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Abstract. We present a nonlinear dynamical study of a diatomic molecule under the interaction
of chirped pulses. The step-like dissociation probability with respect to the initial vibrational states
reflects the cantori barriers during the excitation process. The correspondence between classical
and quantum cantori barriers is shown through classical phase trajectory and quantum Husimi
distribution function. According to the results, the quantum suppression of classical dissociation
in molecular excitation by chirped pulse disappears at some field parameters.

1. Introduction

Optimal control of state selective excitation and the dissociation enhancement of diatomic
molecules have been the subject of extensive theoretical [1–8] and experimental interest [9–11].
Studies have shown that using a chirped pulse not only significantly reduces the field intensity
of the dissociation threshold for a molecule, but also avoids the competitive processes such as
ionization and dissociative ionization. In a recent experimental investigation, Maaset al[12,13]
successfully excited NO molecules from the vibrational ground state to the fifth state in the
electronic ground state with a free electron laser. According to their results, the field intensity
is moderate and the frequency bandwidth is sufficiently broad to cover several states of the
anharmonic vibrational ladder. Therefore, coherent control of molecular excitation by a chirped
pulse is feasible.

Theoretically, Liu and Yuan [1,2] used the bucket dynamics [14] to explain the effective
excitation of a chirped pulse by the bucket trapping and convection of classical trajectories.
They showed the dissociation probabilities of different initial states, which were divided into
soft-chaos and hard-chaos regions with different classical–quantum correspondence. Mishima
et al [15] used a realistic chirped pulse to study the diabatic coupling of a three-electronic-state
one-dimensional (1D) molecular system. They explored the effect of system mass on the laser
control of the nonadiabatic process. For lighter mass, it is easier to achieve the population
trapping of the electronic excited state by a positively chirped pulse due to its prominent
quantum nature.

In the language of nonlinear dynamics [16], the trajectories of an integrable system will
be confined in the surface of tori. There is an internal frequency associated with each torus.
Under external perturbation, the trajectories begin to move out of the tori and the tori are mostly
destroyed as the perturbation increases. However, tori with the most irrational frequency ratio
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of driving to internal frequency (the so-called winding number) will be persistent and are called
KAM tori [17]. The KAM tori will be eventually broken under stronger perturbation [18]. The
remnants of these tori form Cantor sets (that is, the cantori) and act as a partial barrier to the
stochastic diffusion of phase space trajectories enclosed inside the cantori. The cantori barriers
prohibit larger phase volume escape into the chaotic region. Due to the uncertainty principle,
the minimum quantum mechanical phase space volume cannot be smaller than the measure of
h̄. However, there is no limit to how small the phase volume of classical mechanics can be.
Consequently, the classical transport probability will be larger than its quantum correspondence
and there isquantum suppression of classical dissociationin the molecular excitation. Brown
et al [19] studied this nonlinear dynamical aspect of the suppression phenomenon in the
monochromatic light excitation of a diatomic molecule, but no recent study of chirped pulse
molecular excitation has been reported to our knowledge.

We recently studied the quantum dynamics of molecular excitation by chirped pulses
[20, 21]. We showed that the quantum dissociation probability may be even larger than the
classical one for a molecule under the optimal driving field or an adiabatically swept pulse as
some field parameters go beyond the thresholds. Because this phenomenon is quite different
from the monochromatic light molecular dissociation where quantum suppression of classical
dissociation holds, it is worthwhile to examine the dynamics from the point of view of nonlinear
dynamics.

Experimental results [22] demonstrated that the linear molecules align along the direction
of field polarization and the molecules spend most of their time in this polarization direction.
Therefore, for simplicity, investigating the dynamics of diatomic molecules irradiated by the
chirped pulse with a 1D model instead of full-dimensional potential is a meaningful work.
In fact, the dynamics of full-dimensional and 1D diatomic molecules resemble one another.
The major differences are in the magnitude of dipole matrix elements and the selection rules.
Although the matrix elements of the full-dimensional potential weaken the dissociation signal
with respect to the 1D case, the dissociation dynamics are qualitatively similar [21]. Therefore,
it is reasonable to simplify the computation to the 1D model [23,24].

In the light of the above discussion, this work uses the conventional 1D Morse potential
to examine the interaction among diatomic molecules and the external chirped pulse. The
relation between the step-like excitation and the classical cantori barriers is described. The
results can be compared with study of molecular excitation by monochromatic light (chirp
free) in the literature.

In section 2, we briefly describe the approach to the solution of the time-dependent
Schr̈odinger equation and the location of cantori of a 1D Morse potential with external field in
phase space. Section 3 then presents quantum and classical results for comparison. Discussions
and remarks are included therein. A summary is finally made in section 4.

2. Computation of 1D Morse potential

2.1. Propagation of a wavefunction and its phase space distribution

Under the Born–Oppenheimer approximation, the time-dependent Schrödinger equation for
the interaction of a diatomic molecule with an external field under the dipole approximation
can be written as:

ih̄
∂

∂t
|9〉 =

{
P̂ 2

2µ
+ V̂ (R)− qeE(t) · R

}
|9〉, (1)
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whereR denotes the centre-of-mass coordinate, andµ represents the reduced mass.E(t) =
EmU(t) sin[�c(t) t ] is the electric field with the chirping frequency�c(t), where

�c(t) = �ν
[

1− αl
(
t

T0

)l]
. (2)

The pulse duration isT0 and the peak field isEm. The parameterαl is defined as the
chirping constant of the chirped pulse. In our calculation, we use the linear chirping (l = 1)
throughout for experimental feasibility. Although calculation [20] indicates that quadratic
negative chirping is more efficient to excite the populations than linear chirping, using the
linear chirped pulse which is available experimentally [12,13,25] is more practical. The case
αl = 0 is the chirp-free case. We choose�ν to be 1.1ων,ν+1, whereων,ν+1 denotes the resonance
frequency between the unperturbedνth and(ν + 1)th states. The optical cycle is defined as
2π/�ν . As is generally known, the vibrational energy level spacings of a Morse oscillator
decrease from low to higher states, which explains why the blue-to-red chirping provides a
climbing ladder for the pumping process. Additionally, there is an ac-Stark shift for each level,
and theπ -pulse based upon unperturbed states may not induce an exact population inversion
between two neighbouring states [20,21,25]. To compensate for the phase deviation, the initial
frequencies adopted herein are�c(t = 0) = 1.1ων,ν+1 [1,20].

U(t) is a slowly varying envelope function given by

U(t) =


t/t0 for t 6 t0,

1.0 for t0 < t 6 T0 − t0,

(T0 − t)/t0 for T0 − t0 < t 6 T0,

(3)

where the rising time and switching-off timet0 is set to ten cycles. The Morse potential is

V (R) = De{1− exp[−α(R − R0)]}2. (4)

We fit the potential parameters to the HF molecular vibrational spectrum such thatDe = 0.225,
α = 1.1741, equilibrium nuclei separationR0 = 1.7329, and reduced massµ = 1744.8423.
Atomic units are used unless otherwise stated. This potential supports 24 bound vibrational
levels for the HF molecule. The effective chargeqe is chosen to be∂Dp(R)/∂R|R=R0 =
0.31 au, whereDp(R) = 0.4541R exp[−0.0064R4] denotes a realistic form of dipole moment
of HF [8,19]. Consider a situation in which the intensity is weak or the pulse duration is short,
then the linear dipole moment is a good approximation to the first order of the realistic dipole
moment [2]. This linear dipole moment is used in classical simulation for simplicity and it is
easier to compare its results with quantum calculation in terms of cantori.

The above equation is then propagated by the split-operator spectral method [26] with
time increment1,

9(t +1) = exp

[
−i
P̂ 2

4µ
1

]
exp

[
−iV̂eff (R)1

]
exp

[
−i
P̂ 2

4µ
1

]
9(t) +O(13), (5)

where the effective potentialVeff = V (R) − qeE(t) · R. The state function is transformed
alternatively between the coordinate and momentum spaces by fast-Fourier transform that
reduces the computational time significantly [27].

With the numerical method described above, the wavefunction can be easily computed
at any time, subsequently providing further insight into the dynamics of system evolution.
Herein, we calculate the dissociation probabilities of different states versus chirping constant
αl , field strengthEm and its phase space distribution by applying the adaptive grids method
used in our previous work [20].
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The dissociation probabilityPd is defined as,

Pd(t) ≡ 1−
24∑
ν=1

Pν(t), (6)

wherePν(t) = |〈φν |9(t)〉|2 denotes the population of theνth bound stateφν of the 1D Morse
oscillator at timet .

The quantum analogy of classical phase space distribution for a wavefunction9(t) can
be constructed by the Wigner transformation [28],

ρW(R, P ; t) = (1/2πh̄)
∫

dR′ 〈R − 1
2R
′|9〉〈9|R + 1

2R
′〉 exp(iPR′/h̄). (7)

However, sinceρW(R, P ; t) is not everywhere positive, introducing the Gaussian smoothing
allows us to obtain a coarse-grained Wigner distribution [29],

ρH (R, P ; t) = (1/2πh̄)|〈φ〈r〉,〈p〉|9〉|2, (8)

whereφ〈r〉,〈p〉 is the minimum wavepacket (coherent state),

φ〈r〉,〈p〉(R) = 1

[2π(1r)2]1/4
exp

{
i

h̄
〈p〉R − (R − 〈r〉)

2

4(1r)2

}
, (9)

andρH (R, P ; t) is the Husimi distribution function [30] that is positive definite.
The following section compares the motion of the Husimi distribution in phase space with

the classical phase space distribution under chirped pulses and chirp-free cases.

2.2. Classical simulation and the location of the KAM tori

Mackayet al[31] defined thegolden cantorias the cantori that have irrational winding numbers
ng +νg, whereng denotes a non-negative integer andνg = (

√
5−1)/2. The golden tori inhibit

the global stochasticity [23, 32]. For the excitation of a molecule by a chirped pulse, the
remaining KAM tori are those golden tori. However, locating such cantori becomes more
difficult when the system’s degree of freedom is more than two. For simplicity, the cantori in
a 1D potential and single mode external field are considered. The classical Hamiltonian for a
nonrotating diatomic molecule interacting with a laser field can be written as [33]

Hc = HM +HF + λHI = Etot , (10)

whereHF andHM are Hamiltonians for the radiation field and the HF molecule, respectively,
andHI represents the field–molecule interaction.

HM = P 2/2µ + V (R),
HF = 1

2[PF
2 +�ν

2XF
2],

HI = −qeRXF ,
(11)

with coupling parameterλ relating to field strengthEm and intensityI

λ = �νEm/
√

2Etot = �ν [I/cε0Etot ]
2, (12)

whereε0 is the permittivity of free space andEtot (= 1.427× 106 au forI = 1013 W cm−2)
is the conserved total energy of the laser/oscillator system.

The cantori are then approximated by rational winding number cycles which are continued
fractions that converge tong + νg [23,34]. Two cantori exist inside the unperturbed separatrix
(HM(P,R) = 0) for HF at�ν=1 andI = 1013 W cm−2; one of them has winding number
1 + νg and the other is 2 +νg [19]. Numerically, the two cantori can be approximated by
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Fk+1/Fk andFk+2/Fk, respectively, whereFk denotes thekth Fibonacci number. Finding the
location of periodic orbits is straightforward by solving the following equation [23]:

Rn(P0, R0) = R0,

Pn(P0, R0) = P0,
(13)

whereR0 andP0 refer to the initial estimates for the position and momentum of the periodic
orbit on theXF = 0 surface of section, respectively. In addition,Rn andPn are the position
and momentum of the trajectory on itsnth pass through the surface of section.

Then, it is instructive to compare the quantum results with the classical ones that reveal the
bucket dynamics and dynamical barrier scenarios [19]. The classical dissociation probability
is defined from those trajectories that have a total energy greater than zero after turning off the
field. In our calculation, a microcanonical ensemble of 1000 points(R, P ) is used as the initial
values. Each point(R, P ) in the ensemble is chosen randomly to satisfyP 2/(2µ)+V (R) = Eν
with R1 6 R 6 R2 whereEν is the eigenenergy of a specified vibrational state, and the
classical turning pointsR1 andR2 are the roots ofV (R) = Eν . The microcanonical ensemble
method has been widely used in classical simulation of light–atomic interaction [35] and
atomic collisions [36,37]. In general, a few hundred sampling trajectories are enough to reach
convergent results. In our calculation, the use of 1000 initial points or a few hundred less make
no difference to our conclusions. These trajectories are calculated from the Hamiltonian–
Jacobi equation:

∂R

∂t
= P

µ
,

∂P

∂t
= −∂V (R)

∂R
+ qeE(t).

(14)

3. Results and discussions

In the following discussions, each state is irradiated by a chirped pulse of intensity 1013 W cm−2

and durationT0 = 120× (2π/�ν), with frequency�ν = 1.1ων,ν+1 whereν = 1, . . . ,24 is the
vibrational quantum number. The chirping constant is varying, as will be described below. The
approximate KAM cantori are located between the eighth and ninth states forng = 1 and the
fourteenth and fifteenth states forng = 2 with rational numbers85 and13

5 , respectively. We first
investigate the effect of the two KAM cantori on the dissociation of a diatomic molecule under
the irradiation of a chirped pulse. The system is prepared at different vibrational eigenstates.
For each initial state under chirped pulse of durationT0, we check the dissociation probability at
the end of pulse. We increase the chirping constantαl gradually and define the 0.25% threshold
chirping constantαth and 5%αth as the dissociation reaches 0.25% or 5%, respectively, at the
end of the pulse [38]. Figure 1(a) displaysαth at various initial states for both 0.25% and
5% dissociations. The two patterns are similar despite the 20-times difference in magnitude
of dissociation probability. For low-lying initial states, largerαth values are required than for
higher lying states. Both curves roughly share three different patterns of slope: for initial
states lying inside the first KAM tori (ν ∼ 8), for states lying between the first and second
KAM tori (8 < ν < 12–13), and for the states lying outside both KAM tori (13–14< ν). For
states in the last category, the dissociation occurs under monochromatic light (chirp free) at
intensity 1013 W cm−2. Apparently, to dissociate a diatomic molecule at low-lying states with
a chirp-free pulse, much stronger intensity is required. However, an ionization process occurs
at such a high intensity. Thus, theoretical study of pure dissociation of the diatomic molecule
using a high-intensity chirp-free pulse is not physically meaningful, although it has often been
used.
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Figure 1. (a) Chirping thresholdαth versus vibrational quantum numberν for I = 1013 W cm−2

and pulse duration 120 cycles. Open circles are for dissociation probability equal to 0.25%, full
squares are for 5%. (b) Dissociation probabilitiesPd for different initial vibrational statesν with
120 cycles pulse at intensity 1013 W cm−2 and chirping constantαl = 0.5. Open circles denote a
chirp-free pulse of frequency 1.1ων+1,ν . Full squares are for a chirped pulse with initial frequency
1.1ων+1,ν .

The dissociation probability of the open-circled curve shown in figure 1(b) reveals
that those states which must pass across more KAM cantori result in a significantly lower
dissociation probability than those which just pass one or no KAM cantori when irradiated by
a chirp-free pulse. Inside the first cantorus 1 +νg, the vibrational states have to go through
two KAM cantori, and hence it is harder to dissociate. Outside the second KAM cantorus, the
dissociation probability rises quickly to saturation as no KAM tori have to be passed through.
The plateau regions belowν ∼ 11 andν ∼ 15 reflect the fact that the two KAM cantori act
the roles of cantori barriers. In contrast, the solid squared curve shows the results when the
chirped pulse was used. There is a significant dissociation for each state after the threshold
chirping constant is reached. The chirping threshold appears only for statesν < 14 because
the states withν > 14 lie outside the golden KAM cantori and can be dissociated without using
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Figure 2. Dissociation probabilitiesPd of different vibrational states against chirping constantαl
at I = 1013 W cm−2 with interaction time 120 cycles of 1.1ω1,2. (a) The third vibrational state,
(b) the eighth state, (c) the eleventh excited state and (d) the fifteenth state. Open circles denote
classical simulation and full squares represent quantum calculation.

the chirped pulse, as shown in figure 1(a). Therefore, the location of cantori will determine the
dissociation dynamics of different initial states which result in the soft-chaos and hard-chaos
region and explain the state-dependent classical and quantum results in figure 6 of [2].

In figure 2 we show the variations of dissociation with respect toαl for several initial states.
The results show the following: (i) the dissociation probability rapidly increases and becomes
larger asαl exceeds the threshold except for the fifteenth state where no chirping threshold
exists; (ii) as the chirping constantαl increases, the dissociation probability also increases and
finally saturates at a certain value; and (iii) the cantori still act as a partial barrier to the chirped
pulse excitation. The saturation is clearer for states with vibrational quantum numberν > 8
than those ofν 6 8 where more than one barrier must be penetrated. For vibrational states
higher thanν ∼ 15, the populations can be excited quickly and the dissociation saturation is
apparent because there is no confinement of the cantori barrier. Also, the coincidence of the
dissociation probabilities of both classical and quantum calculation in figure 2 demonstrates
the same excitation processes in the classical and quantum interpretations in which the finite
value effect ofh̄ is not the determinate factor of quantum suppression forI = 1013 W cm−2.
This can be easily seen in figures 2(a)–(d) for αl over 0.3.

For illustration, we depict the quantum correspondence of classical phase space
distribution. The system starts from the vibrational ground state for quantum calculations,
and from an energy specified phase space ensemble for classical simulations. Cases of chirp
free and chirping constantαl = 0.5 are both presented. For the chirp-free case, figure 3
shows the classical stroboscopic shots and figure 4 shows its quantum correspondence through
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Figure 3. Classical phase space trajectories of the vibrational ground state irradiated by a chirp-
free pulse with frequency 1.1ω1,2 and pulse duration 120 cycles forI = 1013 W cm−2 at different
times. (a) T0 = 0 cycle, (b) T0 = 40 cycles, (c) T0 = 80 cycles and (d) T0 = 120 cycles. Bold
solid curves from inner to outer are golden mean cantori and separatrix.

Figure 4. Coarse-grained Wigner distribution of the vibrational ground state irradiated by a chirp-
free pulse with frequency 1.1ω1,2 and pulse duration 120 cycles forI = 1013 W cm−2 at different
times. The stroboscopic time and the bold solid curves are the same as in figure 3.
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Figure 5. As figure 3, except the chirping constant isαl = 0.5.

Figure 6. As figure 4, except the chirping constant isαl = 0.5.
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Figure 7. Dissociation probabilitiesPd of different vibrational states versus field strengthEm
with interaction time 120 cycles and chirping constantαl = 0.5. (a) The third vibrational state,
(b) the eighth state, (c) the eleventh state and (d) the fifteenth state. Open circles denote classical
simulation and full squares represent quantum calculation.

Husimi function. The results reveal that the system remains within the separatrix throughout
the pulse duration; thus the dissociation probabilities are zero in both the classical and quantum
calculation. Figures 5 and 6 depict the classical and quantum results of chirped pulse cases.
The spreading of wavefunction and trajectories in phase space through the golden cantori
and separatrix (denoted by darker solid curves) by the chirped pulse is shown. The above
findings not only point toward the analogy between chirped pulse excitation of the classical
and quantum systems, but also confirm the existence of cantori barriers in quantum dynamics.

Next, we address the question of whether or not the quantum suppression is universal to all
field strengths and initial states. To study this problem, we depict thePd of different vibrational
states against field strengthEm for αl = 0.5 in figure 7. The suppression commonly appears
at smaller field strengths for all cases on different initial states. But this is not always the
case for higher field strengths. When the quantum system is irradiated by a chirped pulse, the
suppression disappears as the intensity exceeds the threshold. These results indicate that the
quantum suppressionof classical dissociation is not universal in the excitation of a diatomic
molecule by chirped pulses.

Comparing the classical and quantum simulations suggests that chirped pulse excitation
resembles the bucket dynamics convection mechanism which provides a path of ladder
climbing. The quantum calculation of the dissociation probability is comparable with the
classical results only when the chirping rate and/or the intensity exceed the threshold values,
whereas monochromatic light excitation acts as the conventional diffusion dynamics of phase
space such that the classical dissociation probability is larger than the quantum calculation due
to cantori barriers.
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4. Conclusions

This study has demonstrated that a linear chirped pulse can more efficiently excite a diatomic
system from low-lying states to highly excited states than a chirp-free pulse. By ladder
climbing, the systems can be effectively pumped to states outside the golden cantori similar to
the classical bucket dynamics. Although the relation between cantori and monochromatic light
excitation has been studied by other authors [19], our work discusses the similar dynamics
between quantum and classical excitation mechanisms in chirped pulses, which justifies the
usefulness of classical calculation when the degree of freedom of the system becomes so
large that quantum mechanics cannot cope. Moreover, the quantum suppression of classical
dissociation phenomenon due to cantori does not always occur under the chirped pulse
excitation. This suppression disappears as the chirping constant or the peak field go beyond
some critical values.
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