a micromechanics model for the elastic sti!ness of a non-spherical granular
assembly. The microstructural continuum model of the ideal assemblies7 is extended for
non-ideal assemblies. The presented model implicitly takes the e!ects of gradation, shape,
and preferred orientation into account by a direction-dependent branch-vector length distri-
bution function. The microstructure of the granular assembly is described by the distributions
of packing structure, branch-vector length, and particle number per unit volume. Statistical
expressions of these microfeatures account for the random nature of realistic granular materials.
The microfeatures relevant to the description of non-spherical particulate assembly are
elaborated. The in#uences of various direction-dependent and direction-independent micro-
features on the elastic sti!ness are demonstrated. Hypothetical granular assemblies are used
to study the e!ects of gradation, shape, and preferred orientation. Based on the proposed
model incorporating two separate fabric tensors, the paper discusses the inherent anisotropy
of a non-spherical granular assembly.

The presented work also makes use of a generalized static hypothesis to estimate the con-
tact-force distribution for speci"c microstructure and stress state. With the estimated
contact force and the Hertz}Mindlin contact theory, the elastic sti!ness of a particulate assembly
can be evaluated. Hence, the e!ects of geometric fabric and anisotropic stress state on the
elastic sti!ness can be deliberated. Consequently, the inherent anisotropy and the stress-
nduced anisotropy of a natural granular material under small strain can be evaluated indepen-
dently.

It is shown that the proposed model can reasonably capture the phenomena of inherent
anisotropy and stress-induced anisotropy of a non-spherical granular assembly under small
strain. Application of the proposed model on natural granular materials appears
promising.15
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APPENDIX I

Proof of the generalized kinetic hypothesis

The average stress p
ij

can be obtained by summing the product of individual contact-force f c
j

and branch vector l c
i
(at the cth contact) on the basis of equilibrium condition9 or virtual work

theory6 as follows:

p
ij
"

1

<

M
+
c/1

l c
i
) f c

j
(24)

Introducing the density function of contact-normal and branch-vector length distribution and
rewriting in an integral form, equation (24) becomes

p
ij
"

2 )M

2 )< PP)
( : gnJ (l ) ) l c

i
) f c

j
dl) )E (nJ ) d) (25)

Ignoring the angular deviation of branch vector and contact normal (i.e. nl

i
"n c

i
"n

i
), the

following equation holds:

2 )M

2 )< PP)
( : gnJ (l ) )l

i
) f c

j
dl ) )E (nJ ) d) (26)

"

2 )M

2 )< PP)
( : gnJ (l) ) l

iA
1

A
2 )M

2 )<
) lB

p
pj
)A

p i2i32i2m
) n

i2
n
i3
2n

i2mB dl) )E (nJ ) d)

"PP)
( : gnJ (l) ) n

i
) (p

pj
)A

p i2i32i2m
) n

i2
n
i3
2n

i2m
) dl ) )E (nJ ) d)

If the item p
pj
)A

pi2i32i2m
) n

i2
n
i3
2n

i2m
does not depend on the branch-vector length, the following

equation holds:

: gnJ (l) ) n
i
) (p

pj
)A

p i2i32i2m
) n

i2
n
i3
2n

i2m
) dl

"( : gnJ (l ) ) dl) ) (p
pj
)A

p i2i32i2m
) n

i2
n
i3
2n

i2m
) ) n

i

"(p
pj
)A

p i2i32i2m
) n

i2
n
i3
2n

i2m
) ) n

i
(27)

Substituting equation (27) into equation (26), equation (26) then becomes

2 )M

2 )< PP)
( : gnJ (l) ) l

i
) f c

j
dl) )E (nJ ) d)

"PP)
(p

pj
)A

p i2i32i2m
) n

i2
n
i3
2n

i2m
) ) n

i
)E (nJ ) d)

"p
pj
)A

p i2i32i2m
)C PP) n

i2
n
i3
2n

i2m
) ) n

i
)E (nJ ) d)D

"p
pj
)A

p i2i32i2m
)N

i i2i32i2m
(28)

If A
p i2i32in

)N
i i2i32in

"d
ip

, equation (25) is satis"ed. Hence, equation (22) can estimate the
contact-force distribution.
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APPENDIX II

Notation

A,A@ constants
A

ik
, D

rs
, Dr

mn
, N

ij
fabric tensors of rank-two

A
p i2i32in

)N
i i2i32in

fabric tensors of tank-n
C

ijkl
elastic sti!ness tensor

C
mn

elastic sti!ness tensor in Voigt' notation
E (nJ ) density function of contact normal
e void ratio
F (r) gradation function
f l(r), f p(r) grain size density function by volume and particle number
fM nJ
j

(l) averaged contact-force tensor in nJ direction

fM o
n

averaged normal contact force in a granular assembly
f
n
, f

4
, f

t
contact-force components in the n, s, t direction

f
r

shear contact force
G

4
shear modulus of particle solids

gnJ (l) branch-vector length distribution function
g(l ) , g505!-(l ) direction-independent distribution function of l
I
pqik

identical tensor
I
1

"rst invariant of stress tensor
kc
jl

contact sti!ness tensor in &cth' contact
kc
n
, k c

4
, kc

t
contact sti!nesses in the n, s, t direction in &cth' contact

k
n
, k

r
normal and shear contact sti!nesses

lc
i
, l c branch-vector tensor and the &cth' branch-vector length

lM nJ
50

, l
50

sample mean of branch-vector length
lM
%

equivalent (averaged) branch-vector length
M total contact number in the volume
NnJ , NnJ

a
contact number in the nJ and nJ a direction

NnJl , NnJ al , contact number in the nJ and nJ a direction with branch-vector length"l
NM t average co-ordination number
nJ ; nc

i
, sc

i
, t c

i
, unit vectors and tensors of the local co-ordinate system

nlc

i
unit branch vector

Pl total particle number in the volume <
R, R

%
relative radius and equivalent relative radius

r, r
%

particle radius and equivalent radius
r
.
, r

M
minimum and maximum of particle radius

rnJ
50

, r
50

sample means of radius
r
pqik

deviation tensor
s
r
, sl standard deviations of f l(r) and g(l )

snJ
r
, snJl direction-dependent standard deviations
< representative volume of the granular assembly
<
4
, v

4
(r) volume of solid and volume of a particle with the size r

=(nJ ),=r (nJ ) direction dependent weighting functions
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Greek letters

dl the total particle number per unit volume
d
ij

Kronecker delta tensor
/k inter-particle frictional angle
t
4

Poisson's ratio of particle solid
j sti!ness ratio
o particle diameter
p
#

isotropic con"ning stress
p
ij
, e

ij
stress and strain tensors

*p
.
, *e

n
incremental stress and strain tensors in Voigt' notation

), d) unit sphere, and elementary angle
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