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Abstract—Although multilayered backpropagation neural networks
(BPNN’s) have demonstrated high potential in the nonconventional
branch of adaptive control, their long training time usually discourages
their applications in industry. Moreover, when they are trained on-line
to adapt to plant variations, the over-tuned phenomenon usually occurs.
To overcome the weakness of the BPNN, in this paper we propose a
neural fuzzy inference network (NFIN) suitable for adaptive control of
practical plant systems in general and for adaptive temperature control
of a water bath system in particular. The NFIN is inherently a modified
Takagi–Sugeno–Kang (TSK)-type fuzzy rule-based model possessing a
neural network’s learning ability. In contrast to the general adaptive
neural fuzzy networks, where the rules should be decided in advance
before parameter learning is performed, there are no rules initially in the
NFIN. The rules in the NFIN are created and adapted as on-line learning
proceeds via simultaneous structure and parameter identification. The
NFIN has been applied to a practical water bath temperature-control
system. As compared to the BPNN under the same training procedure,
the simulated results show that not only can the NFIN greatly reduce
the training time and avoid the over-tuned phenomenon, but the NFIN
also has perfect regulation ability. The performance of the NFIN is
also compared to that of the traditional PID controller and fuzzy
logic controller (FLC) on the water bath temperature-control system.
The three control schemes are compared through experimental studies
with respect to set-points regulation, ramp-points tracking, and the
influence of unknown impulse noise and large parameter variation in the
temperature-control system. It is found that the proposed NFIN control
scheme has the best control performance of the three control schemes.

Index Terms—Kalman filter algorithm, similarity measure, space par-
titioning, TSK fuzzy rules, water bath temperature control.

I. INTRODUCTION

Classical control theory usually requires a mathematical model
for designing the controller [1]–[3]. The inaccuracy of mathematical
modeling of the plants usually degrades the performance of the
controller, especially for nonlinear and complex control problems.
Recently, the advent of the fuzzy logic controllers (FLC’s) and
the neural controllers based on multilayered backpropagation neural
networks (BPNN’s) has inspired new resources for the possible
realization of better and more efficient control [4], [21]. They offer a
key advantage over traditional adaptive control systems. That is, they
do not require mathematical models of the plants. The concept of
fuzzy logic has been applied successfully to the control of industrial
processes [5]–[7]. Conventionally, the selection of fuzzy if-then rules
often relies on a substantial amount of heuristic observation to express
proper strategy knowledge. Obviously, it is difficult for human experts
to examine all of the input–output data from a complex system to
find a number of proper rules for the FLC. For a BPNN, its nonlinear
mapping and self-learning abilities have been the motivating factors
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for its use in developing intelligent control systems [8]. However,
slow convergence is the major disadvantage of the BPNN. When
the BPNN is trained off line, it must spend a long time to achieve
satisfactory convergence. Moreover, when it is trained on line in order
to adapt to the environment variations, its global tuning property
usually leads to the over-tuned phenomenon, which will degrade the
performance of the controller. Although several approaches [9], [10]
have been proposed as efficient ways for solving these problems,
the improvement is limited. In this paper, a neural fuzzy inference
network (NFIN) is proposed to overcome the disadvantages of the
BPNN and FLC.

The NFIN is a fuzzy rule-based network possessing a neural
network’s learning ability. Compared to other existing neural fuzzy
networks [12], [13], [7], a major characteristic of the network is
that no preassignment and design of the rules is required. The
rules are constructed automatically during the on-line operation. The
structure-learning phase and the parameter-learning phase [20], [22]
are adopted on-line for the construction task.

One important task in the structure identification of the NFIN
is the partition of the input space, which influences the number
of fuzzy rules generated. An on-line input space-partition method
and the aligned clustering-based method are proposed in this paper,
which will reduce not only the number of rules generated but also
the number of fuzzy sets in each dimension. Another feature of the
NFIN is that it can optimally determine the consequent part of fuzzy
if-then rules during the structure-learning phase. A fuzzy rule of the
following form is adopted in our system initially

Rule j: IF x1 is in Ai1 and . . . andxn is in Ain

THEN yi is mi (1)

wherexi andyi are the input and output variables, respectively,Aij

is a fuzzy set, andmi is the position of a symmetric membership
function of the output variable with its width neglected during
the defuzzification process. Then, by monitoring the change of the
network output error, additional terms (the linear terms used in the
consequent part of the Takagi–Sugeno–Kang (TSK) model [16], [17])
will be included when necessary to further reduce the output error.
This consequent identification process is employed in conjunction
with the precondition-identification process to reduce both the number
of rules and the number of consequent terms. For the parameter-
identification scheme, the consequent parameters are tuned by the
Kalman filter algorithm, and the precondition parameters are tuned
by the backpropagation learning algorithm. Both the structure and
parameter learning are done simultaneously to achieve fast learning.

Temperature control is an important factor in many process control
systems [9], [10], [11]. If the temperature is too high or too low,
the final product is seriously affected. Therefore, it is necessary
to reach some desired temperature points quickly and avoid large
overshoot. Since the process-control systems are often nonlinear and
tend to change in an unpredictable way, they are not easy to control
accurately. To verify that the NFIN has good control performance
on the temperature-control system and is able to cope with the
disadvantages of the BPNN, we compared it with the BPNN under the
same training process via a simulation of a water bath temperature-
control system.
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Fig. 1. Structure of the neural fuzzy inference network (NFIN).

To see if the NFIN, based on the inverse modeling scheme, can
work well for a practical system, we compare it with the FLC and PID
controller on a real water bath temperature-control system. The three
schemes are compared through experimental studies with respect to
set-points regulation, ramp-points tracking, the influence of unknown
impulse noise, and large parameter variation in the system.

This paper is organized as follows. In Section II, the structure
and the learning algorithm of the NFIN are proposed. In Section III,
the configuration of the NFIN-based control and the training process
are introduced. In Sections IV and V, simulation studies and exper-
imental studies are presented, respectively. A conclusion is made in
Section VI.

II. NEURAL FUZZY INFERENCENETWORK (NFIN)

In this section, the structure of the NFIN as shown in Fig. 1 is
introduced. With this five-layered network structure of the NFIN, we
shall define the function of each node of the NFIN in Section II-A
and the learning algorithm of the NFIN in Section II-B.

A. Structure of the NFIN

Let u(k) anda(k) denote the input and output of a node in layer
k, respectively. The functions of the nodes in each of the five layers
of the NFIN are described as follows.

Layer 1: No computation is done in this layer. Each node in this
layer which corresponds to only one input variable, transmits input
values to the next layer directly. That is

a
(1)
= u

(1)
i = xi: (2)

Layer 2: Each node in this layer corresponds to one linguistic
label (small, large, etc.) of one of the input variables in Layer 1.
In other words, the membership value which specifies the degree to
which an input value belongs to a fuzzy set is calculated in Layer
2. With the use of Gaussian membership function, the operation
performed in this layer is

a
(2)
= e

�

(3)

wheremij and �ij are, respectively, the center (or mean) and the
width (or variance) of the Gaussian membership function of the

jth term of theith input variablexi. Unlike other clustering-based
partitioning methods where each input variable has the same number
of fuzzy sets, the number of fuzzy sets of each input variable is not
necessarily identical in the NFIN.

Layer 3: A node in this layer represents one fuzzy logic rule and
performs precondition matching of a rule. Here we use the following
AND operation for each Layer 3 node

a
(3)
=

i

u
(3)
i (4)

where the product is over the Layer 2 nodes participating in the IF
part of the rule.

Layer 4: This layer is called the consequent layer. Two types of
nodes are used in this layer, and they are denoted as blank and
shaded circles in Fig. 1, respectively, for functional distinction as
described below. The node denoted by a blank circle (blank node) is
the essential node representing a fuzzy set (described by a Gaussian
membership function) of the output variable. Since the Gaussian
membership function is of equal width, only the center of each
Gaussian membership function is delivered to the next layer for the
local mean of maximum (LMOM) defuzzification operation [18]. The
function of the width is used only for output clustering as will be
described in Section II-B (Process B). Different nodes in Layer 3
may be connected to the same blank node in Layer 4, meaning that
the same consequent fuzzy set is specified for different rules. The
function of the blank node is

a
(4)
=

j

u
(4)
j � a0i (5)

wherea0i = m0i, the center of a Gaussian membership function. As
for the shaded node, it is generated only when necessary. Each node
in Layer 3 has its own corresponding shaded node in Layer 4. One of
the inputs to a shaded node is the output delivered from Layer 3, and
the other possible inputs (terms) are the input variables from Layer
1 as depicted in Fig. 1. The shaded node function is

a
(4)
=

j

ajixj � u
(4)
i (6)

where the summation is over all the inputs andaji is the correspond-
ing parameter. Combining these two types of nodes in Layer 5, we
obtain the whole function performed by this layer for each rule as

a
(4)
=

j

ajixj + a0i u
(4)
i : (7)

From the above equation, we find that with the creation of a shaded
node, the consequent part performs the same function as that of the
TSK-type fuzzy rule, where the consequent is a linear combination of
input variables. That is why we connect the inputs to a shaded node in
the NFIN. The motivation for the use of the shaded node, pointed out
by Sugeno and Tanaka in [16], is that the TSK model can represent a
complex system in terms of fewer rules than the ordinary Mamdani-
type fuzzy model. However, the terms used in the consequent part
of the TSK model are quite considerable for multiinput-multioutput
systems or for the systems with high-dimensional input or output
spaces. This problem is solved in our NFIN model. As proposed in
Section II-B, the shaded node is created only when necessary for the
rule with poor mapping. This way, the number of consequent terms
is reduced, and the number of rules required is still small.

Layer 5: Each node in this layer corresponds to one output vari-
able. The node integrates all the actions recommended by Layers 3
and 4 and acts as a defuzzifier with

a
(5)
=

i

a
(4)
i

i

a
(3)
i : (8)
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B. Learning Algorithms for the NFIN

Two types of learning, structure, and parameter learning are
used concurrently for constructing the NFIN. The structure learning
includes both the precondition and consequent structure identification
of a fuzzy if-then rule. There are no rules (i.e., no nodes in the
network except the input/output nodes) in the NFIN initially. They
are created dynamically as learning proceeds upon receiving on-
line incoming training data by performing the following learning
processes simultaneously:

A) Input/output space partitioning;
B) Construction of fuzzy rules;
C) Consequent structure identification;
D) Parameter identification.

In the above, processes A, B, and C belong to the structure-learning
phase, and process D belongs to the parameter-learning phase. Process
C is called the consequent part structure identification, because it
determines the final consequent function of each rule. The details of
these learning processes are described in the rest of this section.

Process A: Input/Output Space Partitioning:The way the input
space is partitioned determines the number of rules extracted from
training data as well as the number of fuzzy sets on the universal
of discourse of each input variable. For each incoming patternx,
the strength a rule is fired can be interpreted as the degree to
which the incoming pattern belongs to the corresponding cluster. For
computational efficiency, we can use the firing strength given in (4)
directly as this degree measure

F i(x) =
i

u
(3)
i = e�[D (x�m )] [D (x�m )] (9)

whereF i
2 [0; 1], Di = diag(1=�i1; 1=�i2; . . . ; 1=�in), andmi =

(mi1;mi2; . . . ;min)
T . Using this measure, we can obtain the fol-

lowing criterion for the generation of a new fuzzy rule. Letx(t) be
the newly incoming pattern. Find

J = arg max
1�j�c(t)

F j(x) (10)

wherec(t) is the number of existing rules at timet. If F J
� �F (t),

then a new rule is generated where�F (t) 2 (0; 1) is a prespecified
threshold that decays during the learning process. The threshold
decides the number of input and output clusters generated in the
NFIN. In general, a small variation of�F (t) changes only the
initial location of generated clusters, which does not influence the
performance of NFIN owing to the succeeding parameter learning.
Also, for the proposed NFIN, if some�F (t) value can achieve good
performance, the increment of this�F (t) value will increase the
number of generated clusters, but the performance of NFIN does
not change much. As for the initialization of�F (t), it is heuristic.
The initial �F (t) for input space partitioning (denoted by�Fin) is set
to a larger value for a complex modeling problem than for a simple
one. Usually, the initial value of�Fin is set in the range of 0 and1=e.
The initial �F (t) for output space partitioning (denoted by�Fout) is
set to a value a little bit smaller than 1. If�Fout is set to one, then
the number of input clusters is the same as that of the output ones.
For the decaying of�F (t), the decay can reduce the rule-generation
opportunity gradually in the succeeding learning process and thus
avoid unlimited generation of rules. Since most rules are generated
in the initial learning stage, the performance of NFIN is insensitive
to the decay rate of�F (t).

Once a new rule is generated, the initial centers and widths are
set as

m(c(t)+1) = x (11)

D(c(t)+1) = �
1

�
� diag 1= ln F J ; . . . ; 1= ln F J (12)

according to the first-nearest-neighbor heuristic [19], where� � 0
decides the overlap degree between two clusters.

After a rule is generated, the next step is to decompose the
multidimensional membership function formed in (11) and (12) to the
corresponding one-dimensional membership function for each input
variable. For the Gaussian membership function used in the NFIN,
the task can be done easily as

e�[D (x�m )] [D (x�m )] =
j

e
�

(13)

wheremij and�ij are, respectively, the projected center and width
of the membership function in each input dimension. To reduce the
number of fuzzy sets of each input variable and to avoid the existence
of redundant ones, we should check the similarities between the
newly projected membership function and the existing ones in each
input dimension. Since bell-shaped membership functions are used
in the NFIN, we use the formula of the similarity measureE(A;B)
of two fuzzy setsA andB derived previously (see [20] and [21]
for details), where0 � E(A;B) � 1, and the largerE(A;B) is,
the moreA is similar toB. Let �(mi; �i) represent the Gaussian
membership function with centermi and width�i. Suppose no rules
are existent initially. The whole algorithm for the generation of new
fuzzy rules, as well as fuzzy sets in each input dimension, is as
follows (see the first algorithm at the bottom of the next page).�(t)
is a scalar similarity criterion which is monotonically decreasing such
that higher similarity between two fuzzy sets is allowed in the initial
stage of learning. For the output space partitioning, the same measure
in (10) is used. Since the criterion for the generation of a new output
cluster is related to the construction of a rule, we shall describe it
together with the rule-construction process in Process B.

Process B: Construction of Fuzzy Rules:As mentioned in learn-
ing process A, the generation of a new input cluster corresponds to the
generation of a new fuzzy rule, with its precondition part constructed
by the learning algorithm in process A. At the same time, we have to
decide the consequent part of the generated rule. If a new input cluster
is formed after the presentation of the current input–output training
pair (x,d), then the consequent part is constructed by the second
algorithm shown at the bottom of the next page. The algorithm is
based on the fact that different preconditions of different rules may
be mapped to the same consequent fuzzy set.

Process C: Consequent Structure Identification:Until now, the
NFIN has contained fuzzy rules in the form of (1). Even though
such a basic NFIN can be used directly for system modeling,
a large number of rules is necessary for modeling sophisticated
systems under a tolerable modeling accuracy. To cope with this
problem, we adopt the spirit of the TSK model [17] in the NFIN. In
the TSK model, each consequent part is represented by a linear
equation of the input variables. It is reported in [16] that the
TSK model can model a sophisticated system using a few rules.
Even so, if the number of input and output variables is large, the
consequent parts used in the output are quite considerable, and some
may be superfluous. Instead of using the linear equation of all the
input variables (terms) in each rule, we add only some additional
terms to some rules when necessary, to cope with the dilemma
between the number of rules and the number of consequent terms.
Monitor the error curve. If the error does not diminish over a
period of timeE(t + T ) � E(t � T ) = T

k=t(y(k) � yd(k))2

�
t�T
k=t�2T (y(k) � yd(k))2 < 0:5 and the error is still too large,

we will add the additional terms to the rule with the largest error
value evaluated during this period of time. The error of rulei during
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each period of time is calculated by

RE(i) =
t

a
(3)
i

c

k=1 a
(3)
k

y(t)� yd(t)
2

wherea(3)i is the firing strength of rulei; c is the number of rules,
yd(t) is the desired output,y(t) is the current output, andRE(i) is
the accumulated error of rulei. The process may be done repeatedly
over a period of time until a satisfactory result occurs.

Process D: Parameter Identifi-cation:The parameter-identification
process is done concurrently with the structure-identification process.
The idea of backpropagation is used for this supervised learning.
Considering the single-output case for clarity, our goal is to minimize
the error function

E =
1

2
y(t)� yd(t)

2

(14)

whereyd(t) is the desired output, andy(t) is the current output. The
parametersaji in Layer 4 are tuned by Kalman filter algorithm [3] as

a(t+ 1) = a(t) + P (t+ 1)u(t+ 1)(yd(t)� y(t)) (15)

P (t+ 1) =
1

�
P (t)�

P (t)uT (t+ 1)u(t+ 1)P (t)

�+ uT (t+ 1)P (t)u(t+ 1)
(16)

where 0 < � � 1 is the forgetting factor,u is the current
input vector,a is the corresponding parameter vector, andP is the
covariance matrix. The initial parameter vectora(0) is determined
in the structure-learning phase andP (0) = �I, where� is a large
positive constant. As for the free parametersmij and �ij of the
input membership functions in Layer 2, they are updated by the
backpropagation algorithm. Using the chain rule, we have

m
(2)
ij (t+ 1) = m

(2)
ij (t)� �

@E

@m
(2)
ij

= m
(2)
ij (t)� �

@E

@y
k

@y

@a
(3)
k

@a
(3)
k

@m
(2)
ij

(17)

where

@E

@y
= y(t)� yd(t)

@y

@a
(3)
k

=
a
(4)
k � y

i
a
(3)
i

(18)

@a
(3)
k

@m
(2)
ij

=

a
(3)
k

2(x �m )

�
if term nodej is connected

to rule nodek
0; otherwise.

(19)

IF x is the first incoming pattern THEN do
PART 1.f Generate a new rule,

with centerm1 = x, width D1 = diag(1=�init; � � � ; 1=�init),
where�init is a prespecified constant.

After decomposition, we haven one-dimensional membership functions,
with m1i = xi and�1i = �init; i = 1 � � �n.

g
ELSE for each newly incomingx, do

PART 2.f find J = argmax1�j�c(t) F
j(x);

IF F J � �Fin(t)
do nothing

ELSE
f c(t+ 1) = c(t) + 1,
generate a new fuzzy rule, with
mc(t+1) = x, Dc(t+1) = � 1

�
� diag(1= ln(FJ); � � � ; 1= ln(F J)):

After decomposition, we have
mnew�i = xi; �new�i = �� � ln(F J ); i = 1 � � �n.
Do the following fuzzy measure for each input variablei :
fdegree(i; t) � max1�j�k E[�(mnew�i; �new�i); �(mji; �ji)],
whereki is the number of partitions of theith input variable.
IF degree(i; t) � �(t),
THEN adopt this new membership function, and setki = ki + 1,
ELSE set the projected membership function as the closest one.g

g
g.

IF there are no output clusters,
do f PART 1in Process A, withx replaced byd g

ELSE
do f

find J = argmaxj F
j(x):

IF F J � �Fout(t)
connect input clusterc(t+ 1) to the existing output clusterJ ,
ELSE
generate a new output cluster,
do the decomposition process inPART 2of Process A,
connect input clusterc(t+ 1) to the newly generated output cluster.
g.
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Fig. 2. Conventional on-line training scheme.

Similarly, we have

�
(2)
ij (t+ 1) = �

(2)
ij (t)� �

@E

@�
(2)
ij

= �
(2)
ij (t)� �

@E

@y
k

@y

@a
(3)
k

@a
(3)
k

@�
(2)
ij

(20)

where

@a
(3)
k

@�
(2)
ij

=
a
(2)
k

2(x �m )

�
if term nodej is connected to nodek

0; otherwise.

(21)

III. NFIN-B ASED ADAPTIVE CONTROL

The inverse control configuration shown in Fig. 2 is adopted. Two
training phases, off-line and on-line training, are used for the design of
the controller. For the off-line training, the general inverse-modeling
learning scheme [15] is used. A sequence of random input signals
urd(k) under the magnitude limits of the plant input is injected
directly to the plant, and then an open-loop input–output characteristic
of the plant is obtained. According to the input–output characteristic
of the plant, proper training patterns are selected to cover the entire
reference output space. Another task for inverse modeling is to decide
the proper input variables of the network controller when there is no
a priori knowledge of the plant, i.e.,̂m and n̂ in Fig. 2 have to
be decided. In Section V-B, we shall demonstrate an experimental
method [11] of doing this. Using the collected training patterns with
the values of the selected input variables as the input pattern and
the corresponding control signalurd(k) as the target pattern, the
network can be supervised and updated to minimize an error function
E defined byE = k

k=1
1
2
[urd(k)� û(k)]2 wherekn is the number

of training patterns.
For the on-line training, a conventional on-line training scheme is

used. Fig. 2 is a block diagram for the conventional on-line training
scheme. In executing this scheme, we follow two phases: the control
phase and the training phase. In the control phase, the switches S1
and S2 are connected to nodes 1 and 2, respectively, to form a control
loop. In this loop, the control signal�u(k) is generated according to
the input vectorI 0(k) = [yref(k+1); yp(k); . . . ; yp(k�m̂+1); u(k�
1); . . . ; u(k� n̂)]T whereu denotes the input,yp is the output, and
yref is the reference output. In the training phase, the switch S1 and S2
are connected to nodes 3 and 4, respectively, to form a training loop.
In this loop, we can define a training pattern with input vectorI(k) =
[yp(k + 1); yp(k); . . . ; yp(k � m̂ + 1); u(k � 1); . . . ; u(k � n̂)]T

and desired output�u(k), where the input vector of the network
controller is the same as that used in the off-line training scheme
(see Section IV-B). With this training pattern, the network controller
can be supervised and trained at each time stepk to minimize the

error functionE(k + 1) defined byE(k + 1) = 1
2
[�u(k)� û(k)]2

where û(k) is the actual output of the network controller when it
receives the input vectorI(k) in the training phase.

IV. SIMULATION STUDIES

A. Problem Statement

To see whether the proposed NFIN can achieve good performance
and overcome the disadvantages of the BPNN, we compare it with
the BPNN under the same aforementioned training procedure on a
simulated water bath temperature-control system. Consider a discrete-
time SISO temperature-control system

yp(k + 1) = A(Ts)yp(k) +
B(Ts)

1 + e y (k)�

u(k)

+ [1� A(Ts)]yo (22)

whereA(Ts) = e�aT andB(Ts) = (b=a)(1� e�aT ). The above
equation models a real water bath temperature-control system given
in [10]. The parameters in this simulation area = 1:00151e�4;
b = 8:67973e�3; 
 = 40:0; andyo = 25:0�C. The plant inputu(k)
is limited to 0 and 5 V, and the sampling period isTs = 30 s. The
task is to control the simulated system to follow three set-points.

yref (k) =
35 �C; for k � 40
55 �C; for 40 < k � 80
75 �C; for 80 < k � 120:

B. Simulation Results

By implementing the off-line training scheme, a sequence of
random input signalsurd(k) limited to 0 and 5 V is injected directly
into the simulated system described in (22). The initial temperature
of the water is 25�C, and the temperature rises progressively when
random input signals are injected. The water temperature finally
reaches about 100�C when 90 input signals are injected. The
temperature remains at about this highest value when more input
signals are injected. From this input–output characteristic of the
simulated system, 90 training patterns are selected to cover the entire
reference output space. In this way, another set of about 90 training
patterns can be collected. Observing this input/output characteristic,
we find that the input/output mapping of the two sets is about the
same. So only one set, which contains 90 training patterns, is needed
for the off-line training of NFIN. From (22), the input vector of the
network controller clearly can be decided asm̂ = 1 and n̂ = 0, i.e.,
I(k) = [yp(k + 1); yp(k)]

T .
For the BPNN, a four-layer feedforward network with two hidden

layers is used. To find a suitable number of hidden nodes, three net-
worksBPNN(5; 5); BPNN(10; 10); andBPNN(15; 15) are chosen,
where the notationBPNN(a; b) denotes that the number of nodes in
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Fig. 3. Convergence curves of the simulated system through off-line training
using (a)BPNN(5; 5), (b) BPNN(10; 10), (c) BPNN(15;15), and (d)
NFIN.

the first and second hidden layer area andb, respectively. To increase
the convergence speed, a modified form of the generalized delta rule
[14] is used.

For the NFIN, the learning parameters are set to�init = 0:1;
� = 0:005; � = 0:7; �Fin = 0:1, �Fout = 0:7, and� = 0:5. Values
�init; �, and �Fout are usually kept the same for different modeling
problems, and the value� influences mainly the learning speed.
In general, the parameter that needs to be reassigned for different
modeling problems is�Fin. In the off-line training, the convergence
curves of the NFIN and the three BPNN’s are shown in Fig. 3.
The curves show the sum square error per iteration as a function
of the number of iterations. For the three BPNN’s, we find that
theBPNN(15;15) shows the highest convergence speed of all. As
expected, the convergence speed of the NFIN is much higher than
that of theBPNN(15; 15). It is noted that the error of the NFIN
[curve (d)] before the first iteration is unknown, since it is an empty
(no rule) network before learning.

In the on-line training, the NFIN andBPNN(15; 15) controllers
are trained by the conventional on-line training scheme shown in
Fig. 2. Moreover, the new on-line training method that performs
multiple updating operations during each sampling period [10] is also
applied to theBPNN(15; 15) for comparison. In the new on-line
training method, we choose 20 additional adjacent training patterns
per sampling period. To test their regulation performance in each trial,
a performance index, sum of absolute error (SAE), is defined by

SAE =
k

jyref(k)� yp(k)j (23)

whereyref (k) andyp(k) are the reference output and the actual output
of the simulated system, respectively. The performance index SAE
is calculated fork ranging from 1–120, which is called a trial.

After 20 trials of on-line training, the regulation performance of
each trial of the aforementioned three cases is shown in Fig. 4, and the
final regulation performance of the NFIN and the regulation errors
of the three cases in the twentieth trial of the on-line training are
shown in Fig. 5. The curves in Fig. 4 show the sum of absolute
error per trial as a function of the number of trials. As expected,
the global learning ability for theBPNN(15; 15), based on the
conventional on-line training scheme, leads to seriously over-tuned
phenomenon. From the corresponding errors in Fig. 5(b), we find
that it only performs good regulation at the upper set-point but

Fig. 4. Regulation performance of each trial of the simulated system through
on-line training using (a)BPNN(15;15) based on the conventional on-line
training scheme, (b)BPNN(15;15) based on the new on-line training
scheme, and (c) NFIN based on the conventional on-line training scheme.

deteriorates at others. Furthermore, we find its performance index
value after 20 trials of on-line training is larger than its initial. The
over-tuned phenomenon still exists for theBPNN(15; 15) based on
the new on-line training scheme, although such a method increases
the on-line convergence speed and improves control performance
as expected. From the corresponding errors in Fig. 5(b), we also
observe that it only improves the performance at the upper and middle
set-points, not at the lower set-points. Furthermore, the additional
training of the adjacent patterns increases the computational load
per sampling period. The NFIN based on the conventional on-line
training scheme shows the highest on-line convergence speed and,
owing to the local tuning property of fuzzy rule-based systems,
there is little over-tuned phenomenon after 20 trials of on-line
training. According to the corresponding errors in Fig. 5(b), the
NFIN shows good regulation ability at all set-points, and few errors
exist. According to the performance index, among the three cases
the NFIN shows the best regulation-control performance for the
overall process. Fig. 6(a) shows the final assignment of fuzzy rules
of the NFIN after 20 trials of on-line training in the[y(k); y(k+1)]
plain. The number of generated rules is seven, and the numbers
of fuzzy sets on they(k) and y(k + 1) dimensions are four and
four, respectively, as shown in Fig. 6(b). In total, the number of
network-structure parameters is 29, but that of theBPNN(15; 15)
is 270.

For the simulation studies, a summary of comparisons between the
two networks, NFIN andBPNN(15; 15), is shown in Table I. The
NFIN has fewer structure parameters and higher off-line convergence
speed than the BPNN. Also, the NFIN based on the conventional on-
line training scheme has a higher on-line convergence speed than the
BPNN(15; 15) based on the conventional or the new on-line training
scheme proposed in [10]. After training, the regulation performance
of the NFIN outperforms theBPNN(15; 15) controller.

V. EXPERIMENTAL STUDIES

A. Water Bath Temperature-Control System

The experiment is performed on a real water bath temperature-
control system. It imitates the water bath temperature-control system
(BT-5 model) from a Yamato Science Inc. laboratory [11]. The
water bath is an example of an important component in a batch-
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(a) (b)

Fig. 5. Final regulation performance of the simulated system in the twentieth trial of on-line training using (a) NFIN based on the conventional on-line
training scheme. (b) The corresponding errors: A:BPNN(15; 15) based on the conventional on-line training scheme, B:BPNN(15;15) based on the new
on-line training scheme, and C: NFIN based on the conventional on-line training scheme.

(a) (b)

Fig. 6. Final structure of the NFIN after 20 trials of on-line training. (a) The final assignment of fuzzy rules in the[y(k); y(k + 1)] plain. (b) The
corresponding membership functions on they(k) and y(k + 1) dimensions.

TABLE I
SUMMARY OF COMPARISONS BETWEEN THE TWO NETWORK

CONTROLLERS ON THESIMULATED WATER BATH SYSTEM

reactor process. A schematic diagram of the experimental setup is
shown in Fig. 7. The system consists of five main components: a
6-liter stirrer tank, an industrial personal computer, a temperature
control board, ak-type thermocouple sensor module, and a heater

based on a solid state relay (SSR). A brief description of the five
components follows. The capacity of the water bath is 8 liters, with
dimensions280 � 200 � 150 (mm3). It is heated by a 1000 W heater.
To ensure even temperature distribution, a stirrer which can rotate at
180 r/min is used. An industrial personal computer with Intel 486-
DX2-66 CPU is used in this experiment. To measure the water bath
temperature and send out the control signals, a temperature-control
board (ETC) is used. The temperature-control board is developed
by the Industrial Technology Research Institute, Taiwan. It provides
the ability to measure temperature and control signal output. For the
temperature measurement, ak-type thermocouple (WSS.02) sensor
is connected to the temperature-control board in order to measure
the water bath temperature. The output signals of the temperature-
control board are pulse width modulated (PWM) and are connected
to the SSR to switch the heater on or off. The main control program
is written in Microsoft-C, which decides on the control signals sent
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Fig. 7. Schematic diagram of the water bath temperature-control system.

to the water bath system through the temperature-control board. The
control action is according to the following constraints:

IF u(k) � 0; THEN P (k) = 0:0% heater off

IF u(k) � 100:0; THEN P (k) = 100:0% heater on

IF 0:0 < u(k) < 100:0; THEN P (k) = u(k)%; heater on

wherek is the sampling number(k = 1; 2; 3; . . .); u(k) is the output
of the controller, andP (k) is the output of the temperature-control
board.

For a discrete-time control system, it is necessary to decide
on an appropriate sampling period. In many practical applications,
the sampling frequency cannot or should not exceed some limit.
Therefore, for the water bath system, by considering its transient
response behavior and the resolution of sensor, we choseTs = 30
seconds as the sampling period.

B. Determination of the Input Vector of the NFIN Controller

As we have noa priori knowledge of the plant (especially the
plant’s order), an experimental method is used to determine the
proper input variables of the network controller. First, with this
method some different sets of input variables (i.e., input vectors)
are selected in advance. These input vectors are all tried by the
NFIN, and the one with the smallest input dimension and satisfactory
control result is adopted. More clearly, each NFIN with a different
input vector is trained by the off-line training scheme. To perform
off-line training, we need to collect training data in advance. The
input/output training data are collected the same way as in Section IV.
A sequence of random input signalsu(k) in 0 and 100 is injected
into the water bath system with an initial temperature near 25�C.
The temperature rises when the input signals are injected into the
system continuously and reaches the boiling point of 100�C after
110 input signals are injected. The temperature remains near 100
�C when succeeding random input signals are injected. From this
input/output characteristic, the first 110 patterns covering the entire
output range are selected as training patterns for off-line training.
After off-line training, each NFIN is configured as a controller to the
plant, and then the plants are controlled to follow some reference
outputs. From the experimental results, we can find a proper input
vector for the NFIN controller.

Fig. 8. Performance of the NFIN using four different input vectors after
off-line training.

Based on the above idea, four input vectorsI(k) defined in
Section III are selected for the water bath system as follows:

Case A: I(k) = [yp(k + 1)]T ;

Case B: I(k) = [yp(k + 1); yp(k)]
T ;

Case C: I(k) = [yp(k + 1); yp(k); yp(k � 1)]T ;

Case D: I(k) = [yp(k + 1); yp(k); u(k � 1)]T :

In the first case (Case A), only the plant output is used as the input
vector. In the second and third cases (Cases B and C), in addition
to the plant output, the delayed plant outputs are used in the input
vector. For Case D, a delayed plant input is included. As described in
Section III, for all of the above four cases, the desired output isu(k),
the current input. The input/output training data of the four cases are
collected from the 110 selected training patterns. If the above four
cases cannot meet the control requirement, then another type of input
vector should be tried. An experiment to control the plant output to
follow two set-points

yref(k) =
40 �C; for k � 40
55 �C; for 40 < k � 80

is realized.
After the off-line training, the performance of the four NFIN’s are

shown in Fig. 8. Case A shows the largest regulation error and the
poorest convergence status during training. Therefore, we know that
only one input variable for the NFIN controller cannot make it work
well. For Cases B, C and D, each shows good control performance
and relatively fast convergence during training. This means that all
of Cases B, C and D catch the basis order of the water bath system.
Hence, for simplicity, we only need to choose Case B as the input
vector of the NFIN controller for the water bath system. In other
words, the NFIN controller based on input vector[yp(k+1); yp(k)]

T

has a good control capability for the water bath temperature-control
system.

C. FLC and PID Control

One way to test whether the NFIN control works well is to compare
it directly with other types of existing controllers. In this paper, we
compare the NFIN controller to two traditional controllers: the FLC
and the PID controller. Each of these three controllers is applied to
the water bath temperature-control system. The formed three control
systems are tested experimentally. The comparison indexes include
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(a)

(b)

(c)

Fig. 9. Membership functions of the three fuzzy variables of the water bath
system. (a) Input variablee(k), (b) input variable�e(k), and (c) output
variableu(k).

set-points regulation, ramp-points tracking, the influence of impulse
noise, and a large parameter variation in the system.

For the FLC, we specify the input variables as the performance
errore(k), which is the error between the reference output and actual
temperature of the water bath system, and the rate of change of the
performance error�e(k). The output variableu(k) is the PWM
signal between 0% and 100%. We quantified the three variables into
seven fuzzy subsets from negative large (NL) to positive large (PL).
The Gaussian membership function is chosen for the fuzzy subsets of
the three fuzzy variables as shown in Fig. 9. According to common
sense and engineering judgment, 25 fuzzy rules are specified in matrix
form as shown in Table II.

For the PID control, a velocity-form discrete PID controller [3] is
used and is described by

�u(k) = K e(k)� e(k� 1) +
Ts

2Ti
[e(k) + e(k� 1)]

+
Td

Ts
[e(k)� 2e(k� 1) + e(k� 2)]

= KP [e(k)� e(k� 1)] +KIe(k)

+KD[e(k)� 2e(k� 1) + e(k � 2)] (24)

where

KP = K �
1

2
KI ; KI =

KTs

Ti
; KD =

KTD

Ts
: (25)

The parameter�u(k) is the increment of the control input,e(k)
is the performance error at the sampling instantk, and KP ; KI ,
and KD are the proportional, integral, and derivative parameters,
respectively. In order not to aggravate noise in the plant, only a two-
term PID controller is used, i.e.,KD is set to zero in the water bath
system. The other two parametersKp and KI are set as 90 and
60, respectively. For the above designed FLC and PID controller,
we have tried our best to achieve their respective best performance
through several trial-and-error experiments.

TABLE II
FUZZY RULES FOR THEWATER BATH TEMPERATURE CONTROL SYSTEM

D. Experimental Results

For the aforementioned controllers (NFIN, FLC, and PID), four
groups of experiments are conducted on the water bath temperature
control system. Each experiment is performed over 120 sampling
time steps, which result in a 60 min duration.

In the first set of experiments, the regulation capability of the
three controllers with respect to set-point changes are studied. Three
set-points to be followed are

yref(k) =
40 �C; for k � 40;
55 �C; for 40 < k � 80;
70 �C; for 80 < k � 120:

As mentioned in Section V-B, in obtaining the NFIN controller,
110 training patterns are chosen from the input–output characteristic
in order to cover the entire reference output space. According to
the selected training patterns based on the determined input vector
(Case B in Section V-B), the NFIN is trained off-line. The learning
parameters are selected as�init = 0:1; � = 0:5; � = 0:005; � = 0:7;
�Fin = 0:1, and �Fout = 0:7. After off-line training, where eight rules
are generated, the NFIN is configured as a direct controller to the
water bath system, and then the conventional on-line training scheme
is performed on the trained NFIN controller. The same learning
parameters are used as those used in the off-line training scheme. The
regulation performance after one trial of on-line training is compared
to that of the other two controllers.

The regulation performance of the NFIN controller is shown in
Fig. 10(a), and the regulation errors of the three controllers are shown
in Fig. 10(b). The PID controller only performs good regulation at
one operating point (at the middle set-point) but deteriorates at others.
The NFIN seems to operate much faster in achieving the set-points. It
has a shorter rise-time than the other controllers. For the steady-state
error of set-points, the NFIN also shows the smallest error.

In the second set of experiments, the tracking capability of the
three controllers with respect to ramp-points is studied. We define
three ramp-point regions as

yref (k) =
[34 + 0:5(k � 30)] �C; for 30 < k � 50
[44 + 0:8(k � 50)] �C; for 50 < k � 70
[60 + 0:5(k � 70)] �C; for 70 < k � 90:



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 29, NO. 3, AUGUST 1999 449

(a) (b)

Fig. 10. Regulation performance of the three controllers for the water bath system. (a) NFIN. (b) Corresponding errors: A: NFIN; B: FLC; C: PID.

(a) (b)

Fig. 11. Tracking performance of the three controllers for the water bath system. (a) NFIN. (b) Corresponding errors: A: NFIN; B: FLC; C: PID.

(a) (b)

Fig. 12. Behavior of the three controllers under the impulse noise for the water bath system. (a) NFIN. (b) Corresponding errors: A: NFIN; B: FLC; C: PID.
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(a) (b)

Fig. 13. Behavior of the three controllers when a change occurs in the water bath system dynamics. (a) NFIN. (b) Corresponding errors: A: NFIN;
B: FLC; C: PID.

For the NFIN control, the same on-line training scheme and learning
parameters are used as those used in the first set of experiments. In
implementing the FLC and the PID controller, the same controller
parameters are also used as in the first set of experiments. The
tracking performance of the NFIN controller is shown in Fig. 11(a),
and the tracking errors of the three controllers are shown in Fig. 11(b).
As shown in the error curves, the NFIN has the smallest error. The
FLC and PID show poor tracking-control capability.

The third set of experiments is carried out for the purpose of
studying the noise-rejection ability of the three controllers when some
unknown impulse noise is imposed on the process. To make fair
comparisons among the controllers, two impulse noise values 5.0�C
and –5.0�C are added to the plant output at the fortieth and eightieth
sampling instants, respectively. A set-point of 50.0�C is performed
in this set of experiments. The behavior of the NFIN control system
under the influence of impulse noise is shown in Fig. 12(a), and the
corresponding errors of the three controllers are shown in Fig. 12(b).
It is observed that the NFIN performs quite well. It recovers very
quickly and steadily after the presentation of the two impulse noises.
However, the FLC and PID are affected seriously by the impulse
noise and unpredictable behavior occurs.

One common characteristic of many industrial-control processes is
that their parameters tend to change in an unpredictable way. To test
the robustness of the three controllers, a value of0:7 � u(k � 2) is
added to the plant input after the sixtieth sample in the fourth set of
experiments. Although it is difficult to imagine a real plant behavior
in such a drastic way, it can help to understand their robustness.
A set-point of 50.0�C is used in this set of experiments. The
behavior of the NFIN controller when there is a change in the plant
dynamics is shown in Fig. 13(a), and the corresponding errors of the
three controllers are shown in Fig. 13(b). For the NFIN, the on-line
training scheme helps to improve its performance. We find that a little
fluctuation resulted after the sixtieth sample. However, the FLC and
PID are affected more seriously after the sixtieth sample.

For the experimental studies, a summary of comparisons among
the three controllers on the water bath temperature-control system
is shown in Table III. In implementing the FLC, the number of
rules and membership functions have to be decided and tuned by
hand. As for the PID controller, the parametersKP ; KI , andKD

also have to be decided properly. For the FLC and PID controllers,

TABLE III
SUMMARY OF COMPARISONS AMONG THE THREE

CONTROLLERS ON THEEXPERIMENTAL WATER BATH SYSTEM

therefore, they usually require a long time in design for achieving
good performance. In implementing the NFIN controller, however,
no controller parameters have to be decided in advance. We only
need to choose proper training patterns and the input vector of the
NFIN controller. After off-line and on-line training, it can achieve
good control performance. In general, the NFIN usually spends a
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relatively short time training to reach good performance. From the
regulation performance of the three controllers, the NFIN controller
has the shortest rise-time and the best regulation-control performance
of all. From the tracking performance of the three controllers, the
NFIN controller has the smallest errors of all in the tracking path.
Finally, when testing the robustness, since the NFIN controller adopts
the on-line training scheme, it also shows better performance under
impulse noise and changes in the plant dynamics.

VI. CONCLUSION

In this paper, an NFIN is proposed and applied to the water bath
temperature-control problem. The on-line self-constructing property
of the NFIN reduces the design efforts when it is applied as a
controller, as compared to other existing intelligent controllers such as
neural networks or fuzzy controllers. Also, this property makes it able
to deal with the problem of a changing environment or plant, which
cannot be handled perfectly by conventional controllers like the PID
controller. As for the network size, the input clustering method in the
precondition part and the flexible linear-combination structure in the
consequent part of fuzzy rules, reduce not only the number of rules
but also the number of parameters in each rule. These advantages of
the NFIN have been verified by the water bath temperature-control
experiments performed in this paper. Future work is to investigate a
recurrent NFIN controller such that we need no additional efforts to
find the input order of the plant, as the recurrency of the network can
deal with this problem implicitly.
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Sensor-Based Fuzzy Reactive Navigation of a Mobile
Robot Through Local Target Switching

W. L. Xu and S. K. Tso

Abstract—Fuzzy reactive control, incorporating a local target-switching
scheme, is applied to the automatic navigation of an intelligent mobile
robot in an unknown and changing environment. Sensed-ranging signals
and relative target position signals are input to the fuzzy controller.
The steering angle and the velocity change are inferred to drive the
mobile robot. A reactive rulebase governing the robot behavior is syn-
thesized from the human heuristics with respect to various situations
of environment. A local target-switching scheme is proposed to serve
as a front-end processor of the fuzzy active controller and to deal with
the local trapping and wandering cycle problem in the navigation of a
behavior-based mobile robot. The algorithm is described together with
some particular considerations about implementation. Efficiency and
effectiveness of the proposed approach are verified through simulation
and experiments conducted on a Nomad 200 mobile robot.

I. INTRODUCTION

FOR MOBILE robots operating in an unknown and changing
environment, coping with uncertainty is one of the most chal-

lenging problems. There are several approaches proposed to solve the
robot navigation problem, including the model-based methods [1]–[5]
and the fuzzy logic (FL)-based [6]–[18] and neural network (NN)-
based [19]–[22] reactive methods. FL-based or NN-based navigation
is fast in reaction and tolerant to sensing noises. Robot reactions
are decided through the reasoning of various types of qualitative
behaviors using FL or through prediction using an NN, which is
trained by a database quantitatively representing the behaviors. In
the FL control of a mobile robot using a fuzzy expert system [6],
recognition rules are proposed to classify the road shapes derived
from the camera images, and control rules are designed to produce the
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