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First-principles theory of fluctuations in vortex liquids and solids
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Consistent perturbation theory for thermodynamical quantities in type-II superconductors in magnetic field
at low temperatures is developed. It is complementary to the existing expansion valid at high temperatures.
Magnetization and specific heat are calculated to two-loop order and compare well to existing Monte Carlo
simulations and experiments.@S0163-1829~99!01829-9#
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Thermal fluctuations play much larger role in high-Tc su-
perconductors than in the low-temperature ones becaus
Ginzburg parameterG characterizing fluctuations is muc
larger. In the presence of magnetic field the importance
fluctuations in high-Tc superconductors is further enhance
A strong magnetic field effectively suppresses lon
wavelength fluctuations in a direction perpendicular to
field reducing dimensionality of the fluctuations by two.1 Un-
der these circumstances, fluctuations influence various ph
cal properties and even lead to new observable qualita
phenomena like vortex lattice melting into vortex liquid f
below the mean-field phase transition line. It is qu
straightforward to systematically account for the fluctuatio
effect on magnetization, specific heat or conductivity pert
batively above the mean-field transition line using t
Ginzburg-Landau~GL! description.2 However, it proved to
be extremely difficult to develop a quantitative theory in t
interesting region below this line, even neglecting fluctuat
of the magnetic field and within the lowest-Landau-lev
~LLL ! approximation.

To approach the region below the mean-field transit
line T,Tmf(H) Thouless3 proposed a perturbative approa
around homogeneous~liquid! state was in which all the
‘‘bubble’’ diagrams are resumed. The series provides ac
rate results at high temperatures, but for LLL dimensionl
temperatureaT[@T2Tmf(H)#/(TH)2/3&22 become inap-
plicable ~see dotted lines in Figs. 2 and 3 which repres
successive approximants!. Generally, attempts to extend th
theory to lower temperature by Pade´ extrapolation were no
successful and require additional external information ab
the low temperatures.6 Alternative, a more direct approach t
low-temperature fluctuation physics might have been to s
from the Abrokosov solution at zero temperature and th
take into account perturbatively deviations from this inhom
geneous solution. Experimentally it is reasonable since,
example, specific heat at low temperatures is a smooth fu
tion and the fluctuations contribution experimentally is qu
small. This contrasts sharply with theoretical expectation

A long time ago Eilenberger calculated the spectrum
harmonic excitations of the triangular vortex lattice.4 Subse-
quently Maki and Takayama5 noted that the gapless mode
softer than the usual Goldstone mode expected as a resu
spontaneous breaking of translational invariance. The pro
gator for the ‘‘phase’’ excitations behaves as 1/@kz

21c(kx
4

1ky
4)#. The influence of this unexpected additional ‘‘so
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ness’’ apparently goes even beyond enhancement of the
tribution of fluctuations at leading order. It leads to disa
trous infrared divergences at higher orders rendering
perturbation theory around the vortex state doubtful. For
ample, contributions to energy depicted in Figs. 1~a! and 1~d!
are, respectively, log2(L) and L4 divergent~L being an IR
cutoff! and at higher orders divergences get worse. A
qualitatively one argues7 ~in a way similar to that used fre
quently to understand the Mermin-Wagner theorem8! that
lower critical dimensionality for melting of the Abrikoso
lattice is D53 and consequently a vortex lattice in clea
materials exists in the thermodynamic limit only atT50.
One therefore tends to think that nonperturbative effects
so important that such a perturbation theory should
abandoned9 and it was abandoned. However, a closer look
diagrams like Fig. 1~d! ~see some details below! reveals that
in fact one encounters actually only logarithmic divergenc
This makes the divergences similar to so-called ‘‘spuriou
divergences in the theory of critical phenomena with brok
continuous symmetry. In that case one can prove10 that they
exactly cancel at each order provided we are calculatin
symmetric quantity.

In this paper I show that all the IR divergences in fr
energy or other quantities invariant under translations can
to the two-loop order. I calculate magnetization and spec
heat to this order, interpolate with existing high-temperat
expansion, and compare with Monte Carlo~MC!
simulation11 of the same system and experiments. Qual
tively physics of a fluctuatingD53 GL model in the mag-
netic field turns out to be similar to that of spin systems~or
scalar fields! in D52 possessing a continuous symmetry.
particular, although within perturbation theory in the therm
dynamic limit the ordered phase~solid! exists only atT50,
at low temperatures liquid differs very little in most aspec
from solid. One can effectively use properly modified pertu
bation theory to quantitatively study various properties of
vortex-liquid phase.

The GL free energy is

G5
\2

2mab
US ¹W 2

ie*

c
AW DcU2

1
\2

2mc
u]zcu21aucu21

b

2
ucu4.

~1!

Here AW 5(2By,0) describes a nonfluctuating almost co
stant magnetic field in thec direction. Within the LLL ap-
4268 ©1999 The American Physical Society
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proximationc can be expanded in a basis of quasimom
tum k eigenfunctions

c~x!5vw~x!1
1

2p E d2kwk~x!A gk

2ugku
~Ok1 iAk!,

~2!

wk5A 2

ApaD
(

l 52`

`

expH i Fp l ~ l 21!

2
1

2p

aD
l ~x2ky!2xkxG

2
1

2 S y1kx2
2p

aD
l D 2J .

The unit of length will be the magnetic lengthl H

[Ac\/eH and aD[A4p/) is the lattice spacing. Thek
50 component w0(x)[w(x) is ‘‘a vacuum’’ with its
vacuum expectation value denoted byv. The integration is
over the Brillouin zone. Instead of one complex field tw
real fields O and A were introduced. They are somewh
analogous to acoustic and optical phonons in the usual so
with some peculiarities due to the strong magnetic fi
studied in detail by Moore.6 For example, theA mode
corresponds to shear of the two-dimensional lattice. Sub
tuting Eq. ~2! into the free energy, quadratic term
in fields define propagators, while cubic and quartic
interactions. The phase factors containing a functiongk
[*xw* (x)w* (x)wk(x)w2k(x) are introduced in orde
to diagonalize the resulting quadratic partPO

21(k)Ok* Ok

1PA
21(k)Ak* Ak , where PO,A

21 (k,kz)52a12bv2(2bk

6ugku)1kz
2 ~to simplify intermediate expressions an isotr

pic case mab5mc is considered, results are generaliz
later!. Functions gk5l(2k,k) and bk
[*xw* (x)w(x)wk* (x)wk(x)5l(0,k) as well as all the
three- and four-leg vertices can be expressed via a si
function of two quasimomenta

l~k1 ,k2!5(
l ,m

~2 ! lm expH i
2p

aD
@ lk1

y1mk2
y#

2
1

2 F S k2
x2

2p

aD
l D 2

1S k1
x2

2p

aD
mD 2G J . ~3!

For example, theAk1Ak2A2k12k2 vertex is

ibv Re@l~k1 ,k2!#5
ibv
2

b02
A ~k1

xk1
y1k2

xk2
y!1O~k4!, ~4!

where bst
A[(2p/aD)4( l ,ml smt(2) lm exp$2 @(2p)2/2aD

2 # ( l 2

1m)2%. If the fluctuations were absent the expectation va
v0

25a/bAb would minimizeG052av21 (b/2) bAv4 where
bA[b00

A 51.16. The propagators entering Feynman d
grams, therefore, are

PO,A~k!5
1

MO,A
2 ~k!1kz

2 ;

MO,A
2 ~k![

2a

bA
~2bA12bk6gk!. ~5!
-

ds
d

ti-

e

le

e

-

Expanding aroundk50 using explicit expressions forgk
andbk one observes that the constant and thek2 terms van-
ish, so that the~only! leading quartic term isMA

2(k)
5 (b22

A /2bA) uku4.
At the one-loop level the fluctuation contribution to th

free energy is

G15
1

2

1

~2p!3/2E
kz

E
k
$ ln@PO~k!#1 ln@PA~k!#%. ~6!

One should minimizeG01G1 with respect tov leading to
the correction to its value

v1
25

1

~2p!3/2E
kz

E
k
@PO~k!1PA~k!#

5
1

2~2p!1/2E
k
F 1

MO~k!
1

1

MA~k!G . ~7!

Due to the additional softness of theA mode the second
‘‘bubble’’ integral diverges logarithmically in the infrared
This means that for the infinite cutoff fluctuations destroy t
inhomogeneous ground state, namely the state with low
energy is a homogeneous liquid.13 Since the divergence is
logarithmic we are at lower critical dimensionality in whic
an analog of the Mermin-Wagner theorem8 is applicable. It,
does however, not necessarily mean that perturbation th
starting from the ordered ground state is inapplicable. T
way to proceed in these situations have been found w
considering simpler models like thew4 model F5 1

2 (¹w i)
2

1V(w i
2) in D52 with a number of components larger the

1, sayi 51,2.12 Considering the statistical sum, one first i
tegrates exactly zero modes existing due to continuous s
metry ~translations in our case! and then develops a pertu
bation theory via the steepest descent method for the re
the variables. When the zero mode is taken out, a sin
configuration appears with the lowest energy and the stee
descent is well defined. For invariant quantities such as
ergy, this procedure simplifies to: one actually can forget
a moment about integration over the zero mode and proc
with the calculation as if it is done in the ordered phase. T
invariance of the quantities ensures that the zero-mode i
gration trivially factorizes. This is no longer true for nonin
variant quantities for which the machinery of ‘‘collective co
ordinates method’’ should be used.14

To the two-loop order one gets several classes of d
grams, see Fig. 1. The leading-order propagators are den
by dashed and solid lines for the ‘‘supersoft’’A and ‘‘hard’’

FIG. 1. Contributions to the free energy at the two-loop level
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B modes, respectively. The~naively! most divergent diagram
Fig. 1~d! actually converges. To see this one writes explici
its expression in terms of the functionl

b2v2

2~2p!3/2E
q
E

p
I D~q,p!PA~p!PA~q!PA~p1q!; ~8!

I D~q,p![2l~p,2q!l~p,q!14l~p1q,p!l~p1q,q!

3
gp1q

ugp1qu
22l~p1q,2q!l~p,2q!

gpgp1q*

ugpgp1qu

12l~q,2p!2
gpgqgp1q*

ugpgqgp1qu
1c.c.

The integrals overpz and qz can be explicitly performed
using a formula

1

2p E
p
E

q

1

p21M1
2

1

q21M2
2

1

~p1q!21M3
2

5
p

2

1

M1M2M3

1

M11M21M3
.

The leading divergence

;E
p
E

q
I a~q,p!

1

p2q2uq1pu2

1

p21q21uq1pu2
,

is determined by the asymptotics ofI D(q,p) as bothp andq
approach zero. IfI D;1, it would diverge asL4. However,
the vertex is ‘‘supersoft’’ at small quasimomenta;p2 ac-
cording to Eq.~4!, so that the expansion ofI D(q,p) starts
from terms quartic inp andq and there is no singularity a
the origin. This goes beyond the usual ‘‘softness’’ of inte
actions of the Goldstone modes (;p). Nonleading diver-
gences can be found by analyzing contributions coming fr
three regions on which one of the line momentap, q or p
1q vanishes. The corresponding expressions are

;E
k
E

l
I D

i ~ l!
1

k2MA~ l!3 ,

with I D
1 50, I D

2 5b l
22b lug lu and I D

3 52b l
21b lug lu, respec-

tively. Herek denotes an IR divergent momentum while i
tegration overl is nonsingular. Although the second and t
third contributions are divergent their sum is convergent.

Standard methods similar to the one used above can
applied to evaluate IR divergences of other superficially l
divergent diagrams. There are no power divergences—o
log2 L and logL. The results are

b

&p
E

p

1

MA~p!
E

q
FbA2ugqu

MA~q!
1

ugqu
MO~q!G ,

b

&2p
E

p

1

MA~p!
E

q

2bq1ugqu23bA

MA~q!
,

b

&2p
E

p

1

MA~p!
E

q

2bk2ugqu
MO~q!
-

be
s
ly

for Figs. 1~a!, 1~b!, and 1~e!, respectively. In addition to
direct contributions fromG2 ~Fig. 1!, there is also a ‘‘cor-
rection term’’ due to the correction in the value ofv from
Eq. ~7! inserted into the lower order contributions to fre
energyG0 andG1 . Its divergent part is

2
b

&2p
E

p

1

MA~p!
E

qW
F2bk2ugqu2bA

MA~q!
2

2bk1ugqu
MO~q! G .

Both the leading divergences log2 L and the next-to-leading
ones logL cancel between the four contributions. Simil
cancellations of all the logarithmic IR divergences occur
scalar models with Goldstone bosons inD52 and D53
~where the divergences are known as ‘‘spurious’’!.

The finite result for the Gibbs free energy to two loo
~finite parts of the integrals were calculated numerically! is
restoring the original units and reintroducing the asymme
mcÞmab :

G5
p\2

eHkBTAmab

g; g52
1

2bA
aT

21c1AuaTu1c2

1

uaTu
,

~9!

where numerical values of the coefficients arec153.16 and
c257.5. The dimensionless entropy~LLL scaled magnetiza-
tion!

s52
dg

daT
5S p2c5mab

3 b

8e5kB
2mc

D 1/3 M

~TH!2/3

5
1

bA
aT1

c1

2

1

uaTu
2c2

1

aT
2 , ~10!

and specific heat normalized to the mean-field value

1

bA

C

DC
52

d2g

daT
2 511

c1

4

1

uaTu3/212c2

1

aT
3 , ~11!

for successive partial sums are plotted in Figs. 2 and
~dashed lines!. Qualitatively they are in accord with nume
ous experiments and MC simulations.11 At low temperature
magnetization is a bit larger than that of the mean fie
while dimensionless specific heat characteristically gro
before dropping fast aroundaT525. To make a more de
tailed comparison, I interpolated between the results of lo
temperature expansion and those of high-temperature ex
sion using the following rational form for the free energy
terms of the often-used variablex defined implicitly by x
5y2, aT54(2y)2/3(121/8y2):

g54~2y!2/3
11a1y1¯1an12yn12

11b1y1¯1bnyn . ~12!

The coefficients were constrained from both the low- a
high-temperature sides. It has been already noted6 that con-
straining from both sides the Pade´ approximants, just by the
first term at low energy, improves otherwise unsatisfact
magnetization and specific heat.

Adding two more terms on the low-temperature e
makes it very close to the MC results~stars triangles, and
diamonds correspond to the 1, 2, and 5 T results for Y-Ba-
Cu-O!. I used just three leading terms in the hig
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temperature expansion shown in Figs. 2 and 3 by the do
lines. Using more terms does not modify significantly t
result. Although magnetization curve Eq.~12! agrees with
that of Ref. 15, the specific heat is not.

To summarize, it is established up to the order of t
loops that perturbation theory around the Abrikosov lattice
consistent. All the IR divergences cancel due to soft inter
tions of the soft mode. Perturbative results as well as in
polation with the high-temperature expansion agree v
well with the direct MC simulation.

Now I comment on the range of validity of the perturb
tive results and nonperturbative effects. As can be seen f
Figs. 2 and 3, the range of validity of the low-temperatu
expansion presented in this paper is belowaT5210, while
that of the high-temperature expansion is aboveaT522.
Both exclude the range in which a small magnetization ju

FIG. 2. Scaled magnetization defined in Eq.~10!. Dashed~dot-
ted! lines are successive low-~high-! temperature approximants
while the solid line is the interpolation. The points are the M
results.
ed

s
c-
r-
y

m

p

~not seen in the scale of Fig. 2! due to vortex melting is seen
experimentally and in the numerical simulation. Since t
MC simulation is the only systematic tool available in th
intermediate region@the theory of Tesˇanovićet al.15 captures
the major~98%! contribution, but does not treat the sma
~2%! effect including melting#, one might have two possibili-
ties to discuss such a singularity within the present fram
work. One possibility is that the jump is due to finite-siz
effects and disappears in the thermodynamic limit~value of
the cutoff in the simulation is onlyL;25!. Another is that
some nonperturbative effects can stabilize the vortex latt
Quantitative comparison with experiments on Y-Ba-Cu
was attempted in Refs. 11 and 15. The present simple in
polation formula Eq.~12! works equally well.

The author is very grateful to L. Bulaevsky for encou
agement and numerous discussions, R. Sasik for provid
the original MC data, and explaining the details of his M
simulation, Y. Kluger and other members of T11 and T
especially A. Balatsky for discussions and hospitality in L
Alamos where part of this work was done. The work w
supported by a grant from the NSC of Taiwan.

FIG. 3. Scaled specific heat defined in Eq.~11!. The same no-
tations as in Fig. 2.
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