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Abstract

In this paper, a new explicit numerical integration method is proposed. The proposed method is based on the relationship
that m-step Adams–Moulton method is the linear convex combination of (m−1)-step Adams–Moulton and m-step Adams–
Bashforth methods with a �xed weighting coe�cient. By examining the order of accuracy and stability regions, we
conclude that the present method is superior to the traditional Adams–Bashforth–Moulton predictor–corrector method. A
simple harmonic oscillator problem is used to demonstrate the e�ciency of the proposed method. c© 1999 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Di�erential equations are often used to model complex problems in science and engineering. In
most practical problems, these di�erential equations are highly nonlinear and are too complicated
to solve analytically. Hence, with given initial conditions, these di�erential equations are frequently
solved approximately using appropriate explicit=implicit numerical integration methods. Note that the
numerical integration methods using the approximation with only one of the previous mesh points
are called one-step methods. On the other hand, numerical methods using the approximation with
more than one previous mesh point to determine the approximation of the next point are called
multi-step methods. In general, to solve nonlinear di�erential equations, Adams–Bashforth–Moulton
predictor–corrector method is the most popular and commonly used multi-step integration method
for the reasons that it is simple to implement and is ‘strongly stable’ [1].
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In this paper, we show that the m-step Adams–Moulton method is the linear convex combination
of the (m − 1)-step Adams–Moulton and m-step Adams–Bashforth methods with a �xed weighting
coe�cient. Based on this relationship, a modi�ed Adams–Bashforth–Moulton predictor–corrector
(MABMPC) method is proposed. By examining the order of accuracy and stability domain of the
proposed method, we conclude that the proposed method is superior to the traditional Adams–
Bashforth–Moulton predictor–corrector (ABMPC) method. A simple harmonic oscillator problem is
used to demonstrate the e�ciency of the proposed method.

2. Preliminary

To begin the derivation of the multi-step methods, if we integrate the initial-value problem over
the interval [ti; ti+1], then the following property exists:

y(ti+1) = y(ti) +
∫ ti+1

ti
f(t; y(t)) dt; (1)

where f(t; y(t)) is the �rst derivative of y(t). To derive an Adams–Bashforth explicit m-step (AB-m)
method, Newton backward di�erence formula with a set of equal spacing points, ti+1−m; : : : ; ti−1; ti,
is used to approximate the integral

∫ ti+1
ti
f(t; y(t)) dt which is

∫ ti+1

ti
f(t; y(t)) dt= h ·

m−1∑
k=0

[
3kf(ti; y(ti)) · (−1)k

∫ 1

0
C−s
k ds

]

+hm+1f(m)(�i; y(�i))(−1)m
∫ 1

0
C−s
m ds; (2)

where

C−s
k =

−s(−s− 1) · · · (−s− k + 1)
k!

(3)

and 3f(xi) represents the back di�erence operator that is de�ned by

3f(xi) = f(xi)− f(xi−1): (4)

Higher orders of back di�erence operator are de�ned recursively by

3kf(xi) =3(3k−1f(xi)): (5)

On the other hand, the Adams–Moulton implicit (m − 1) step (AM (m − 1)) method are de-
rived by using the set of equal spacing points, ti+2−m; : : : ; ti; ti+1, and the integral

∫ ti+1
ti
f(t; y(t)) dt is

approximated by
∫ ti+1

ti
f(t; y(t)) dt= h ·

m−1∑
k=0

[
3kf(ti+1; y(ti+1)) · (−1)k

∫ 1

0
C−s+1
k ds

]

+hm+1f(m)(�i; y(�i))(−1)m
∫ 1

0
C−s+1
m ds; (6)
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where

C−s+1
k =

(−s+ 1)(−s)(−s− 1) · · · (−s− k + 2)
k!

: (7)

To simplify the notation, we de�ne f(ti) ≡ f(ti; y(ti)). By using Eqs. (2) and (6), Adams–Bashforth
m step and Adams–Moulton m− 1 step methods can be expressed as follows:
Adams–Bashforth m step method:

yAB m(ti+1) = y(ti) +
∫ ti+1

ti
f(t; y(t)) dt = y(ti) + h ·

m−1∑
k=0

[
3kf(ti) · (−1)k

∫ 1

0
C−s
k ds

]
: (8)

Adams–Moulton m− 1 step method:

yAM (m−1)(ti+1) = y(ti) +
∫ ti+1

ti
f(t; y(t)) dt = y(ti) + h ·

m−1∑
k=0

[
3kf(ti+1) · (−1)k

∫ 1

0
C−s+1
k ds

]
:

(9)

Both integrals (−1)k∫ 10 C−s
k ds and (−1)k∫ 10 C−s+1

k ds for various values of k are easily evaluated and
are listed in Table 1.

Table 1
The values of (−1)k ∫ 1

0
C−s
k ds and (−1)k ∫ 1

0
C−s+1
k ds for di�erent k

k 0 1 2 3 4 5

(−1)k ∫ 1
0
C−s
k ds 1

1
2

5
12

3
8

251
720

95
288

(−1)k ∫ 1
0
C−s+1
k ds 1 −1

2
− 1
12

− 1
24

− 19
720

− 3
160

Note that the local truncation error for both Adams–Bashforth m step method and Adams–Moulton
m− 1 step method are m-th order of the integration step size h.

3. Method of generating higher order Adams–Moulton integrators

In order to generate the high order Adams–Moulton Integrators, the following propositions are
given.

Proposition 1.

3kf(ti+1) = f(ti+1)−
k−1∑
r=0

3rf(ti): (10)
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Proof. By induction:
(i) k = 1 hold
(ii) Suppose k = n, hold, i.e.,

3nf(ti+1) = f(ti+1)−
n−1∑
r=0

3rf(ti) (11)

when k = n+ 1, then

3n+1f(ti+1) =3(3nf(ti+1)) =3
(
f(ti+1)−

n−1∑
r=0

3rf(ti)

)

=3f(ti+1)−
n−1∑
r=0

3rf(ti) = f(ti+1)− f(ti)−
n∑
r=1

3rf(ti)

=f(ti+1)−
n∑
r=0

3rf(ti):

Proposition 2.

(−1)k
∫ 1

0
C−s
k ds− (−1)k

∫ 1

0
C−s+1
k ds= (−1)k−1

∫ 1

0
C−s
k−1 ds: (12)

Proof.

(−1)k
∫ 1

0
C−s
k ds= (−1)k

∫ 1

0

−s(−s− 1)(−s− 2) · · · (−s− k + 1)
k!

ds

=
∫ 1

0

s(s+ 1)(s+ 2) · · · (s+ k − 1)
k!

ds; (13)

(−1)k
∫ 1

0
C−s+1
k ds= (−1)k

∫ 1

0

(−s+ 1)(−s)(−s− 1) · · · (−s− k + 2)
k!

ds

=
∫ 1

0

(s− 1)s(s+ 1) · · · (s+ k − 2)
k!

ds; (14)

(−1)k
∫ 1

0
C−s
k ds− (−1)k

∫ 1

0
C−s+1
k ds(−1)k−1

=
∫ 1

0

s(s+ 1)(s+ 2) · · · (s+ k − 2)(s+ k − 1)
k!

ds

−
∫ 1

0

(s− 1)s(s+ 1)(s+ 2) · · · (s+ k − 2)
k!

ds

=
∫ 1

0

[(s+ k − 1)− (s− 1)]s(s+ 1)(s+ 2) · · · (s+ k − 2)
k!

ds
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=
∫ 1

0

s(s+ 1)(s+ 2) · · · (s+ k − 2)
(k − 1)! ds

=(−1)k−1
∫ 1

0
C−s
k−1 ds:

Proposition 3.

k∑
r=0

(−1)r
∫ 1

0
C−s+1
l ds= (−1)k

∫ 1

0
C−s
k ds: (15)

Proof. By induction:
(i) k = 0 arbitary.
(ii) when k = 1

1 + (−1)
∫ 1

0
C−s+1
1 ds=

1
2
= (−1)

∫ 1

0
C−s
1 ds: (16)

(iii) Suppose k = n hold, i.e.,

n∑
r=0

(−1)r
∫ 1

0
C−s+1
r ds= (−1)

∫ 1

0
C−s
n ds

when k = n+ l

n+1∑
r=0

(−1)r
∫ 1

0
C−s+1
l ds=

n∑
r=0

(−1)r
∫ 1

0
C−s+1
r ds+ (−1)n+1

∫ 1

0
C−s+1
n+1 ds

= (−1)n
∫ 1

0
C−s
n ds+ (−1)n+1

∫ 1

0
C−s+1
n+1 ds

= (−1)n+1
∫ 1

0
C−s
n+1 ds:

Note that, Adams–Bashforth m step method is given by

yAB m(ti+1) = y(ti) +
∫ ti+1

ti
f(t; y(t)) dt = y(ti) + h ·

m−1∑
k=0

[
3kf(ti) · (−1)k

∫ 1

0
C−s
k ds

]
(17)

whereas Adams–Moulton (m− 1) step method is given as

yAM (m−1)(ti+1) = y(ti) +
∫ ti+1

ti
f(t; y(t)) dt

= y(ti) + h ·
m−1∑
k=0

[
3kf(ti+1) · (−1)k

∫ 1

0
C−s+1
k ds

]
; (18)
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yAM (m−1)(ti+1) = y(ti) + hf(ti+1)(−1)m−1
∫ 1

0
C−s
m−1 ds

+h ·
m−1∑
k=0

{
3kf(ti) ·

[
−(−1)m−1

∫ 1

0
C−s
m−1 ds+ (−1)k

∫ 1

0
C−s
k ds

]}
: (19)

To establish the relationship between Adams–Bashforth m step method and Adams–Moulton (m−1)
step method, the following theorem is proposed and proved.

Theorem 1.
W1

W1 +W2
yAB m(ti+1) +

W2

W1 +W2
yAM (m−1)(ti+1) = yAM−m(ti+1); (20)

where

W1 =−(−1)m
∫ 1

0
C−s+1
m ds;

W2 = (−1)m
∫ 1

0
C−s
m ds;

W1 +W2 = (−1)m−1
∫ 1

0
C−s
m−1 ds:

(21)

Proof. De�ne

�(ti+1) ≡ W1

W1 +W2
yAB m(ti+1) +

W2

W1 +W2
yAM (m−1)(ti+1): (22)

Evaluating the coe�cient of y(ti); h · f(ti+1), and h ·3kf(ti) in �(ti+1)

y(ti):
W1

W1 +W2
· 1 + W2

W1 +W2
· 1 = 1; (23)

h · f(ti+1): W2

W1 +W2
· (−1)m−1

∫ 1

0
C−s
m−1 ds= (−1)m

∫ 1

0
C−s
m ds; (24)

h ·3kf(ti) :
W1

W1 +W2
· (−1)k

∫ 1

0
C−s
k ds+

W2

W1 +W2

·
[
−(−1)m−1

∫ 1

0
C−s
m−1 ds+ (−1)k

∫ 1

0
C−s
k ds

]

=− (−1)m
∫ 1

0
C−s
m ds+ (−1)k

∫ 1

0
C−s
k ds; (25)

�(ti+1) = y(ti) + hf(ti+1)(−1)m
∫ 1

0
C−s
m ds+ h

·
m−1∑
k=0

{
3kf(ti) ·

[
−(−1)m

∫ 1

0
C−s
m ds+ (−1)k

∫ 1

0
C−s
k ds

]}
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= y(ti) + hf(ti+1)(−1)m
∫ 1

0
C−s
m ds+ h

·
m∑
k=0

{
3kf(ti) ·

[
−(−1)m

∫ 1

0
C−s
m ds+ (−1)k

∫ 1

0
C−s
k ds

]}
(26)

(* 3mf(ti) · [− (−1)m
∫ 1
0 C

−s
m ds+ (−1)m ∫ 10 C−s

m ds] = 0).
�(ti+1) is the formulation of Adams–Moulton m step method.

4. Modi�ed Adams–Bashforth–Moulton predictor–corrector method

Adams–Bashforth–Moulton m-step predictor–corrector method is given as follows:

yp(ti+1) = y(ti) + h ·
m−1∑
k=0

[
3kf(ti) · (−1)k

∫ 1

0
C−s
k ds

]
; (27a)

yc(ti+1) = y(ti) + hf(ti+1; yp(ti+1))(−1)m−1
∫ 1

0
C−s
m−1 ds

+h ·
m−1∑
k=0

{
3kf(ti) ·

[
−(−1)m−1

∫ 1

0
C−s
m−1 ds+ (−1)k

∫ 1

0
C−s
k ds

]}
(27b)

and Modi�ed Adams–Bashforth–Moulton m-step predictor–corrector method is given by

yp(ti+1) = y(ti) + h ·
m−1∑
k=0

[
3kf(ti) · (−1)k

∫ 1

0
C−s
k ds

]
; (28a)

yc(ti+1) = y(ti) + hf(ti+1; yp(ti+1))(−1)m−1
∫ 1

0
C−s
m−1 ds

+h ·
m−1∑
k=0

{
3kf(ti) ·

[
−(−1)m−1

∫ 1

0
C−s
m−1 ds+ (−1)k

∫ 1

0
C−s
k ds

]}
; (28b)

ympc(ti+1) =
W1

W1 +W2
· yp(ti+1) + W2

W1 +W2
· yc(ti+1): (28c)

To examine the robustness and e�ciency of the proposed method, the stability and accuracy analysis
are given as follows:

4.1. Stability analysis

Calculate for the linear test problem

ż = �z: (29)

Figs. 1–3 show that domain of stability of the characteristic equations (28) connecting the points h�
for which the roots of these equations have a modulus less than unity. From Figs. 1–3, we conclude
that the stability domains of MABMPC methods are larger than ABMPC methods.
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Fig. 1. The stability region of MAMPC-3 and AMPC-3.

Fig. 2. The stability region of MAMPC-4 and AMPC-4.

4.2. Accuracy analysis

Since ympc m and yAM m can be approximated by

ympc m(ti+1) = y(ti) + hf(ti+1; yp(ti+1))(−1)m
∫ 1

0
C−s
m ds

+h ·
m∑
k=0

{
3kf(ti) ·

[
−(−1)m

∫ 1

0
C−s
m ds+ (−1)k

∫ 1

0
C−s
k ds

]}
; (30)
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Fig. 3. The stability region of MAMPC-5 and AMPC-5.

yAM m(ti+1) = y(ti) + hf(ti+1; y(ti+1))(−1)m
∫ 1

0
C−s
m ds

+h ·
m∑
k=0

{
3kf(ti) ·

[
−(−1)m

∫ 1

0
C−s
m ds+ (−1)k

∫ 1

0
C−s
k ds

]}
: (31)

To proceed further, we make the assumption that y(ti) and 3kf(ti) in Eqs. (30) and (31) are equal
at �rst. With this assumption, we have

yAM m(ti+1)− ympc m(ti+1) = h(−1)m
∫ 1

0
C−s
m ds · [f(ti+1; y(ti+1))− f(ti+1; yp(ti+1))]

= h(−1)m
∫ 1

0
C−s
m ds · hf′(#i) · (y(ti+1)− yp(ti+1))

≈ hm+2
[
(−1)m

∫ 1

0
C−s
m ds

]2
f′(#i)f(m)(�i; y(�i)): (32)

Hence, the dominant truncation error of ympc m and yAM m have the order of same hm+1. In Eq. (32),
we have shown that ympc m and yAM m have the same order of accuracy. Thus, we conclude that
MABMPC methods are more accurate than ABMPC methods (with the same step size) about one
order of magnitude.

5. Numerical examples

In the present numerical experiment, we use the following example to demonstrate the accuracy
of the present method in comparison with Adams–Moulton predictor–corrector methods.
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Fig. 4. Error of position x(t); h= 0:01 s.

Fig. 5. Error of position x(t); h= 0:001 s.

Example (A harmonic oscillator problem). The equations of motion of a harmonic oscillator are
given as

ẋ = v; v̇=−25x; (33)

and its initial conditions are

x(0) = 1; v(0) = 0: (34)

Note that the exact solution of Eq. (33) is x(t) = cos(5t).
The Adams–Moulton third order predictor–corrector method (AMPC 3) and the presented

MAMPC 3 method are used in this numerical example with two di�erent integration step sizes
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h = 0:01 and 0:001 s. The starting procedure of these two methods is calculated by using Runge–
Kutta–Fehlberg method with truncation error equals to 10−12. The error of state variable x is,
e(t) = x̂(t) − x(t), which is shown in Fig. 4 (h = 0:01 s) and Fig. 5 (h = 0:001 s). Here, Fig. 4
shows that the error of state variable x is reduced to 14% if one replaces AMPC 3 by MAMPC 3
with h=0:01 s. Fig. 5 shows that the error of state variable x is reduced to 1:3% when h=0:001 s.

6. Conclusion

A modi�ed predictor–corrector method has been presented in this paper. By making a small mod-
i�cation, the proposed method has increased the accuracy about one order of magnitude in compar-
ison with Adams–Moulton predictor–corrector methods. Numerical example of nonlinear di�erential
equations has been used here to show the superiority of the proposed integration method.
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