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Quadratic optimization method for multilayer neural networks with

local error-backpropagation

Chin-Sung Liu² and Ching-Huan Tseng² *

A fast new local error-backpropagation (LBP) algorithm is presented for the training
of multilayer neural networks. This algorithm is based on the de® nition of a new local
mean-squared error function. If the local desired outputs have been estimated, the
multilayer neural networks can be decomposed into a set of adaptive linear elements
(Adaline) that can be trained by quadratic optimization methods. Among a lot of
quadratic optimization methods, the conjugate gradient (CG) method is one of the
most famous methods that can ® nd the global optimal solution of quadratic problems
within ® nite steps. The iteration number and the computation time are signi® cantly
reduced because the stepsize is computed without line-search. Experimental results on
the pattern recognition and memorizing of spatiotemporal patterns are provided.

1. Introduction

The batch error-backpropagation (BBP) algorithm
(Rumelhart et al., 1986a, b) is one of the most widely
used algorithms for training multilayer neural networks.
This algorithm plays an important role in the applica-
tions of pattern recognition, signal processing, control
problems, etc. The training of multilayer neural net-
works involves adapting the weights between the com-
puting units in the network to minimize the mean-
squared errors between the desired outputs and the
actual network outputs. The gradient of the mean-
squared error function is computed by the errors that
are backpropagated from the output layer to the hidden
layers. Then the weights can be adapted by gradient
descent methods.

Two major shortcomings of the BBP algorithm are
the slow convergence rate and the convergence to local
minima. Enormous amounts of research have been
reported to improve this algorithm. Some of these
research e� orts were based on high order optimization
methods, e.g. the conjugate gradient method
(Charalambous 1992, Johansson et al. 1992, Mù ller
1993, Ergezinger and Thomsen 1995, StaÈ ger and
Agarwal 1997) and the quasi-Newton method (Battiti

1992, McLoone and Irwin 1997). Most of these optimi-
zation methods are heavily dependent on line-search.
Therefore, the performance and accuracy of line-
search play a critical role in the performance of these
algorithms. However, accurate line-search is usually
ine� cient because it requires many function and gra-
dient evaluations (Johansson et al. 1992). Some other
research has been focused on the adaptive learning par-
ameters without line-search, e.g. the Quickprop
(Fahlman 1988), the RPROP (Riedmiller and Braun
1993) and the delta-bar-delta rule (Jacobs 1988).

The other approaches to improve the performance of
the BBP algorithm are based on error estimation in all
layers of multilayer neural networks. In these studies,
the errors were estimated from the output layer to the
hidden layers. Once the errors were estimated, the multi-
layer neural networks can be trained with nonlinear sub-
problems (Watanabe et al. 1991, Shah et al. 1992,
Kimura et al. 1996), linear subproblems (Shah et al.
1992, Biegler-KoÈ nig and BaÈ rmann 1993, Lou 1996,
Yam and Chow 1997) or quadratic subproblems
(Scalero and Tepedelenlioglu 1992, Trafalis and
Couellan 1996).

Convergence to local minima is an inherent problem
of gradient descent optimization methods. This problem
can be overcome by global optimization methods, e.g.
genetic methods (Whitley et al. 1990) and random
methods (Brunelli 1994). However, global optimization
methods have the problem of being computationally
expensive. Recently, a lot of hybrid algorithms were
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employed to overcome the computationally expensive
problem. For example, Adler (1993) emerged the genetic
algorithms (GA) and the simulated annealing (SA) for
the training of feedforward neural networks. Baba et al.
(1994) combined the conjugate gradient method and the
random optimization method to the training of neural
networks. Liu and Tseng (1998) combined the percep-
tron learning rule with the SA technique for the training
of multilayer hard-limiting perceptrons. McLoone et al.
(1998) combined the singular value decomposition
(SVD) computation to the output linear weights and
the gradient-based optimization to the hidden nonlinear
weights. Treadgold and Gedeon (1998) proposed a
SARPROPalgorithm that combined the RPROPalgor-
ithm with the SA algorithm. Combinations of di� erent
techniques can often lead to an improvement in global
optimization methods, while maintaining the conver-
gence to a global minimum.

This paper presents a new local error-backpropaga-
tion (LBP) algorithm, which combines the cheap gra-
dient descent method with the global search technique
of quadratic optimizations. The aim of this combination
is to maintain the quick convergence and to reduce the
likelihood of convergence to poor local minima. The
main principles of this new algorithm are based on the
de® ning of a new local mean-squared error function and
the estimation of linear desired outputs for all local
neurons by the gradient descent method. The multilayer
neural networks can thus be decomposed into a set of
adaptive linear elements (Adaline), which can be inde-
pendently trained by quadratic optimization methods.
The conjugate gradient (CG) method is one of the
most famous quadratic optimization methods, which is
only slightly more complicated than the steepest descent
method. However, this convergent property can be sig-
ni® cantly improved. Furthermore, the stepsize can be
exactly computed without line-search and the second
order matrix can be eliminated. Therefore, the storage
requirements of the new LBP algorithm can be only
slightly more than the BBP algorithm when applying
the CG method as the optimization method.

This paper is organized as follows: in §2, the classical
batch error backpropagation algorithm is brie¯ y dis-
cussed. In §3, the quadratic optimization methods for
Adaline are discussed. The new local error-backpropa-
gation (LBP) algorithm is presented in §4. Finally,
numerical experiments are given in §5.

2. Classical batch error-backpropagat ion (BBP)

algorithm

The BBP algorithm is one of the most popular training
algorithms for multilayer neural networks. It is a
generalized LMS algorithm that minimizes the mean-
squared error between the desired outputs dpj and the

actual outputs ypj of the network. The mean-squared
error function is generally de® ned as

E =
1

2P

P

p=1
kdp ­ ypk2

=
1

2P

P

p=1

n(L )

j
dpj ­ ypj

2 (1)

where P denotes the number of input± output patterns
and n( L ) denotes the node number in the output layer.
The BBP algorithm is based on the gradient descent
method, which adapts the weights and bias in the des-
cent direction of the mean-squared error function (1).
Speci® cally, the weights for a L layer neural networks
are adapted by

w(°)
ji = a s(°)ji , ° = 1 . . . L (2)

where a denotes the learning rate and s(°)ji can be com-
puted based on the following d -errors that are back-
propagated from the output layer to the hidden layers
(Rumelhart et al. 1986a, b). That is,

s(°)ji = ­ ¶ E
¶ w(°)

ji
=

1
P

P

p=1
d
(°)
pj y(°­ 1)

pi , ° = 1 . . . L (3)

where

d
(L )
pj =

¶ ypj

¶ u( L )
pj

dpj ­ ypj (4)

d
(°)
pj =

¶ y(°)
pj

¶ u(°)
pj

n(°+1)

i=1
w(°+1)

ij d
(°+1)
i , ° = 1 . . . L ­ 1 (5)

The nonlinear output y(°)
pj is related to the linear output

u(°)
pj by y(°)

pj = f (u(°)
pj ), where f ( ) is a nonlinear activation

function, e.g. the hyperbolic tangent function. The
training stops when the mean-squared error is reduced
to a prespeci® ed tolerance e for all training-vector pairs.

One simple way to improve the performance of the
BBP algorithm is to smooth the weight change by
adding a momentum term. For example,

s(°)ji (t) = ­ ¶ E
¶ w(°)

ji
(t) + b s(°)ji (t ­ 1) (6)

where b denotes the momentum coe� cient. The other
approaches to improve the performance of the BBP
algorithm are based on the adaptive learning rate a
and momentumcoe� cient b (StaÈ ger and Agarwal 1997).

3. Quadratic optimization method for adaptive linear

elements

In this section, the optimization of adaptive linear ele-
ments (Adaline) is considered. As ® gure 1 shows, an
Adaline is a single neuron with linear output up and
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nonlinear output yp. The linear estimated error is gen-
erated by the di� erence between linear estimated desired
output ^up and the linear output up. The nonlinear esti-
mated output ^yp is computed by ^yp = f ( ^up), where f ( ) is
a nonlinear activation function.

It has been shown that the weight adapting of
Adalines is a typical quadratic optimization problem
(Widrow and Lehr 1990). Therefore, some e� cient
global optimization methods for quadratic problems
are discussed in the following sections. Since only a
single Adaline is considered in this section, the
subscript and superscript are omitted in this section
for convenience.

3.1. Quadratic problem formulation
The mean-squared error function of a single Adaline

can be de® ned and expanded as follows.

EA(w) 1
2P

P

p=1

^up ­ x
T
p w

2

=
1

2P

P

p=1

^u2
p ­ 1

P

P

p=1
( ^upx

T
p )w

+
1

2P
w

T
P

p=1
xpx

T
p w (7)

where xp and ^up are pth input vector and pth estimated
desired output, respectively. De® ning

Q
1
P

P

p=1
xpx

T
p , and b

1
P

P

p=1
[^upxp]

the mean-squared error function EA can be expressed as
the following typical quadratic function of weight w .

EA(w) = 1
2w

T
Qw ­ b

T
w + c (8)

where

c =
1

2P

P

p=1

^u2
p

can be treated as a constant during the adapting process
of weights. Because the input correlation matrix Q is
positive de® nite, or in the rare case, positive semi-de® -
nite (Widrow and Lehr 1990), the mean-squared error
function EA is a convex function (Arora 1989).
Therefore, the global optimal solution w can be
obtained by solving r EA = 0. That is, w = Q ­ 1

b.
However, the computation of the inverse matrix Q

­ 1

will take a lot of storage and computing time.
Therefore, other more e� cient optimization methods,
e.g. the conjugate direction methods are utilized to com-
pute the global optimal solution w .

3.2. Conjugate direction methods
A set of n vectors s0, . . . , sn­ 1, is said to be Q-
conjugate with respect to a symmetric matrix Q if
s

T
i Qs j = 0, 8 i 6= j. If the matrix Q is also positive

de® nite, the set of non-zero Q-conjugate vectors is line-
arly independent (Luenberger 1989) and forms a basis
that spans the weight space of an Adaline. Therefore,
the global optimal solution w can be expanded as

w =
n­ 1

j=0
a jsj (9)

In fact, multiplying equation (9) by s
T
k Q and substi-

tuting b for Qw gives

a k =
s

T
k Qw

sT
k Qsk

=
s

T
k b

sT
k Qsk

(10)

Therefore, if a set of Q -conjugate search directions can
be generated, all a i can be computed simultaneously by
equation (10) without line-search, and the global
optimal solution w can be obtained from equation (9).

3.3. Modi® ed conjugate gradient method
There are several methods that can generate a set of

Q-conjugate directions (McDowell 1983, Housos and
Wing 1984). The conjugate gradient method is one of
the most famous conjugate direction methods. In this
method, the conjugate directions are generated as
follows.

s0 = ­ g0 = b ­ Qw0 (11)
sk+1 = ­ gk+1 + b ksk (12)

Then, the weights are adapted by

wk+1 = wk + a ksk (13)
where

gk = r EA(wk) = Qwk ­ b (14)

LBP algorithm for training of multilayer neural networks 891

Figure 1. Adaptive linear element (Adaline) with linear estimated

desired output.
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a k =
kgkk2

sT
k Qsk

(Luenberger 1989)

b k =
kgk+1k2

kgkk2 (Fletcher and Reeves 1964)

(15)

The computation of the stepsize a k can be further
simpli® ed to

a k =
kgkk2

1
P

P

p=1
s

T
k xpx

T
p sk

= P
kgkk2

P

p=1
c 2

pk

(16)

where c pk x
T
p sk. The computation of the gradient gk

can also be further simpli® ed to

gk =
1
P

P

p=1
x

T
p wk ­ ^up xp

= ­ 1
P

P

p=1

^epkxp (17)

where ^epk = ( ^up ­ x
T
p wk) is the local estimated error, as

shown in ® gure 1. The modi® ed conjugate gradient
method for adapting the weight of a single Adaline
without computing the correlation matrix Q is
summarized as follows.

Step 1. Initialize the weight w0 with random small
values. Set k = 0 and the initial search direction
to s0 = ­ g0.

Step 2. Terminate the iterative process if any of the
following stop criteria is satis® ed.
(1) k > n;
(2) kgkk e g;
(3) jEAj e Adaline;
where

gk = ­ 1
P

P

p=1
[^epkxp] and EA =

1
2P

P

p=1

^e2
pk

Step 3. Adapt the weight by

wk+1 = wk + P
kgkk2

P

p=1
c 2

pk

sk (18)

where c pk x
T
p sk.

Step 4. Adapt the search directions by

sk+1 = ­ gk+1 +
kgk+1k2

kgkk2 sk (19)

Step 5. Set k k + 1 and go to Step 2.

Equation (13) shows that
wk = wk+1 ­ wk = a ksk (20)

Therefore, it can be concluded from equations (2), (6)
and (12) that the conjugate gradient method is a special
case of the batch error-backpropagation method with
adaptive learning rate and momentum coe� cient (van
der Smagt 1994), where the adaptive learning rate is
computed by equation (16) and the adaptive momentum
coe� cient is computed by equation (15).

There are four primary advantages of the conjugate
gradient method presented in this paper. First, the
computation of the matrix Q can be eliminated in this
modi® ed method. Therefore, the computing time and
storage can be signi® cantly reduced.

Second, this method can ® nd the global optimal
solution from any initial weight within n steps if the
matrix Q is positive de® nite. If the solution can be
reached before n steps, the gradient gk vanishes and
the iterative process terminates.

Third, the stepsize can be exactly computed by equa-
tion (16) with no line-search and restart procedure.
Therefore, signi® cantly improving the performance of
the weight adapting signi® cantly improved due to the
line-search will take a lot of function and gradient
evaluations.

The fourth advantage of the conjugate gradient
method is the especially simple formula to determine
the new search direction sk. It is only slightly more
complicated than the steepest descent method, but the
convergent property can be signi® cantly improved.
Furthermore, the learning rate a k and the momentum
coe� cient b k are automatically adapted by equations
(16) and (15), respectively. Therefore, the method can
perform well even for an inexperienced user.

4. Local error-backpropagat ion (LBP) algorithm

4.1. Local mean-squared error function
A new mean-squared error function for multilayer

neural networks is de® ned by

E(W , û)
L

°=1

n(°)

j=1
Elocal(w (°)

j , û
(°)
j ) (21)

where n(°) denotes the node number of the °th layer
network and Elocal(w (°)

j , û
(°)
j ) denotes the local mean-

squared error function of the jth local Adaline in the
°th layer, which is de® ned by

Elocal(w(°)
j , û

(°)
j ) =

1
2P

P

p=1

^u(°)
pj ­ u(°)

pj
2

(22)

where ^u(°)
pj is the local estimated desired output. The

linear estimated output u(°)
pj is computed by

892 C.-S. L iu and C.-H. Tseng
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u(°)
pj = hw

(°)
j , ŷ(°­ 1)

p i =
n(°­ 1)

i=1
w(°)

ji
^y(°­ 1)
pi , ° = 1 . . . L (23)

where ^y(0)
pj is the pth input pattern on the input layer

network and ^y(°­ 1)
pi is the nonlinear estimated input for

the other layer network that is computed by
^y(°­ 1)
pi = f ( ^u(°­ 1)

pi ), ° = 2 . . . L (24)
The gradient of the new mean-squared error function
(21) can be derived as

¶ E(W , û)
¶ w(°)

ji
=

¶ Elocal(w(°)
j , û

(°)
j )

¶ w(°)
ji

=
1
P

P

p=1

^u(°)
pj ­ u(°)

pj
­ ¶ u(°)

pj

¶ w(°)
ji

= ­ 1
P

P

p=1

^u(°)
pj ­ u(°)

pj
^y(°­ 1)
pi (25)

and

¶ E(W , û)
¶ ^u(°)

pi
=

1
P

^u(°)
pi ­ u(°)

pi

+
1
P

n(°+1)

j=1

^u(°+1)
pj ­ u(°+1)

pj
­ ¶ u(°+1)

pj

¶ ^u(°)
pi

=
1
P

^u(°)
pi ­ u(°)

pi

­ 1
P

¶ ^y(°)
pi

¶ ^u(°)
pi

n(°+1)

j=1
w(°+1)

ji
^u(°+1)
pj ­ u(°+1)

pj

Figures 2 and 3 show the local estimated errors in the
hidden layer and output layer, respectively. Figure 3
also shows that the linear desired output ^u(L )

pj in the
output layer can be computed by the inverse activation
function. For instance, ^u(L )

pj can be computed by using
the inverse function of the hyper tangent function
y(L )

pj = tanh ( g u(L )
pj ). That is,

^u(L )
pj =

1
2g

ln
1 + dpj

1 ­ dpj
(26)

where dpj is the actual desired output of the multilayer
neural networks.

4.2. Local error-backpropagation (LBP) algorithm
Equation (25) shows that the gradient of the mean-

squared error function (21) with respect to the weights
of local Adalines are independent of each other if the
estimates û have been estimated. That is, the optimiza-
tions of the local mean-squared error function (22) for
all local Adalines are independent of each other.
Therefore, the multilayer neural networks can be

decomposed into a set of Adalines that can be trained
independently if û have been estimated. This is particu-
larly suited for parallel training of multilayer neural
networks. The training process can stop if the mean-
squared error (1) is decreased to a su� ciently small
value (i.e. E e ); otherwise, the estimates û are esti-
mated again and the training process continues. The
iterative process is summarized as the local error-back-
propagation (LBP) algorithm

Step 1. Initialize all weights w
(°)
j and estimates ^

u
(°)
p with

small random values. Set k = 0.
Step 2. For p = 1 . . . P, adapt the estimates by

û
(°)
pk+1 = û

(°)
pk + a ksk, where a k satis® es (Armijo

1966, Johansson et al. 1992)

E(û(°)
pk+1) E(û(°)

pk ) ­ ¹a k skk2, 0 < ¹ 0.5

(27)
where

s(°)ik = ­ ¶ E(Wk, ûk)
¶ ^u(°)

pik

(28)

Step 3. Adapt the weights w
(°)
jk of all Adalines indepen-

dently by the quadratic optimization methods

LBP algorithm for training of multilayer neural networks 893

Figure 2. Estimated local error for the hidden layer neuron.

Figure 3. Estimated local error for the output layer neuron.
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that are discussed in §3, where ° = 1 . . . L and
j = 1 . . . n(°) .

Step 4. Stop if E e , or E ~e local; otherwise, set
k k + 1 and go to Step 2.

The network trained by the LBPalgorithmis always in a
state where the new mean-squared error function (21) is
at a global minimum with respect to the weights of all
local Adalines because the weights are obtained by
global optimization methods. Since the estimates û are
the auxiliary parameters that are estimated during the
iterative process of the LBP algorithm, they are not the
actual output of the multilayer neural networks. The
LBP algorithm stops when the actual mean-squared
error E is decreased to a su� ciently small value
(E e ). Therefore, the simple descent condition (27)
can be e� ciently applied to estimate the auxiliary
parameters ^

u.
There are two primary advantages of the LBP algor-

ithm. First, only the mean-square errors of local
Adalines instead of the mean-squared errors of whole
networks are computed when adapting the weights.
Therefore, the computing e� orts can be reduced for
every iteration of the LBP algorithm. Second, all ûp,
p = 1 . . . P, can be estimated independently in Step 2,
then all weight w

(°)
j can be adapted independently in

Step 3. Therefore, the LBP algorithm can be further
modi® ed for parallel training.

4.3. The convergence of the LBP algorithm
For a positive small value e , we can ® nd a su� cient

small value e local that satis® es the convergent condition
of the LBP algorithm if all local mean-squared errors
are not greater than e local. That is, E e if
Elocal(w (°)

j , û
(°)
j ) e local for all local Adalines, where

° = 1 . . . L and j = 1 . . . n(°) .

Proof: Due to the continuity of the activation function
in the output layer, we can ® nd a positive value e (L ) that
satis® es

E(W) =
1

2P

P

p=1

n(L )

j
dpj ­ ypj

2
e (29)

if

1
2P

P

p=1

^u( L )
pj ­ u(L )

pj
2
= e(L )

local +
P

p=1

(L )
pj e (L ) ,

for j = 1 . . . n(L ) (30)
where u(L )

pj and ypj are the actual linear and nonlinear
outputs on the output layer network, respectively. The
error e( L )

local is the local error of the output layer, and the
( L )
pj is the error that is generated by the local errors

forward propagated from the hidden layers to the

output layer. Due to the continuity of the activation
function in hidden layers, we can ® nd a positive value
e (°) that satis® es

P

p=1

(L )
pj e (L ) ­ e(L )

local (31)

if

1
2P

P

p=1

^u(°)
pj ­ u(°)

pj
2

e (°) (32)

for all Adalines in the hidden layers. Therefore, equation
(30) can be satis® ed if e local is chosen as

e local = min( e (°) , e (L )) (33)
Since the descent optimization algorithms are applied to
Steps 2 and 3 of the LBPalgorithm, the sequence fE(k)g
generated by the LBP algorithm is a non-increasing
sequence. In addition, E is a continuous di� erentiable
and lower bounded function (E 0). Therefore,

lim
k! 1

E(k+1) ­ E(k) = 0 (34)

That is, an optimal or stationary solution can be
approached as k ! 1. Furthermore, if Elocal e local
for all Adalines, the ® nal convergent condition (i.e.
E e ) can be satis® ed.

5. Numerical experiments

To demonstrate the performance of the new LBP
algorithm, the following methods are compared:

LBP-CG: local error-backpropagation algorithm
with modi® ed conjugate gradient optimiza-
tion method;

BBP: batch error-backpropagation algorithm
with ® xed learning rate;

SD: batch error-backpropagation algorithm
with adaptive learning rate (StaÈ ger and
Agarwal 1997);

CG: conjugate gradient algorithm with line-
search and restart procedure (StaÈ ger and
Agarwal 1997).

These algorithms are compared for three problems. The
® rst two problems are the pattern classi® cation and
recognition problems. The third problem is the memor-
izing of spatiotemporal patterns with various grey levels.
All experiments are programmed in Visual C++ and
run on a Pentium MMX 200MHz PC machine with
64Mbytes of RAM memory. The LBP-CG algorithm
is tested with over 1000 various initial weights. All
experiments can converge within a small number of
iterations.
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A drawback of the LBP algorithm is the strongly
¯ uctuating values for the weights at the output layer.
To avoid this di� culty, it is advisable to allow only
small changes in the weights W

(L ) (Biegler-KoÈ nig and
BaÈ rmann 1993). The huge values for the weights can be
avoided by using this àttenuation’ for the change in the
weights. Therefore, the generalization performance can
be signi® cantly improved.

5.1. Printed character classi® cation
The printed character classi® cation is a typical appli-

cation of multilayer neural networks. To compare the
performance of the LBP± CG algorithm with other
algorithms, a set of printed characters is used as the
input patterns for a two-layer neural network. The
training set consists of 52 letters that are eight
column eight row pixel matrix characters. The outputs
are the ASCII code of these characters. There are 64
input nodes for the input of character pixel and seven
output nodes for the output of the ASCII code. The
outputs are set to 0.9999 or - 0.9999. Although the
experiment is tested on the patterns of two levels, similar
results can be obtained from the patterns with various
grey levels. Table 1 shows the experimental results for
various hidden node numbers n(1) . It can also be
observed from table 1 that the LBP± CG algorithm can
converge within a much smaller number of iterations
than the other algorithms. Therefore, the performance
of the LBP± CG algorithm can be signi® cantly improved
over the other three compared algorithms.

5.2. Grey pattern recognition
In this experiment, two-layer neural networks are
trained to recognize 32 32 input patterns of 16-bit
grey-level pixel. The outputs are the identity numbers
of these patterns. There are 1024 input nodes for the
input of patterns and 7 output nodes for the outputs
of identity number. Table 2 shows the experimental
results for various hidden node numbers n(1) . It can
also be observed from table 2 that the LBP± CG algor-
ithm can converge within a small number of iterations in
this experiment. Furthermore, the testing mean-squared

error Et for the patterns with 5% noise pixel can be
signi® cantly reduced for the LBP± CG algorithm with
attenuation, although the convergence is still nearly as
fast as the LBP± CG algorithm without attenuation.
Figure 4 shows the typical learning curves for the
LBP± CG algorithm and other algorithms.

The experimental results for the large-scale pattern
recognition problems are shown in table 3. The LBP±
CG algorithm can converge within a small iteration
number. However, the other three compared algorithms
are very di� cult to converge in this experiment. It can
also be observed in this table that the testing mean-
squared error Et for the patterns with 5% noise pixel
can be signi® cantly reduced for the LBP± CG algorithm
with attenuation.

5.3. Memorizing of spatiotemporal patterns
Spatiotemporal patterns are an ordered set of sequen-

tial patterns. Full recurrent multilayer neural networks
can be used to memorize the spatiotemporal patterns
(Lin and Lee 1996). The spatiotemporal patterns can
be binary pixel patterns or grey-level patterns. In this
experiment, a set of 16-bit grey-level and random gen-
erated patterns is stored in the two-layer full recurrent
neural networks. The experimental results for storing
various numbers of patterns are shown in tables 4 and
5, with patterns of 8 8 and 64 64 grey-level pixel,
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Table 1. Experimental results for the printed character classi® cation with P = 52, ~"local = 10
­ 2

and "= 10
­ 5

.

LBP± CG without attenuation SD CG

n(1) k E( 10­ 2) E( 10­ 5) T(s) k E( 10­ 5) T(s) k E( 10­ 5) T(s)

10 9 0.9231 0.1473 1.53 5197 0.9996 46.63 1818 0.9997 44.43
20 3 0.8324 0.2133 1.43 4276 0.9999 80.08 854 0.9987 33.18
30 4 0.8340 0.0213 2.36 3985 0.9998 111.34 612 0.9974 41.85
52 2 0.8113 0.0052 3.57 3769 0.9994 180.48 415 0.9991 50.04

Figure 4. Learning curves of the pattern recognition problem

with 30 hidden nodes and twenty 32×32 grey-level patterns.
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respectively. Typical learning curves for the memorizing
of spatiotemporal patterns are shown in Figure 5.

It can be observed from Tables 4 and 5 that the LBP±
CG algorithm is more e� cient compared to the other
algorithms. It can also be observed that the LBP± CG
algorithm can converge in a few iterations. As shown in
§4.3, the mean-squared error E can decrease to a su� -
ciently small value (i.e. E e ) if Elocal e local for all
Adalines. That is, the LBP-CG algorithm can converge
if all local mean-squared errors are su� ciently small;
otherwise, the iterative process continues. In the case
where the hidden layer exists with more nodes than
the number of patterns to be learned, the LBPalgorithm
can converge in 1 iteration (without attenuation) or
within 10 iterations (with attenuation).

6. Conclusions

In this paper, a new local error-backpropagation (LBP)
algorithm is presented for the training of multilayer
neural networks. From the estimation of the local

errors, the multilayer neural networks can be decom-
posed into a set of adaptive linear elements, which can
then be trained by quadratic optimization methods. The
modi® ed conjugate gradient method is selected as the
quadratic optimization method due to the method that

896 C.-S. L iu and C.-H. Tseng

Table 2. Experimental results for the 32×32 pixel pattern recognition with ~"local = 10
­ 1

and "= 10
­ 4

.

(a)

LBP± CG without attenuation LBP± CG with attenuation

P n(1) k
~
E E( 10­ 4) Et T(s) k

~
E E( 10­ 4) Et T(s)

20 10 3 0.0603 0.6471 1.2528 1.15 3 0.4561 0.0005 0.00540 1.34
30 1 0.0226 0.0310 0.6405 1.38 2 0.7184 0.0007 0.00101 3.19
50 1 0.0002 0.0004 0.0345 1.88 2 0.7799 0.0300 0.00007 5.47

100 30 1 0.1362 0.0001 0.3214 12.94 1 1.3459 0.0477 0.10431 13.21
50 1 2.7591 0.8441 0.3307 12.81 1 0.1907 0.0002 0.04392 22.48

(b)

SD SD

P n(1) k E( 10­ 4) Et T(s) k E( 10­ 4) Et T(s)

20 10 5819 0.9995 0.00134 779.18 1231 0.9514 0.03969 205.69
30 199 0.9935 0.00066 88.54 95 0.9455 0.00059 44.76
50 177 0.9637 0.00071 153.58 40 0.9333 0.00070 33.06

100 30 854 0.9978 0.04129 2463.21 125 0.9614 0.03414 398.01
50 695 0.9965 0.02769 4333.30 141 0.9856 0.02542 819.26

Table 3. Experimental results for the large-scale pattern recognition with P = 20 and "= 10­ 4 (128×128 and 256×256 pixel)

LBP± CG without attentuation LBP± CG with attenuation

n(0) n(1) k
~
E E( 10­ 4) Et T(s) k

~
E E(~

10­ 4) Et T(s)

128 128 10 3 1.87472 0.08755 1.6625 25.74 4 1.6682 0.8225 0.3034 32.39
128 128 20 1 0.11355 0.00006 3.3332 12.55 3 2.1486 0.1881 0.1751 52.29
128 128 30 1 0.00001 0.00001 3.2091 19.48 3 2.2410 0.5654 0.0068 79.81
256 256 20 1 0.00002 0.67760 4.4690 242.68 1 2.2477 0.1443 0.8666 267.30
256 256 30 1 0.00002 0.0000004 3.4089 73.09 2 1.1567 0.0216 0.7025 234.51

Figure 5. Learning curves of memorizing spatiotemporal

patterns with 12 hidden nodes and ten 8×8 grey-level patterns.
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can ® nd the global optimal solution within ® nite steps.
In addition, the second order matrix Q can be
eliminated in this method and the stepsize can be exactly
computed without the line-search and restart procedure.
Three experiments are tested on this new LBP
algorithm, and it is shown that the new algorithm
can perform better than the other three compared
algorithms.
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