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SUMMARY 

The specified-time-interval (STI) scheme has been used commonly in applying the method of characteristics 
(MOC) to unsteady open-channel flow problems. However, with the use of STI scheme, the numerical error 
for the simulation results can always be induced due to the interpolation used to approximate the 
characteristics trajectory. Hence: in order to remedy the numerical errors caused by the interpolation. one 
needs to seek some kind of interpolation technique with higher-order accuracy. Instead of the linear 
interpolation technique, which has been used very commonly and can induce serious numerical diffusion, 
the Holly ~ Preissmann two-point method, which is a cubic interpolation technique with fourth-order of 
accuracy, is proposed here to integrate with the method of characteristics for the computation of one- 
dimensional unsteady flow in open channel. The concept of reachback and reachout in space and time 
directions for the Characteristics is also introduced to assure the model stability. The computed results from 
this new model are compared with those computed by using the Preissmann four-point scheme and the 
multimode method of characteristics with linear interpolation. 

KFY \*ORDS Characteristics method Cubic interpolation IJnsteady flow 

INTRODUCTION 

For engineering purposes, the numerical model is the most eficient and economic way to solve 
the unsteady-flow problems. For the past two decades, a great number and variety of numerical 
techniques have been explored and successfully applied to simulate the unsteady flow in open 
channel. The Method Of Characteristics (MOC) has been well-known to have many merits on the 
aspects of theoretical and physical interpretation for the flow pattern. With the arrival of the 
modern computer, among the many other numerical schemes, this method was the first used in 
the numerical modelling of unsteady open-channel f l o w ~ . l ' ~  Later, the use of the method of 
characteristics for the unsteady-flow simulation has been studied extensively by many re- 
searchers, such as V a r d ~ , ~  Wiggert and S ~ n d q u i s t , ~  Wylies and Goldberg and Wylie.6 Several 
improved versions of the method of characteristics have emerged, such as the reachback, 
reachout. and implicit methods. Lai7 developed a comprehensive Multimode Method Of Charac- 
teristics (MMOC) model which combines the implicit, temporal reachback, spatial reachback, 
and classical schemes into one model for unsteady open-channel flow simulation. This compre- 
hensive M MOC model can relax the Courant constraints required for the traditional explicit 
MOC. In addition, the accuracy of the solutions has been improved by use of the characteristics 
reachback concept, which allows the characteristic curves to travel beyond the present-time level. 

For solving one-dimensional unsteady flow by using the method of characteristics, the two St. 
Venant partial differential equations must be transformed to four ordinary differential equations. 
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To solve these four ordinary differential equations, there exist two general approaches. One is the 
characteristics-grid method, and the other is the Specified-Time-Interval (STT) method. The 
characteristics -grid method has the potential to give accurate solutions, but the grid system is 
awkward and not practical for the simulation of natural river system. The STI method has been 
the popular scheme for the hydraulic engineering problems. With the use of the traditional STI 
method, the two characteristic curves for the flow are required to fall on a rectangular grid system, 
and the unknowns are solved by integrating the characteristics equations along the characteristic 
curves. Hence, the interpolation of variables in the distance direction at the present-time level is 
needed. However, for most of the previous studies, the linear interpolation technique was 
commonly used, which leads to an inevitable smoothing of the solution. In order to reduce the 
numerical errors caused by the interpolation, one may need to seek an interpolation technique 
with higher-order of accuracy, such as quadratic or cubic interpolation technique. 

In this paper the Holly-Preissmann two-point method with fourth-order of accuracy is 
proposed to integrate with the multimode method of characteristics (MMOC) for the unsteady- 
flow computation. This new model will be named cubic multimode method of characteristics 
(cubic MMOC). And the original M MOC model with the use of linear interpolation technique 
introduced by Lai’ will be named as linear multimode method of characteristics (linear MMOC). 
The key to the Holly-Preissmann two-point method* (HP method) is based on the construction 
of higher-order interpolating polynomials between the dependent variables and its derivatives for 
two adjacent points on the spatial axis. This HP method can compute very accurately the 
dispersion processes in one-dimensional and two-dimensional pollutant transport problems. This 
method was extended to the time-line interpolation technique,’ which allows the characteristics 
to intercept on the temporal axis. With the use of the reachback Characteristics concept, the HP 
method has also been further improved and successfully applied to the dispersion problems’0,’ ’ 
and surge simulation.’’ 

In the following sections the mathematical and numerical formulations for the cubic MMOC 
model is introduced. In order to show the merits of the cubic MMOC model for the unsteady- 
flow simulation, a study of comparison with the Preissmann four-point model and the linear 
MMOC model is carried out on the basis of a hypothetical model. The properties of the cubic 
MMOC model are demonstrated through our examination of some key parameters, such as 
reachback number and Courant number. 

GOVERNING EQUATIONS 

The one-dimensional unsteady open-channel flow which is assumed to have uniform rectangular 
cross-section and to be frictionless and horiLonta1 can be described by a differential equation set 
using flow velocity, u, and depth, h, as dependent variables; and distance, x, and time, t, as 
independent variables, as follows: 

212 d(I4h) -+-- - 0, 
?t ax 

du du dh 
- + u - + fj -= g(S, - Sf), 
at  c7x 8.u 

where So denotes the bed slope, Sf is the friction slope, and g is the gravitational constant. 
Through some manipulation from equations ( 1 )  and (2), the following so-called characteristic 
ecluations can be obtained.13 
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along (g)+=u+c. 
D(u-2~)  

= d S" - Sf Dt 
along 

(%)-=.-., 
in which D/Dt = (d/?t) + (dx/dt) (i?/dx) and c = celerity of gravity wave = ,/(gh). 

NUMERICAL ALGORITHMS 

If the dependent variables u and h are assumed to be known at points rand 1 as shown in Figure 1, 
equations (3)-(6) can be solved by integrating along the characteristic curves from I to p or from 
r to p to obtain the four unknowns up,  h,, x p ,  and t,: 

( u + 2 ~ ) ~ -  ( u + 2c)i= g(  So - S , )  dt, (7) Sr 
( u - ~ c ) , - (  u -2c),= g(S,-S,)dt, 1: 

i -  1 i i + l  X 

Figure 1. Grid system of classical method of characteristics 
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In the above equations, the integration terms appearing on the right-hand side can be approx- 
imated simply by using the traperoidal rule: 

in which $ can be u, c, So, and Sf, 6, is the weighting factor, single subscript indicates a nodal 
point, and double subscript indicates a curve segment to which the corresponding variable or 
symbol belongs. 

Lineur interpolation scheme 

To approximate $I and $?, the classical MOC model uses the linear interpolation technique: 

in which 

The linear interpolation technique stated above is the common method used to solve the 
unknown variables along the characteristics. However, i t  has been known that the linear 
approach can lead to the serious smoothing of the solution. In order to reduce the numerical 
smoothing caused by the linear interpolation technique, the Holly Preissmann scheme, which, in 
fact, is a cubic interpolation technique, is proposed in this article. 

Holly-Prci,r.smunn two-point scheme 

The key to the Holly-Preissmann two-point scheme is the use of a cubic interpolation 
polynomial for searching the characteristics trajectory on the spatial axis. This polynomial is 
constructed with the use of parameters including the dependent variables and their space 
derivatives for two grid points on the spatial axis. Among all finite difference schemes for solving 
the advection portion of the dispersion equation, the Holly-Preissmann two-point method 
introduces the least numerical damping and phase errors.' In fact, the HP method used for 
solving dispersion equation is a kind of characteristics method in which only one characteristic 
curve is considered, whereas, for unsteady-flow computation, one needs to consider two charac- 
teristic curves. 

To apply the Holly -Preissmann two-point scheme for evaluating the unknown variables at 
trajectory points 1 and r,  one needs to introduce the spatial derivatives for flow velocity and wave 
celerity to construct a cubic interpolation polynomial, which can be written as follows: 
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in which 4 represents the dependent variable, 4x is the space derivative of 4, n is the time level, 
i the computational point, ul-ug and bl-h8 are the coeficients listed in Appendix I. 

Two more equations are required to evaluate u, and ex, which can be derived from taking the 
derivatives of equations (3) and (5 ) :  

By following the concept similar to that in equations (7)-(lo), one can solve equations (21) 
and (22) to obtain the values of u, and c,. 

Multimode scheme 

In order to relax the rather severe restrictions on the size oft or x to improve the computational 
accuracy, several investigators have been constantly extending the MOC to a more viable and 
useful version. Lai7.I4 has introduced two kinds of multimode schemes. The first one combines 
the implicit, temporal reachback, spatial reachback and classical schemes into one. The second 
kind is constructed by combining the spatial reachout, temporal reachout, spatial reachback, 
temporal reachback and classical schemes into one. 

In this study, the spatial reachback, spatial reachout, and the previously described classical 
MOC schemes are used to construct a multimode scheme with cubic interpolation technique. The 
concept of this method is shown in Figure 2. The cubic interpolation polynomials for each mode 
are described in detail as follows. 

t 

n 

11-1 

i-j, CI i i+j. X 

j,=2 1 0 

Figure 2. Grid system of multimode method of characteristics 
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Spatial reachback scheme. As shown in Figure 3, the characteristics are projected back beyond 
the present-time level and fall on the spatial axis at a certain past-time level. If the non-linearity of 
the system is not too strong, the spatial reachback is generally better than the classical scheme, 
because the intersection point is closer to the adjacent grid point." The cubic interpolation 
polynomial for this scheme, which is slightly different from that for the classical H P method, can 
be written as follows: 

($1 = C 1  Cp ;"' + c2 Cp 1 - + c3 Cp :I:-m; + cq Cp :; m l ,  (23)  

q5*=CSCp;-"* + ChCp;;; l '+C,Cp;imr +CS&+m;, (24) 

# x l = d l  Cp;:?' +d,Cpl-m'+d3Cp:i-m~+ddqCp:im', (25) 

d,xr = d 5 d, 1 -mr + d6 d, 1; 1"' -t d 7 Cp :; mr + d8 Cp :;+"':, (26) 

in which c1-c8 and dl-d8 are coefficients listed in Appendix I and m, and m, are the reachback 
numbers for characteristic curves C ,  and C - ,  respectively, which can be self-explained in 
Figure 3. 

Spatial reachout scheme. When a large ratio of Af1A.x is used, the characteristics may extend 
outside of the adjacent-time lines to intersect the present-time-level spatial axis at points 1 and r,  
as shown in Figure 4. The cubic interpolation polynomial needed to approximate the unknown 
variables at points I and r can be given as follows: 

t 

n 

n-I 

known 
unknown 

m = l  

i -1  i i +  I X 

Figure 3. Grid system of space reachback method of characteristics 
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s i-j, i i+j, 

jl=2 1 0 

Figure 4. Grid system of space reachout mcthod of characteristics 

where e ,  e8 and #; & are coefficients listed in Appendix I and j ,  andj,  are the reachout numbers 
for characteristic curves C ,  and C -  . respectively, as shown in Figure 4. 

BOUNDARY CONDITIONS 

The number of conditions specified on the boundary must be equal exactly to the number of 
characteristics originating at that boundary. For one-dimensional unsteady-flow computation, 
usually two boundary conditions are needed to close the system of equations (1) and (2). When the 
flow is subcritical, both the upstream boundary and the downstream boundary need one 
condition, respectively. If the flow is supercritical, two boundary conditions need to  be specified at 
the upstream boundary. However, for the cubic MMOC model proposed here, two additional 
conditions are needed, since there are two more equations introduced for the calculation of 
derivatives of velocity and depth. The two additional conditions are the derivatives of the velocity 
and depth at the boundary. Based on whether the Coutant number is greater or less than 1, one 
needs to use different means to obtain the derivatives of velocity and depth at the boundary. 

If the characteristics project outside from the adjacent-time lines to intersect on the time line of 
the boundaries, which is shown in Figure 5,  at the upstream boundary, the cubic interpolation 
polynomial can be written as 

in which 9, y4 and h,-h4 are coefficients, 0 represents the upstream boundary point, 4t is the time 
derivative of the dependent variable. At the downstream boundary, the polynomial can be given 



336 J.-C. YANG AND K.-P. CHlU 

t 

n 

I 

n- I 

i- j, i i+j, 
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Figure 5. Grid system of characteristics reachout at the boundary 

as follows: 

in which gs .qs and h5 h8 are coefficients listed in Appendix I and N represents the downstream 
point. 

However, the characteristic equations (21) and (22) need not the time derivative but the space 
derivative. Hence, the time derivatives for variables appearing in equations (31) (34) have to be 
transformed into the spatial derivatives. From equations (1) and (2), the spatial derivatives for 
velocity and depth can be obtained as follows: 

The time-reachout technique described above can also be used for the internal points along the 
channel, which, in fact, was the so-called implicit time-reachout method of characteristics. 

I f  the Courant number is less than 1, the values of space derivatives at the boundaries can be 
obtained by using the forward or backward difference scheme. If the condition is specified at the 
upstream boundary, the forward scheme is used: 
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in which 0 indicates the upstream boundary point and 1 denotes the neighbouring point of 
upstream boundary. 

If the condition is specified at the downstream boundary, the backward scheme is used: 

4; -~ 4 k - 1 _. 
Ax ’ 4 x N  = 

in which N denotes the downstream boundary point. 
For supercritical flow, all of these four conditions, including the specified values of velocity, 

depth and their derivatives, have to be assigned at the upstream boundary. For subcritical flow, 
the upstream boundary needs two conditions, and the downstream boundary needs the other two 
conditions. Here, the known velocity variation and its derivative are specified at the upstream 
boundary. At the downstream, the depth variation and its derivative are specified. 

NUMERICAL STABILITY 

The cubic MMOC model described previously combines the concept of multimode and the cubic 
interpolation technique. The stability analysis for the multimode method of characteristics has 
been carried out by L a 7  The stability property for the cubic interpolation technique integrating 
with the reachback concept used for the dispersion simulation and surge-wave computation has 
been discussed by Yang and Hsu” and Yang ct al.,” respectively. Hence, no further detailed 
analysis will be performed here. Only the analysis results will be summarized in the following, to 
show the merits of the reachback concept and the cubic interpolation technique. 

From Yang and Hsu’s analysis” for the dispersion problems, it has been known that the 
reachback concept coupling with H P  method can provide a better simulation. They concluded 
that the larger the value or the reachback number used, the better are the results obtained with 
less numerical errors. Lai’ has found out the similar conclusion in his qtudy of using the 
multimode method of characteristics for the unsteady-flow simulation. Lai used only the linear 
interpolation technique to couple with the multimode method of characteristics. but one has 
already been able to observe that the significant reachback effect on improving the accuracy of 
the results for the unsteady-flow problems. In addition, Lai7 has also pointed out that the 
multimode model relaxes the Courant constraint needed for the classical MOC model. Later on, 
Yang el ~i1. I ’  have integrated the Preissmann’s four-point scheme and the reachback 
Holly Preissmann two-point scheme for the surge-wave simulation. They have also found that 
both, the reachback and the cubic interpolation, techniques can significantly improve the 
accuracy of the simulation results of the surge-wave movement. 

In summaridng thc stability study analysed by the previous investigators, one may be able to 
conclude that the reachback and the Holly Preissmann two-point techniques have a similar effect 
in improving the simulation accuracy for the dispersion, unsteady-flow and surge-wave problems. 
No Neuman’s stability analysis will be carried out here for the Holly Preissmann two-point 
scheme used to study the unsteady-flow problem. But its merits will be investigated through the 
following comparison studies and parameter examination. From the previous study it has been 
known that, for the characteristics type method, an increase of reachback number can give 
a better solution accuracy. Hence, one may be able to verify that the cubic MMOC should 
provide the more accurate simulation under the following two conditions. One is that the results 
from the linear MMOC model with the increase of the reachback number should be approaching 
to those from the cubic MMOC without using the reachback technique. The other is that the 
cubic MMOC should not be too senhitive to the variation of reachback number. 
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Therefore, here the comparison will be performed to compare the results from the linear 
MMOC model with various reachback number to those from the cubic MMOC model without 
using reachback technique. It is expected that the simulation results from the linear MMOC 
model with the increase of reachback number will be getting close to those from the cubic 
MMOC model. 

DEMONSTRATION AND EVALUATION 

A hypothetical case is constructed to demonstrate the newly proposed cubic MMOC model for 
the unsteady flow computation. A uniform subcritical flow is assumed to take place in a rectangu- 
lar prismatic channel. The initial discharge per unit width is q,= 1.5 m2 s - ’ .  A discharge 
hydrograph of unit width q=q,+q,[l -cos(2t/T)] m’s-l, in which y,=0~25m2s-1 and Tis  
the period of time that occurs at the upstream boundary. The downstream boundary is kept with 
uniform-flow condition. The Chezy’s coefficient used for this study case is equal to 58. 

In order to show the merits of the cubic MMOC model. the comparison among the new model, 
the linear MMOC model, and the Preissmann four-point model is carried out. In addition, the 
examination on the effect of some key factors consisting of reachback number and Courant 
number is also performed to evaluate the applicability of the cubic MMOC model. 

Comparison study 

Figure 6(a) shows the change of water depth with respect to time at the section of 20 km 
downstream from the upstream boundary. From Figure 6(a), one can hardly tell the difference 
among those results computed from the various models used. Therefore, relative-difference results 
are computed and shown in Figure 6(b). The difference between the results computed from the 
Preissmann four-point scheme and that computed from the other model, which then is divided by 
the initial water depth, is defined as relative difference. Now one can see very clearly that the 
results from the cubic MMOC model with zero reachback number is consistent with that from 
the Preissmann four-point model. When the linear MMOC model is used, one can see that the 
increase of the reachback number will reduce the relative difference. This means that the results 
computed from the linear MMOC model with larger reachback number will approach that from 
the cubic MMOC and the Preissmann four-point models. It has been known that for the linear 
MMOC model the increase of the reachback number will increase the accuracy of the results. 
Hence, as the reachback number keeps increasing, it is expected that the results should finally 
approach those from the cubic MMOC model. Therefore, the merits of cubic MMOC model are 
apparently seen here. 

Effect of uruchhack number, in  

Again, from Figure 6 one knows that, for the linear MMOC model, the increase of reachback 
number does improve the accuracy of the simulated results significantly. It can be seen from 
Figure 6(b) that the relative difference obviously decreases as the reachback number increases. 
From the previous discussion, one has already known that the cubic MMOC model may give 
very accurate results even with the reachback number m = O  (i.e. no reachback technique used). In 
order to examine the effect of the reachback number to the cubic MMOC model, a few test runs 
by using cubic MMOC model with various reachback numbers were performed as well. The 
simulated depth variation with respect to time at the section of 20 km downstream is shown in 
Figure 7(a). From Figure 7(a), the results computed by the cubic MMOC model with various 
reachback numbers and those computed by the Preissmann’s four-point model are almost 
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* * * * Preissrnann 
rn= I 
m=2 
rn=3 - - m=4 

- cubic 

.. . 
._.-. _ _ _  

Time  ( hour ) 
(4 

Time ( hour ) 
(b) 

Figure h Results computed from linear MMOC model with vdrious rn, cubic MMOC modcl and Preissmann four-point 
model ( x = 2 0  km) (a)depth variation with respect to time; (b) relative diflerence 
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Figure 7. Results computed from cubic MMOC model with various rn and Preissmann four-point model (x=20 km): 
(a) depth variation with respect to time; (b) relative difference 
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I T i m e  ( hour ) 
(b) 

Figure 8. Results computed from cubic MMOC model with various time intervals and Preissmann four-point model 
( u = 2 0  km): (a) depth variation with respect to time; (b) relative difference 
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identical. The relative difference for these results, given in Figure 7(a), is shown in Figure 7(b). 
From Figure 7(b), one still can hardly tell such a small relative difference, of the order of less than 

Obviously, the reachback characteristics concept influences the results very little. The 
accuracy of the results has been improved very little with the increase of the reachback number. 
This may lead to the conclusion that the MMOC model coupled with the Holly-Preissmann 
two-point scheme improves significantly the accuracy of the results and the reachback concept 
may not be needed as for this purpose. The difficulty for establishing the initial condition existing 
for the reachback type model, such as linear MMOC model, can be avoided by using the cubic 
MMOC model. In addition, the program coding becomes simpler since now one does not need to 
keep tracing back the position of the reachback characteristics, and therefore, the memory of the 
program required will also be reduced drastically. 

Effect of Courunt number, Cr 

In using the MOC model for the unsteady-flow computation, one is concerned most with the 
stability and the accuracy as influenced by the Courant number. From the previous description of 
the stability analysis, it has been known that the use of the MMOC model for the unsteady-flow 
computation is unconditionally stable no matter how the Courant number is varied.’ Hence, no 
examination of the effect of the Courant number on the model stability will be performed here. 
Nevertheless, one may still be interested in knowing how the Courant number influences the 
accuracy of simulation results. Several test runs with various time intervals have been conducted 
to demonstrate the effect of the Courant number on the accuracy of the results. The comparison 
results are shown in Figures 8(a) and (b). From Figure 8(a), one can tell that the simulated depths 
from the use of various time intervals are almost identical. From Figure 8(b), one can observe that 
the relative difference remains in the range of less than So, again one may conclude that the 
use of cubic MMOC model for the unsteady-flow computation is not sensitive to the variation of 
Courant number. In other words, this means that the cubic MMOC model is quite stable and 
accurate. As far as the practical application is concerned, the insensitivity to the Courant number 
is quite a preferable condition, since one can hardly confine the range of Courant number due to 
the complex geometric pattern of the natural river channel. 

CONCLUSIONS 

A new method (cubic MMOC) which combines the multimode method of characteristics and the 
Holly- Preissmann two-point fourth-order scheme is introduced in this article for the computa- 
tion of unsteady flow in open channel. From the comparison studies and the parameters 
examination carried out previously for a hypothetical model, one may be able to summarize the 
following conclusions: 

(1) By using linear MMOC model for simulating the unsteady flow in open channel, as the 
reachback number increases the computed results will be approaching those computed 
from the cubic MMOC model, without considering the reachback technique. 

(2) The cubic MMOC model used for the computation of unsteady flow in open channel is not 
sensitive to the variation of reachback number. This consequence implies that the reach- 
back technique, which plays the key role in improving the results accuracy for the linear 
MMOC model, may not be needed as the cubic interpolation technique is used to couple 
with the M MOC model. Intuitively, one may conclude that the numerical errors induced by 
the interpolation can be reduced to a minimum by using the cubic MMOC model for 
computing the one-dimensional unsteady flow. 
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Since the reachback technique may not be needed with the use of cubic MMOC model, the 
difficulty of establishing the initial condition existing for the reachback type method. such 
as the linear MMOC model, no longer cxists for the newly introduced cubic MMOC 
model. 
The cubic MMOC model used for the computation of unsteady flow in open channel is not 
sensitive to the variation o f  Courant number. This means that this new model is quite stable 
and should be applicable to study the unsteady-flow problems in the natural complex river 
channel. 
It is evident that the cubic MMOC model is quite competitive to the Preissmann's 
four-point schemes. 
From the comparison study and parameters examination described previously, one may 
conclude that thc cubic MMOC model can reduce the numerical errors caused by the 
interpolation problem and provide the more accurate results than the linear MMOC 
model. 
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APPENDIX I 

Coeficients of classical HP schemc 

in which vl is the Courant number of characteristic curve C + ,  v,=(u+c),,At,'A.x; and vr is the 
Courant number of characteristic curve C-, vr = ( u  - c),At/Ax. 

Coqficiettrs of spatial reachback H P  scheme 

The coeficients of spatial reachback HP  scheme are the same as the classical ones stated above, 
but 

At At 
AX pr 'AX 

vl=(u+c), ,m,-- ,  I',=(u--c) In - 

Coefj3c.ient.s of sputiu1 riwchout HP scheme 

Again the coefficients of spatial reachout H P  schemc arc as the classical ones stated above, but 

At At 
.il AS j r A x  

t 'l=(u+c),I- - , v, = ( u  - c)pr-. 
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Cyopficients of reniporal reachout HP scheme 

APPENDIX 11: NOTATIONS 

cocfficients 
coefficients 
celerity 
coefficients 
space derivative of celerity 
coefficients 
coefficients 
coefficients 
gravitational constant 
coeficients 
depth 
coefficients 
time derivative of depth 
space derivative of depth 
denotes computational points 
reachout number 
reachback number 
denotes time level 
velocity 
time derivative of velocity 
space derivatike of velocity 
bed slope 
energy slope 
time 
distance 
temporal weighting factor 
denotes dependent variablcs 
time derivative of dependent variables 
spacc derivative of dependent variables 
interpolation weighting factor 
time interval 
space interval 
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