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We have studied the quantum transport phenomena in a double-barrier structure
acted upon by a finite-range time-modulated potential. Inter-side-band mfiw transitions
are made possible by the finiteness in the range of the oscillating field. For the case when
the barrier width is small, such that the resonance state in between the barriers is too
broadened, the dc conductance G exhibits peaks or dip structures when the chemical
potential p is at rnhw above the band bottom. For the case when the barrier width is
large, such that the resonance state in between the barriers is well defined, the above
feature is masked by resonant tunneling processes when p is at energies mhw away from
the resonant energy Eb. In both cases, the dips or peaks in G are due to the temporary
trapping of the transmitting electrons by the quasi-bound states. Furthermore, for the
latter case, we also obtain the quenching of the resonant transmission found by Wagner,
but with a small quantitative modification. Our calculation is nonperturbative which
is valid for arbitrary potential strength and frequency. The form of the time-modulated
potential is expected to be realized in a gate-induced potential configuration.

PACS. 72.10.-d - Theory of electronic transport; scattering mechanisms
PACS. 72.40.~~  - Photoconduction and photovoltaic effects.
PACS. 73.40.-c  - Electronic transport in interface structures.

I .  I n t r o d u c t i o n

Inelastic scattering processes in quantum transport have drawn continued attention in
the recent past. These studies have demonstrated, among others, the interesting feedback
effect of the inelastic scattering on the elastic channel. One of the common models used
is a time-modulated potential that has a finite spatial profile [I-Ill. This model for the
coherent inelastic scattering can be realized in the case when the time-modulated potential
is well specified.

The coherent inelastic scattering processes are expected to manifest in nanostructures
such as a gate-controlled double-barrier structure, as shown in Fig. 1. Similar configuration
has been considered recently by Wagner [7,8], who has studied the transmission coeffi-
cients of a well acted upon by an oscillating potential. Focusing on the resonant tunneling
through the double barrier, he found the quenching conditions for each side-band, when
the emanating electron has an energy change of mfiw. In this work, however, we perform a
comprehensive investigation of the transport characteristics in the double-barrier structure.
A simple mode-matching method is utilized. This method is nonperturbative, and allows
both the frequency and the amplitude of the oscillating potential to have arbitrary values.
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FIG. I. Sketch of a double-barrier structure with a time-modulated potential in between the bar-
riers. The oscillating potential gives rise to intra-band and inter-side-band transitions.

In reference ill],  dip structures are found in the dc conductance G when narrow
constrictions are acted upon by a time-modulated potential. These dip structures are closely
related to the density of states (DOS). In fact, the dip structures are the quasi-bound-state
features, which occur when the electrons can make transitions to the quasi-bound-states
formed just below a subband  bottom by giving away mi+w. The existence of these quasi-
bound states is closely associated with the singular DOS at a subband  bottom. We have also
studied the transport characteristics of a quantum well with a time-modulated potential in
the well [12].  The quasi-bound-state features are found in G when p is at energies mhw
above the bound state energy in the well. Thus it is interesting to explore the manifestation
of such quasi-bound-state features in a double-barrier structure. The extent of the quasi-
boundedness for the resonant states formed between the double-barrier is very sensitive
to both the height and the thickness of the barriers. In the neighborhood of a loosely
bound level the effective DOS changes gradually, thus we expect to have weak side-band
resonances. In the neighborhood of a tightly bound level, when the effective DOS changes
abruptly, we expect to have strong side-band resonances. This feature is supported by
the numerical results in this paper. There is, however, another set of side-band resonances.
which occur when p is at mfLw above the energy bottom of the system. This set of side-band
resonances is found to dominate in the case of the loosely bound levels, and is suppressed
in the case of the tightly bound levels.

The configuration we consider in this work is a double-barrier structure with a time-
modulated potential VI cos(wt)  acting upon the region between the two barriers. The
configuration is shown in Fig. 1. The finiteness in the range of the time-modulated potential
alone gives rise to the following important consequences. First, the potential breaks the
translational invariance, thus allowing the intra-band and inter-side-band transitions to
occur for the transmitting electrons. Second, the reservoirs at both ends of the system are
free from the time-modulation effects so that the distribution of the incident electrons is
well determined. Thus the quantum transport can be casted into a Landauer-Biittiker-type
formalism. Third, when the range _?J of the time-modulated potential is less than the phase-
breaking length 1+, the entire transmission process becomes coherent and can be described
by a time-dependent Schriidinger  equation. Within the recent experimental capabilities. 1,
can be made sufficiently long by lowering the temperature.
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In Sec. II we present the formulation for the inelastic scattering and express the
conductance G in terms of the current transmission coefficients. In Sec. III we present
numerical examples illustrating the quasi-bound features in G. Finally, Sec. IV presents a
conclusion.

II. Theory

In this section, the inelastic scattering problem is formulated and the equations for
the current transmission and the current reflection coefficients are obtained. Conductance
G is then expressed in terms of these coefficients. The potential takes the form

V(Q) = v$(lzl  - d/2)6(L/2  - Il?q + v, cos(wt)e(d/2  - 121), (1)

where Vi is the barrier height, 9 is the barrier thickness, and d is the distance between
the barriers. Choosing the energy unit E* = h2kg/2mv, the length unit a* = l/kF,  the
time unit t’ = h/E*,  V, and VI in units of Eí, we obtain the dimensionless S&r&linger
equation, given by

[
-g + V(z;t)] !P(z,t)  = i+q. (2)

Here kF is a typical Fermi wave vector of the reservoir and m* is the effective mass. For an
electron incident from the left electrode and at energy ,u, the scattering wave function can
be written in the form [7,11,12]

I &&+~),-ipt  + c rme-ik,(z+~)e-i(~+mw)t if x < -L/2

x[Af,eíq-(ë+%)  y B~e-iq-(ì+~)]e-i(~+ìì)t if - L/2 < x < - d / 2

if - d/2 < x < d/2
(3)

if d/2 < x < L/2

if x > L/2

where m, mí are the sideband indices which run through all integer numbers. These side-
band indices m denote the net energy change mfLw in the emanating electrons. The effective
wave vector for an electron with energy E is given by qm = JE - I40 $ mw in the barrier
region and k, = JE+mw  outside the barrier region.

The current reflection and the current transmission coefficients can be obtained from
matching the wave functions, and their derivatives, at the four edges of the barriers and at
all time. Thus from the matching at z = *L/2,  we obtain

@n = bít,(%n  + km) - 26,,ok,]/[q,,,  - km], (4)
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FIG. 2. Conductance G as a function of p for a double-barrier structure. Well width d = 12, barrier

height Vo = 0.03, and L = 12.2, 12.6, 13.0 in (a), 16, 20, 24 in (b), and 28, 32, 36 in (c).
The resonant transmission peak is sharper and is very close to Eb = 0.0159. The other

shallower peak in Fig. 2(c) corresponds very closely to the n. = 2 harmonics Ei.

In Figs. 2(a-c),  d = 12, V. = 0.03,  VI = 0, and L = 12.2, 12.6, 13.0 in (a); 16.
20, 24 in (b); and 28, 32, 36 in (c). The configuration allows only one resonant state, at
I$, = 0.015879. The resonant transmission does not appear in G when the barrier thickness
is small, as shown in Fig. 2(a), when the resonant level becomes too broadened. Ln Figs. 2(b)
and (c), the resonant transmission peak in G becomes narrower as L increases. The location
of the peak is at Eb. The n = 2 harmonics are at Et = 0.069, 0.059, and 0.052, for L = 28,
32, 36, respectively, as shown in Fig. 2(c).

In Figs. 3(a-c), d = 12, V. = 0.03, w = 0.014, VI = 0.012, and the lengths L are the
same as in Figs. 2(a-c). When the resonant level is too broadened, as in Fig. 3(a), the dip
or peak structures in G are at p = mtLw. These are the quasi-bound-state features because
the electrons can emit mIiLw and make transitions to the quasi-bound-state just below the
band bottom. As the length L, or the barrier thickness, increases the resonant transmission
structure starts to show up. These new peaks in G are at I_L = Eb f mhw, and the peaks
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FIG. 3. Conductance G as a function of p for a double-barrier structure acted upon by a
time-modulated potential.  Well width d = 12, barrier height Vl = 0.03, V, = 0.012,

and w = 0.014. The lengths L are the same as in Figs. 2(a-c). Fig. 3(a) shows that when
the resonant states are too broadened to show up in G, the dip or peak structures in G
occur at /I = mhw.  Fig. 3(c) shows that when the resonant states are well defined, resonant
transmission occurs near /I = Eb & mfiw,  and the harmonic peaks occur as well. Fig. 3(b)
shows the crossover of all these structures in G for intermediate values of L.

are narrower for larger L, as shown in Fig. 3(c). These peaks correspond to situations when
the electrons emit or absorb m photons and make transitions to the resonant level. The
harmonic structures in G are clearly shown in Fig. 3(c).

In Figs. 4(a,b),  d = 12, Vc = 0.03, V, = 0.012, and w =0.012,  0.015, 0.018. Fig. 4(a)
is for L = 13, when the resonant level is very broadened, and Fig. 4(b) is for L = 36
when the resonant level is well defined. Fig. 4(a) shows the quasi-bound-state features at
p = mtw. F i g .  4 ( b )  hs ows the set of resonance transmissions at p = & f m,tLw.  It is
clear then that the quasi-bound-state features occur at the thin barrier regime, whereas the
resonance transmission features dominate in the thick barrier regime.
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Conductance G as a function of p for a double-barrier structure acted upon by a
time-modulated potential. Well width d = 12, barrier height Vo = 0.03, and VI = 0.012.
In Fig. 4(a), L = 13, and w = 0.012, 0.015, and 0.018. The dip or peak structures in G
are at p = mfiw. In Fig. 4(b), L = 36, and w = 0.012, 0.015, and 0.018. The resonant
transmission structures are at p = & z!c mfiw.

In the following, we try to make connection with the work of Wagner [7],  who con-
sidered the case when tW is less than the energy width of the resonance transmission peak.
For a direct comparison with the Fig. 4 in reference [7], we choose d = 50/79.6,  L = 3d.
V, = 500/g,  and w = 0.014. With this choice of the structure parameters, there is one even
parity resonance level, at Eg = 11.99, and one odd parity resonance level, at Et = 43.1.

In Fig. 5(a), V, = 0.03, the time-modulated potential is too weak to induce photon-
assisted transmissions in the neighborhood of the two resonance levels. Only two p = E,ìëìí

peaks are found while the even parity resonance peak is much sharper. But in Fig. 5(b).
when V, = 2.585~  is of a value slightly larger than that in Fig. 5(a), it induces a series
of quenching structures to the resonant transmission peak of the sharper resonance level,
at 1-1  = E;. The condition for the occurrence of these quenching structures is that the
ratio VI/w  equals a root of the Bessel function Jo(z)  [7]. These quenching structures are
separated by an energy of about w, as predicted by Wagner [7].  There is, however, no such
quenching to the resonant transmission peak at E,” = 43.1, as shown in Fig. 5(c). We have
investigated a bit further by lowering the barrier height to V. = 50/9,  such that there is
only one resonant state. The quenching effect is also not found in the neighborhood of the
resonant level. Our results thus demonstrate that the quenching effect occurs for sufficiently
sharp resonance transmission peak.

In Figs.  6(a,b),  d = 50/79.6,  L = 3d, V. = 500/g,  and w = 0 .014 .  We  p lo t  in
Fig. 6(a) the conductance components G(m) against VI/w at the peak of the first resonance
transmission where b = 11.99. We find that G(m) = G(-m). But if we plot G(m) against
VI/w  at p = Eb = 11.992, we find that G(m) is not symmetric with respect to m = 0. as
shown in Fig. 6(b). The discrepancy is due to the shifting in the resonant level due to the
finite thickness in the barrier and to the effect of the time-modulated potential. Our result
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FIG. 5. Conductance G as a function of p for a double-barrier structure acted upon by a

time-modulated potential. Well width d = S/79.6,  L = 3d, barrier height Vo = 500/g,

and w = 0.014. r/r = (a) 0.03, (b) 2.ë8í,o U, and (c) 2.585~.  In Fig. 5(a), VI is too small to

induce observable photon-assisted transmission in the neighborhood of the resonant state
p = E;(o). In Fig. 5(b), with a slightly larger VI, the time-modulated potential gives rise

to quenching effect near the first resonant state. This is consistent with the findings of
Wagner. In Fig. 5(c), such quenching effect is not found near the second resonant state.

shows that the symmetry G(m) = G(- m occurs at the actual location of the resonant)
level.

IV. Conclusion

We have solved nonperturbatively the quantum transport in a double-barrier structure
in presence of a time-modulated potential. The scattering process is both coherent and
inelastic. We extend quasi-bound features in all potential ranges and in all frequency



420 QUANTUM TRANSPORT IN A DOUBLE-BARRIER VOL. 3;

v-4
FIG. 6. Conductance component G(m as a function of VI/W  for a double-barrier system. Well)

wid th  d = 50/79.6,  L = 3d, barrier height Vo = 500/9,  w = 0.014, and VI = 2.585,.

In Fig. 6(a), at the peak of the resonant transmission, where 1-1 = 11.99, we find that
G(m) = G(-m). However, in Fig. 6(b), at p = Eb = 11.992, G(m) is not equal to G(-m).

ranges. Two possible sets of structures in G can occur, either when ~.r = mfiw or when
p = Eb & mfiw. The resonant level has to be sharp enough for the quenching effect to the
resonant transmission to occur.
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