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First-principles theory of fluctuations in vortex liquids and solids
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Consistent perturbation theory for thermodynamical quantities in type-Il superconductors in magnetic field
at low temperatures is developed. It is complementary to the existing expansion valid at high temperatures.
Magnetization and specific heat are calculated to two-loop order and compare well to existing Monte Carlo
simulations and experimentsS0163-182@9)01829-9

Thermal fluctuations play much larger role in highsu-  ness” apparently goes even beyond enhancement of the con-
perconductors than in the low-temperature ones because tlwbution of fluctuations at leading order. It leads to disas-
Ginzburg parameteG characterizing fluctuations is much trous infrared divergences at higher orders rendering the
larger. In the presence of magnetic field the importance operturbation theory around the vortex state doubtful. For ex-
fluctuations in highF. superconductors is further enhanced.ample, contributions to energy depicted in Fig®) nd 1d)

A strong magnetic field effectively suppresses long-are, respectively, IGgL) and L* divergent(L being an IR
wavelength fluctuations in a direction perpendicular to thecutoff) and at higher orders divergences get worse. Also
field reducing dimensionality of the fluctuations by thoin-  qualitatively one arguédin a way similar to that used fre-
der these circumstances, fluctuations influence various physipuently to understand the Mermin-Wagner thedbethat

cal properties and even lead to new observable qualitativeower critical dimensionality for melting of the Abrikosov
phenomena like vortex lattice melting into vortex liquid far lattice is D=3 and consequently a vortex lattice in clean
below the mean-field phase transition line. It is quitematerials exists in the thermodynamic limit only &t 0.
straightforward to systematically account for the fluctuationsOne therefore tends to think that nonperturbative effects are
effect on magnetization, specific heat or conductivity perturso important that such a perturbation theory should be
batively above the mean-field transition line using theabandoneYand it was abandoned. However, a closer look at
Ginzburg-LandauGL) descriptior? However, it proved to  diagrams like Fig. (d) (see some details beloweveals that

be extremely difficult to develop a quantitative theory in thein fact one encounters actually only logarithmic divergences.
interesting region below this line, even neglecting fluctuationThis makes the divergences similar to so-called “spurious”
of the magnetic field and within the lowest-Landau-leveldivergences in the theory of critical phenomena with broken
(LLL) approximation. continuous symmetry. In that case one can ptdtteat they

To approach the region below the mean-field transitiorexactly cancel at each order provided we are calculating a
line T<T,,(H) Thouless proposed a perturbative approach symmetric quantity.
around homogeneoudiquid) state was in which all the In this paper | show that all the IR divergences in free
“bubble” diagrams are resumed. The series provides accuenergy or other quantities invariant under translations cancel
rate results at high temperatures, but for LLL dimensionlesso the two-loop order. | calculate magnetization and specific
temperaturear=[T—T,,(H)]/(TH)?3< —2 become inap- heat to this order, interpolate with existing high-temperature
plicable (see dotted lines in Figs. 2 and 3 which represenexpansion, and compare with Monte CarlgMC)
successive approximantszenerally, attempts to extend the simulatiort! of the same system and experiments. Qualita-
theory to lower temperature by Padgtrapolation were not tively physics of a fluctuatindd =3 GL model in the mag-
successful and require additional external information abounetic field turns out to be similar to that of spin systefos
the low temperatureSAlternative, a more direct approach to scalar fieldsin D=2 possessing a continuous symmetry. In
low-temperature fluctuation physics might have been to stapparticular, although within perturbation theory in the thermo-
from the Abrokosov solution at zero temperature and themynamic limit the ordered phageolid) exists only afT =0,
take into account perturbatively deviations from this inhomo-at low temperatures liquid differs very little in most aspects
geneous solution. Experimentally it is reasonable since, fofrom solid. One can effectively use properly modified pertur-
example, specific heat at low temperatures is a smooth fundzation theory to quantitatively study various properties of the
tion and the fluctuations contribution experimentally is quitevortex-liquid phase.
small. This contrasts sharply with theoretical expectations.  The GL free energy is

A long time ago Eilenberger calculated the spectrum of

harmonic excitations of the triangular vortex lattft8ubse- h? . oie* L\ |2 a2 ) , b o,
quently Maki and Takayamaoted that the gapless mode is C= 2Mae V=AY R|3z¢| +alyl*+ §|¢| :
softer than the usual Goldstone mode expected as a result of : ¢ (1)

spontaneous breaking of translational invariance. The propa-
gator for the “phase” excitations behaves a§kf#c(k;  Here A=(—By,0) describes a nonfluctuating almost con-
+k;‘,)]. The influence of this unexpected additional “soft- stant magnetic field in the direction. Within the LLL ap-
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proximation ¢y can be expanded in a basis of quasimomen-
tum k eigenfunctions
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[ 2 ['n’l(l 1) 2x N
\/_ aAl—foc f

5 a_AI(X_ky)_XkX

e

Tk, 2 lt ) 2] FIG. 1. Contributions to the free energy at the two-loop level.
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Expanding arounck=0 using explicit expressions foy,
The unit of length will be the magnetic length, andp, one observes that the constant andkhéerms van-
=ch/eH and a,=\47/V3 is the lattice spacing. The  ish, so that the(only) leading quartic term isM2(k)

=0 componentey(X)=¢(x) is “a vacuum” with its = (B5/28")|k|*.
vacuum expectation value denoted by The integration is At the one-loop level the fluctuation contribution to the

over the Brillouin zone. Instead of one complex field two free energy is

real fieldsO and A were introduced. They are somewhat

analogous to acoustic and optical phonons in the usual solids 1

with some peculiarities due to the strong magnetic field Gl:i(zﬂ)mfk fk{m[PO(k)]Hn[PA(k)]}' ©)
studied in detail by Moor&. For example, theA mode ‘

corresponds to shear of the two-dimensional lattice. Substi©One should minimize5,+ G; with respect tov leading to
tuting Eq. (2) into the free energy, quadratic terms the correction to its value

in fields define propagators, while cubic and quartic are

interactions. The phase factors containing a functign , 1 [Po(K) +PA(K)]

=[,0*(X)o* (X)ox(X)@_(x) are introduced in order ViT(om)? Jio © A

to diagonalize the resulting quadratic part (k)O*Ok

+P, (k)A*Ak, where  Pgoh(k.k)=2a+2bv?(28, _ 1 1 1

+|yl)+kZ (to simplify intermediate expressions an isotro- 2(27)7° Ji[Mo(k) ~ Ma(k)

pic casem,,=m, is considered, results are generalized

later). Functions Ye=N(—Kk,k) and By Due to the additional softness of themode the second

=[0* () e(X)ef (X)ex(X)=A(0k) as well as all the “bubble” integral diverges logarithmically in the infrared.

three- and four- |eg vertices can be expressed via a S|ng|-5h|s means that for the infinite cutoff fluctuations destroy the
function of two quasimomenta inhomogeneous ground state, namely the state with lowest

energy is a homogeneous I|qd1?jS|nce the divergence is
o logarithmic we are at lower critical dimensionality in which
MKy ko) =2, (—)'m exp[ i —[IkY+mKk] an analog of the Mermin-Wagner theoreim applicable. It,
!.m A does however, not necessarily mean that perturbation theory
1 27 \2 20 \2 starting from the ordered ground state is inapplicable. The
- E[(kx I) (kx— —m) H (3 way to proceed in these situations have been found while
considering simpler models like the* model F=%(V¢,)?
+V(qu2) in D=2 with a number of components larger then
1, sayi=1,2.12 Considering the statistical sum, one first in-
ibv tegrates exactly zero modes existing due to continuous sym-
ibv RgN(ky,ky)]= —Béz(k){k% K5k +O(kY), (4) metry (translations in our cagend then develops a pertur-
2 bation theory via the steepest descent method for the rest of
the variables. When the zero mode is taken out, a single
Wherze Bo=(2m18,) 'S pl*m'(—)"™ expl — [(2m)%/2a3] (12 configuration appears with the lowest energy and the steepest
T m) }- If the fluctuations were absent the expectat|on valugyescent is well defined. For invariant quantities such as en-
Vo= a/,BAb would minimizeG,= —av®+ (b/2) Bav* where ergy, this procedure simplifies to: one actually can forget for
Ba=B0=1.16. The propagators entering Feynman dia-a moment about integration over the zero mode and proceed
grams, therefore, are with the calculation as if it is done in the ordered phase. The
invariance of the quantities ensures that the zero-mode inte-
gration trivially factorizes. This is no longer true for nonin-
Po.a(k)= m; variant quantities for which the machinery of “collective co-
oA ‘ ordinates method” should be us&b.
24 To the two-loop order one gets several classes of dia-
— (= Bat2BcE ). (5) grams, see Fig. 1. The leading-order propagators are denoted
Ba by dashed and solid lines for the “supersof’and “hard”

aa

For example, thé\;ALA 1o Vertex is

Mé,A(k)E
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B modes, respectively. THaaively) most divergent diagram for Figs. 1a), 1(b), and 1e), respectively. In addition to
Fig. 1(d) actually converges. To see this one writes explicitlydirect contributions fronG, (Fig. 1), there is also a “cor-

its expression in terms of the function

b2 2
Wff p(@:P)PA(P)PA(Q)PA(P+a);  (8)

Ip(d,p)=—A(p,— A (p,q) +4N(p+q,p)A(p+q,q)
*
Yp+q Yo Vp+q
X —2M(p+q,—q)\(p,—q) ——
Yord (p+a,—aA(p Q)|yp7p+q|
*
+2A(q,—p)2m+c.c.

| 7p7q7p+q|

The integrals overp, and q, can be explicitly performed
using a formula

1
27rpr 24+ M7 2+M2(p+q)2+M3

1
"2 M1M2M3 M+ M,+Ms

The leading divergence

1
+|ag+pl*’

1
—~ [ ,
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is determined by the asymptotics lgf(q,p) as bothp andq
approach zero. Ifp~1, it would diverge ad.*. However,
the vertex is “supersoft” at small quasimomentap? ac-
cording to Eq.(4), so that the expansion df(q,p) starts

from terms quartic irp andq and there is no singularity at
the origin. This goes beyond the usual “softness” of inter-

actions of the Goldstone modes-p). Nonleading diver-

gences can be found by analyzing contributions coming from

three regions on which one of the line momeptag or p
+q vanishes. The corresponding expressions are

Lo e

with 15=0, 13=82—pB/|v/| and13=— B2+ B/ v, respec-

rection term” due to the correction in the value wffrom
Eq. (7) inserted into the lower order contributions to free

energyGy andG; . Its divergent part is
2By~ |7q| —Ba _ 2B+ | '}’q|

_@ZJ A<p>f Ma(Q) Mo(a)

Both the leading divergences fog and the next-to-leading
ones lod- cancel between the four contributions. Similar
cancellations of all the logarithmic IR divergences occur in
scalar models with Goldstone bosonsn=2 and D=3
(where the divergences are known as ‘“‘spurious”

The finite result for the Gibbs free energy to two loops
(finite parts of the integrals were calculated numerigaly
restoring the original units and reintroducing the asymmetry
m(ﬂ& Mgy -

wh?

. g=—s—a2+cy\|af]+c
erBT ,—mag 9= 2’3 T Civiar 2|
(9)

where numerical values of the coefficients afe=3.16 and
c,=7.5. The dimensionless entrofylL scaled magnetiza-
tion)

dg [#c*mip\¥® ™
ST da; 8ek3m, | (TH)?®
1 o 1 1

=—ar+—=—7——=¢C , 10
BT 2 Tay] %2R 10

and specific heat normalized to the mean-field value

1 C
BaAC

Py _,. o +2 (11)

—_— J— C —,

da? 4 |a7®? " 77243

for successive partial sums are plotted in Figs. 2 and 3
(dashed lines Qualitatively they are in accord with numer-
ous experiments and MC simulatioHsAt low temperature
magnetization is a bit larger than that of the mean field,
while dimensionless specific heat characteristically grows
before dropping fast arounak=—5. To make a more de-

tively. Herek denotes an IR divergent momentum while in- tailed comparison, | interpolated between the results of low-
tegration ovel is nonsingular. Although the second and thetemperature expansion and those of high-temperature expan-

third contributions are divergent their sum is convergent.

sion using the following rational form for the free energy in

Standard methods similar to the one used above can h@rms of the often-used variable defined implicitly by x
applied to evaluate IR divergences of other superficially Iesscy ar=4(2y)?3(1-1/8y?):

d|vergent diagrams. There are no power divergences—only

log?L and logL. The results are
IBA_|7q|

\/;77 fp MAl(IO) fq Ma(q)

2,8q+|7q| 3Ba
\/_27Tf A(p)f '

bf 1 fzﬁk—lvql
V22w JpMa(p) Jg Mo(Q)

|'}’q|
Mo(q) ]’

1+agy+-+ayy"?
1+byy+---+byy"

)2/3 (12)

g=4(2y
The coefficients were constrained from both the low- and
high-temperature sides. It has been already fateat con-
straining from both sides the Padpproximants, just by the
first term at low energy, improves otherwise unsatisfactory
magnetization and specific heat.

Adding two more terms on the low-temperature end
makes it very close to the MC resulfstars triangles, and
diamonds correspond to the 1, 2,dab T results for Y-Ba-
Cu-O). | used just three leading terms in the high-
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FIG. 3. Scaled specific heat defined in Efj1). The same no-
tations as in Fig. 2.

(not seen in the scale of Fig) 8ue to vortex melting is seen
FIG. 2. Scaled magnetization defined in E40). Dashed(dot-  experimentally and in the numerical simulation. Since the
ted lines are successive lowhigh-) temperature approximants, \MC simulation is the only systematic tool available in the
while the solid line is the interpolation. The points are the MC jniermediate regiofthe theory of Téanovicet alls captures
results. the major(98%) contribution, but does not treat the small
(2%) effect including melting, one might have two possibili-
temperature expansion shown in Figs. 2 and 3 by the dottegles to discuss such a singularity within the present frame-
lines. Using more terms does not modify significantly thework. One possibility is that the jump is due to finite-size
result. Although magnetization curve E@L2) agrees with  effects and disappears in the thermodynamic liwitlue of
that of Ref. 15, the specific heat is not. the cutoff in the simulation is only.~25). Another is that
To summarize, it is established up to the order of twogome nonperturbative effects can stabilize the vortex lattice.
loops that perturbation theory around the Abrikosov lattice ISQuantitative comparison with experiments on Y-Ba-Cu-O

consistent. All the IR divergences cancel due to soft interacy,5¢ attempted in Refs. 11 and 15. The present simple inter-
tions of the soft mode. Perturbative results as well as '”terpolation formula Eq(12) works equally well.

polation with the high-temperature expansion agree very
well with the direct MC simulation. The author is very grateful to L. Bulaevsky for encour-
Now | comment on the range of validity of the perturba- agement and numerous discussions, R. Sasik for providing

tive results and nonperturbative effects. As can be seen frore original MC data, and explaining the details of his MC
Figs. 2 and 3, the range of validity of the low-temperaturesimulation, Y. Kluger and other members of T11 and T8,
expansion presented in this paper is belmyw= — 10, while  especially A. Balatsky for discussions and hospitality in Los
that of the high-temperature expansion is abaye=—2.  Alamos where part of this work was done. The work was
Both exclude the range in which a small magnetization jumpsupported by a grant from the NSC of Taiwan.
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