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Correspondence

Temperature Control with a for its use in developing intelligent control systems [8]. However,
Neural Fuzzy Inference Network slow convergence is the major disadvantage of the BPNN. When

the BPNN is trained off line, it must spend a long time to achieve
Chin-Teng Lin, Chia-Feng Juang, and Chung-Ping Li satisfactory convergence. Moreover, when it is trained on line in order

to adapt to the environment variations, its global tuning property
' _ usually leads to the over-tuned phenomenon, which will degrade the
Abstract—Although multilayered backpropagation neural networks performance of the controller. Although several approaches [9], [10]

(BPNN's) have demonstrated high potential in the nonconventional . .
branch of adaptive control, their long training time usually discourages have been proposed as efficient ways for solving these problems,

their applications in industry. Moreover, when they are trained on-line  the improvement is limited. In this paper, a neural fuzzy inference
to adapt to plant variations, the over-tuned phenomenon usually occurs. network (NFIN) is proposed to overcome the disadvantages of the
To overcome the weakness of the BPNN, in this paper we propose aPNN and FLC.

neural fuzzy inference network (NFIN) suitable for adaptive control of The NFIN is a fuzzy rule-based network possessing a neural
practical plant systems in general and for adaptive temperature control

of a water bath system in particular. The NFIN is inherently a modified N€fWwork's learning ability. Compared to other existing neural fuzzy
Takagi-Sugeno—Kang (TSK)-type fuzzy rule-based model possessing anetworks [12], [13], [7], a major characteristic of the network is
neural network’s learning ability. In contrast to the ge_neral_adaptive that no preassignment and design of the rules is required. The
neural fuzzy networks, where the rules should be decided in advance pyles are constructed automatically during the on-line operation. The

before parameter learning is performed, there are no rules initially in the . .
NFIN. The rules in the NFIN are created and adapted as on-line learning structure-learning phase and the parameter-learning phase [20], [22]

proceeds via simultaneous structure and parameter identification. The are adopted on-line for the construction task.
NFIN has been applied to a practical water bath temperature-control One important task in the structure identification of the NFIN
system. As compared to the BPNN under the same training procedure, is the partition of the input space, which influences the number

the simulated results show that not only can the NFIN greatly reduce line i ) -
the training time and avoid the over-tuned phenomenon, but the NFIN of fuzzy rules generated. An on-line input space-partition method

also has perfect regulation ability. The performance of the NFIN is @nd the aligned clustering-based method are proposed in this paper,
also compared to that of the traditional PID controller and fuzzy ~Which will reduce not only the number of rules generated but also
logic controller (FLC) on the water bath temperature-control system. the number of fuzzy sets in each dimension. Another feature of the
The three control schemes are compared through experimental studies \EIN is that it can optimally determine the consequent part of fuzzy

with respect to set-points regulation, ramp-points tracking, and the . - -
influence of unknown impulse noise and large parameter variation in the if-then rules during the structure-learning phase. A fuzzy rule of the

temperature-control system. It is found that the proposed NFIN control ~ following form is adopted in our system initially
scheme has the best control performance of the three control schemes.

Index Terms—Kalman filter algorithm, similarity measure, space par- Rulej: IF 2y isin A and ... anda, isin 4,
titioning, TSK fuzzy rules, water bath temperature control. THEN y; is m. (1)
|. INTRODUCTION wherex; andy, are the input and output variables, respectively;

Classical control theory usually requires a mathematical mod@la fuzzy fsert], andn, is the_ %?sitiop hof a sy(rjnrr]n etriclmerzbzrship
for designing the controller [1]-[3]. The inaccuracy of mathematic jnction o ,t € output variable with its Wi t neglected during
modeling of the plants usually degrades the performance of t defuzzification process. Then, by monitoring the change of the

controller, especially for nonlinear and complex control problemQ.etwork output error, additional terms (the linear terms used in the

Recently, the advent of the fuzzy logic controllers (FLC's) an§onsequent part of the Takagi-Sugeno-Kang (TSK) model [18], [17])
l be included when necessary to further reduce the output error.

the neural controllers based on multilayered backpropagation neu: . R . : . .
networks (BPNN's) has inspired new resources for the possibT Is consequent identification process is employed in conjunction

é{VIth the precondition-identification process to reduce both the number
rules and the number of consequent terms. For the parameter-
identification scheme, the consequent parameters are tuned by the

realization of better and more efficient control [4], [21]. They offer
key advantage over traditional adaptive control systems. That is, t

do not require mathematical models of the plants. The concept | il laorith d th dit d
fuzzy logic has been applied successfully to the control of industrigfiman filter algorithm, and the precondition parameters are tune

processes [5]-[7]. Conventionally, the selection of fuzzy if-then ruléy the backpropagatlon Iearnl_ng algorithm. Both the structure a_nd
often relies on a substantial amount of heuristic observation to exprgggameter learning are done_ snmultaneously_to achieve fast learning.
proper strategy knowledge. Obviously, it is difficult for human experts Temperature control is an important factor. In many process control
to examine all of the input—output data from a complex system %ste_ms [9], [10], _[11]' I_f the temperature is too h'g.h or too low,

find a number of proper rules for the FLC. For a BPNN, its nonIineeEl?e final product is seriously affected. Therefore, it is necessary

mapping and self-learning abilities have been the motivating factdfs i some desired temperature points quickly and avc,"d large
overshoot. Since the process-control systems are often nonlinear and
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jth term of theith input variablex,. Unlike other clustering-based
partitioning methods where each input variable has the same number
of fuzzy sets, the number of fuzzy sets of each input variable is not
necessarily identical in the NFIN.

Layer 3: A node in this layer represents one fuzzy logic rule and
performs precondition matching of a rule. Here we use the following
AND operation for each Layer 3 node

a® = 71,53) (4)
where the product is over the Layer 2 nodes participating in the IF
part of the rule.

Layer 4: This layer is called the consequent layer. Two types of
nodes are used in this layer, and they are denoted as blank and
shaded circles in Fig. 1, respectively, for functional distinction as
described below. The node denoted by a blank circle (blank node) is
the essential node representing a fuzzy set (described by a Gaussian
membership function) of the output variable. Since the Gaussian
membership function is of equal width, only the center of each
Gaussian membership function is delivered to the next layer for the
1 *2 local mean of maximum (LMOM) defuzzification operation [18]. The

function of the width is used only for output clustering as will be
Fig. 1. Structure of the neural fuzzy inference network (NFIN). described in Section II-B (Process B). Different nodes in Layer 3
may be connected to the same blank node in Layer 4, meaning that

To see if the NFIN, based on the inverse modeling scheme, dhe same consequent fuzzy set is specified for different rules. The
work well for a practical system, we compare it with the FLC and Plfunction of the blank node is
controller on a real water bath temperature-control system. The three a® = Z OB (5)
schemes are compared through experimental studies with respect to /

set-points regulation, ramp-points tracking, the influence of unknownh h ¢ . bership f .
impulse noise, and large parameter variation in the system. whereao; = mo;, the center of a Gaussian membership function. As

This paper is organized as follows. In Section I, the structuf@" the shaded node, it is generated only when necessary. Each node
in Layer 3 has its own corresponding shaded node in Layer 4. One of

and the learning algorithm of the NFIN are proposed. In Section IIIr,1 ‘ ! :
the configuration of the NFIN-based control and the training proceti iNPUts to a shaded node is the output delivered from Layer 3, and

are introduced. In Sections IV and V, simulation studies and expé'f]-e other_ poss_ible _inpUtS (terms) are the input yariaples from Layer
imental studies are presented, respectively. A conclusion is madeliftS depicted in Fig. 1. The shaded node function is

Section VI. @ = Z“‘ﬂ"”i cu® (6)
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Il NEURAL Fuzzy INFERENCE NETWORK (NFIN) where the summation is over all the inputs angdis the correspond-

In this section, the structure of the NFIN as shown in Fig. 1 ing parameter. Combining these two types of nodes in Layer 5, we
introduced. With this five-layered network structure of the NFIN, webtain the whole function performed by this layer for each rule as
shall define the function of each node of the NFIN in Section II-A
and the learning algorithm of the NFIN in Section 1I-B. a® = (Z ajir; + aol)uf”, @)

J

A. Structure of the NFIN From the above equation, we find that with the creation of a shaded
Let «*) anda‘® denote the input and output of a node in layenode, the consequent part performs the same function as that of the
k, respectively. The functions of the nodes in each of the five layeFSK-type fuzzy rule, where the consequent is a linear combination of
of the NFIN are described as follows. input variables. That is why we connect the inputs to a shaded node in
Layer 1: No computation is done in this layer. Each node in thithe NFIN. The motivation for the use of the shaded node, pointed out
layer which corresponds to only one input variable, transmits inpby Sugeno and Tanaka in [16], is that the TSK model can represent a
values to the next layer directly. That is complex system in terms of fewer rules than the ordinary Mamdani-
D = = 4, @) type fuzzy model. However, the terms used in the consequent part
' of the TSK model are quite considerable for multiinput-multioutput
Layer 2: Each node in this layer corresponds to one linguistisystems or for the systems with high-dimensional input or output
label (small, large, etc.) of one of the input variables in Layer paces. This problem is solved in our NFIN model. As proposed in
In other words, the membership value which specifies the degreeSection 11-B, the shaded node is created only when necessary for the
which an input value belongs to a fuzzy set is calculated in Layeiile with poor mapping. This way, the number of consequent terms
2. With the use of Gaussian membership function, the operatigreduced, and the number of rules required is still small.
performed in this layer is Layer 5: Each node in this layer corresponds to one output vari-

(0 32 able. The node integrates all the actions recommended by Layers 3
*3 .ge .
(2) - = and 4 and acts as a defuzzifier with
a” =e i (3)
wherem;; anda;; are, respectively, the center (or mean) and the a® = E a54) E aES). (8)

width (or variance) of the Gaussian membership function of the



442 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 29, NO. 3, AUGUST 1999

B. Learning Algorithms for the NFIN according to the first-nearest-neighbor heuristic [19], whére 0

Two types of leaming, structure, and parameter learning afécides the overlap degree between two clusters.
used concurrently for constructing the NFIN. The structure learningAfter a rule is generated, the next step is to decompose the
includes both the precondition and consequent structure identificatf@#itidimensional membership function formed in (11) and (12) to the
of a fuzzy if-then rule. There are no rules (i.e., no nodes in tfRorresponding one-dimensional membership function for each input
network except the input/output nodes) in the NFIN initially. Theyariable. For the Gaussiaq membership function used in the NFIN,
are created dynamically as learning proceeds upon receiving G task can be done easily as
line incoming training data by performing the following learning
processes simultaneously:

A) Input/output space partitioning;

B) Construction of fuzzy rules;

C) Consequent structure identification;

D) Parameter identification.

In the above, processes A, B, and C belong to the structure-learniMgereni; anda;; are, respectively, the projected center and width
phase, and process D belongs to the parameter-learning phase. Pr&fe§® membership function in each input dimension. To reduce the
C is called the consequent part structure identification, becausd#mber of fuzzy sets of each input variable and to avoid the existence
determines the final consequent function of each rule. The details@fredundant ones, we should check the similarities between the
these learning processes are described in the rest of this section."ewly projected membership function and the existing ones in each

Process A: Input/Output Space Partitioningthe way the input input dimension. Since bell-shaped membership functions are used
space is partitioned determines the number of rules extracted fréiihe NFIN, we use the formula of the similarity measured, B)
training data as well as the number of fuzzy sets on the univer§4Itwo fuzzy setsA and B derived previously (see [20] and [21]
of discourse of each input variable. For each incoming pattern for details), whered < E(A,B) < 1, and the largetE (A4, B) is,
the strength a rule is fired can be interpreted as the degreetfl§ moreA is similar to B. Let u(mi, 0:) represent the Gaussian
which the incoming pattern belongs to the corresponding cluster. FBgmbership function with center,; and widthe;. Suppose no rules

computational efficiency, we can use the firing strength given in (&€ existent initially. The whole algorithm for the generation of new
directly as this degree measure fuzzy rules, as well as fuzzy sets in each input dimension, is as

follows (see the first algorithm at the bottom of the next pagé€))

2
Ceimmyg)

=[[e (13)

J

67[Di(x7mi)}T[Di(x7mi)J

. , .
Fi(x) = [[ul? = e7[Pimmal iiGemmo] is a scalar similarity criterion which is monotonically decreasing such
: that higher similarity between two fuzzy sets is allowed in the initial
where F* € [0,1], D, = diag(1/0i1,1/0i2,...,1/oin), andm; =  stage of learning. For the output space partitioning, the same measure
(M1, miz,. .., min)’ . Using this measure, we can obtain the folin (10) is used. Since the criterion for the generation of a new output
lowing criterion for the generation of a new fuzzy rule. L&) be cluster is related to the construction of a rule, we shall describe it
the newly incoming pattern. Find together with the rule-construction process in Process B.
J =arg max F’(x) (10)  Process B: Construction of Fuzzy Ruleés mentioned in learn-
1<y <e(t) ing process A, the generation of a new input cluster corresponds to the

generation of a new fuzzy rule, with its precondition part constructed
then a new rule is generated whefét) € (0,1) is a prespecified by the learning algorithm in process A. At the same time, we have to
threshold that decays during the learning process. The thresh@ffide the consequent part of the generated rule. If a new input cluster
decides the number of input and output clusters generated in {ﬁé‘ormed after the presentation of the_ current input—output training
NFIN. In general, a small variation of'(t) changes only the pair (_x,d), then the consequent part is constructed by the _seco_nd
initial location of generated clusters, which does not influence tifigorithm shown at the bottom of the next page. The algorithm is
performance of NFIN owing to the succeeding parameter Iearnirﬁ"’.‘sed on the fact that different preconditions of different rules may
Also, for the proposed NFIN, if som&(t) value can achieve good P& Mapped to the same consequent fuzzy set.

performance, the increment of thiE(¢) value will increase the Process C: Co.nsequent Structur.e Identificatiodntil now, the
number of generated clusters, but the performance of NFIN ddd§!N has contained fuzzy rules in the form of (1). Even though
not change much. As for the initialization df(t), it is heuristic. SUCh @ basic NFIN can be used directly for system modeling,
The initial F() for input space partitioning (denoted k. ) is set a large number of rules is necessary for modeling sophisticated

to a larger value for a complex modeling problem than for a simpRYStems under a tolerable modeling accuracy. To cope with this
one. Usually, the initial value of, is set in the range of 0 any/e. problem, we adopt the spirit of the TSK model [17] in the NFIN. In
The initial F(¢) for output space partitioning (denoted ,.) is e TSK model, each consequent part is represented by a linear
set to a value a little bit smaller than 1. /... is set to one, then €duation of the input variables. It is reported in [16] that the
the number of input clusters is the same as that of the output onksK mod(_el can model a S_OphlstlcatEd system_usmg a few rules.
For the decaying of (#), the decay can reduce the rule-generatioVen SO if the number of input and output variables is large, the
opportunity gradually in the succeeding learning process and tHef'Sequent parts used in the output are quite considerable, and some
avoid unlimited generation of rules. Since most rules are generaf8@Y be superfluous. Instead of using the linear equation of all the
in the initial learning stage, the performance of NFIN is insensiti49PUt variables (terms) in each rule, we add only some additional
to the decay rate of (). terms to some rules when necessary, to cope with the dilemma
Once a new rule is generated, the initial centers and widths 4¥gtween the number of rules and the number of consequent terms.
set as Monitor the error curve. If the error does not diminish over a
period of time E(t + T) — E(t = T) = >,_,(y(k) — y*(k))?
Mc(1)41) =X A1) _ st (k) — y*(k))? < 0.5 and the error is still too large,
Diciran) = _1 diag (l/ln (F") _____ 1/In (F’)) (12) Wwe will add the additional terms to the rule with the largest error
B S value evaluated during this period of time. The error of rutiring

wherec(t) is the number of existing rules at tintelf F/ < F(¢),
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each period of time is calculated by where 0 < A < 1 is the forgetting factor,u is the current
o® 5 input vector,a is the corresponding parameter vector, dnds the

RE(i) = Z ﬁ (y(t) - yd(t)> covariance matrix. The initial parameter vecto(0) is determined

T k=1 A in the structure-learning phase afi0) = oI, whereos is a large

wherea!® is the firing strength of rulé, ¢ is the number of rules, POSitive constant. As for the free parameters; and o;; of the

y?(t) is the desired outpuy(t) is the current output, an& E (i) is input membership functions in Layer 2, they are updated by the

the accumulated error of rule The process may be done repeatediackpropagation algorithm. Using the chain rule, we have

over a period of time until a satisfactory result occurs. m(g)(f 1) = m@)(f) _, oF
Process D: Parameter Identifi-catiorthe parameter-identification EAR R AR Iamif)
process is done concurrently with the structure-identification process. ; @)
The idea of backpropagation is used for this supervised learning. = ml(?)(t) _ ,,% Z 6;/3 aak2 (17)
Considering the single-output case for clarity, our goal is to minimize 9y k 8@2 ) 8'”5]')
the error function where
1 2
E=3 (y(t) - 'yd(t)> (14) IE _ o) — () ay _ a -y 18)
oy - (3) (3)
wherey(#) is the desired output, anglt) is the current output. The Y Oay (Zia™)
parameters;; in Layer 4 are tuned by KalTan filter algorithm [3] as 50 af’) 2(.1v7-a-—.2y.nij) if term node; is connected
a(t+1) = a(t) + P(t+ Du(t + 1)y () - y(t)) (15) L= g 1o rule nodet
1 P(t)u" (t 4 1)u(t + 1)P(f)} Im.; 0 otherwise
Pt+1)=—|P(t)— = 16 ’ )
(t+1) )\{ - Srwirnpouern| 9 (19)

IF x is the first incoming pattern THEN do
PART 1.{ Generate a new rule,
with centerm; = x, width Dy = diag(1/0inits -+, 1/Tinit),
whereo;,;; is a prespecified constant.
After decomposition, we have one-dimensional membership functions,
with my; = z; ando1; = oinse,t = 1---n.
}

ELSE for each newly incoming, do

PART 2.{ find J = arg maxi<j<e() Fi(x),
IF F7 > Fi (1)
do nothing
ELSE
{ec(t+1)=c(t)+1,
generate a new fuzzy rule, with
M1y = X, Doy = —% . diag(l/ln(FJ), R 1/111(FJ)).
After decomposition, we have

Muyew—i = Tiy Onew—i = —3 + ln(F’j),i =1---n.
Do the following fuzzy measure for each input variable
{degree(i,t) = maxi<j<k, E[p(Mnew—i, Onew—i), t(m;i, 0;:)],

wherek; is the number of partitions of thih input variable.

IF degree(i,t) < a(t),

THEN adopt this new membership function, and ket k; + 1,
ELSE set the projected membership function as the closestjone.

IF there are no output clusters,
do { PART 1in Process A, withx replaced byd }
ELSE
do {
find J = arg max; F/(x).
IFF > Foult)
connect input clustet(t + 1) to the existing output clustef,
ELSE
generate a new output cluster,
do the decomposition processBART 20of Process A,
connect input clustes(t + 1) to the newly generated output cluster.

1.
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Y lk+D)
Plant ’ >
Fig. 2. Conventional on-line training scheme.
Similarly, we have error function E(k + 1) defined byE(k + 1) = L[a(k) — a(k)]
) o OF where (k) is the actual output of the network controller when it
e+ =0 (1) - ey receives the input vectaf(k) in the training phase.
o5
_ 0(2)(15) _, or Z Jy 3023) (20) IV. SIMULATION STUDIES
=0

dy aa‘g‘) 30,(;‘?)

where A. Problem Statement
@) @) 2z —mi)? N To see whether the proposed NFIN can achieve good performance
day~ _ Ja, =—_z—*— ifterm node;j is connected to node  and overcome the disadvantages of the BPNN, we compare it with
E)ag) 0, ’ otherwise. the BPNN under the same aforementioned training procedure on a
(21) Simulated water bath temperature-control system. Consider a discrete-

time SISO temperature-control system

[l. NFIN-B ASED ADAPTIVE CONTROL yp(k+ 1) = A(T )y, (k) +
7P 8/9p 1+ e%yp(k)—v

u(k)

The inverse control configuration shown in Fig. 2 is adopted. Two
training phases, off-line and on-line training, are used for the design of + [1 = A(TY)]yo (22)
the controller. For the off-line training, the general inverse-modeliqghereA(Ts) — =% and B(T.) = (b/a)(1 — e=*+). The above

learning scheme [15] is used. A sequence of random input signal§,ation models a real water bath temperature-control system given
ura(k) under the magnitude limits of the plant input is injected, [10]. The parameters in this simulation are= 1.00151c~,
directly to the plant, and then an open-loop input—output characterisfic. g 579 73,3, ~ = 40.0, andy, = 25.0°C. The plant inpun(kj
of the plant is obtained. According to the input-output characteristic jimited to 0 and 5 V ahd the sampling periodZis = 30 s. The

of the plant, proper training patterns are selected to cover the enfitey is to control the simulated system to follow three set-points.
reference output space. Another task for inverse modeling is to decide 35°C. for k < 40
5°C, fork<

the proper input variables of the network controller when there is no

a priori knowledge of the plant, i.es and 7 in Fig. 2 have to yret (k) = 55 °C, for 40 < k < 80

be decided. In Section V-B, we shall demonstrate an experimental 75°C, for80 <k < 120.

method [11] of doing this. Using the collected training patterns with )

the values of the selected input variables as the input pattern dhdSimulation Results

the corresponding control signalq(k) as the target pattern, the By implementing the off-line training scheme, a sequence of

network can be supervised and updated to minimize an error functi@mdom input signals.4 (%) limited to 0 and 5 V is injected directly

E defined byE = 317, Lluwa(k) — a(k)]* wherek, is the number into the simulated system described in (22). The initial temperature

of training patterns. of the water is 25°C, and the temperature rises progressively when
For the on-line training, a conventional on-line training scheme imndom input signals are injected. The water temperature finally

used. Fig. 2 is a block diagram for the conventional on-line trainingaches about 100C when 90 input signals are injected. The

scheme. In executing this scheme, we follow two phases: the contr@iperature remains at about this highest value when more input

phase and the training phase. In the control phase, the switchessighals are injected. From this input—output characteristic of the

and S2 are connected to nodes 1 and 2, respectively, to form a conginiulated system, 90 training patterns are selected to cover the entire

loop. In this loop, the control signal(k) is generated according to reference output space. In this way, another set of about 90 training

the input vectod’ (k) = [yrer (k+1),y,(k),...,y,(k—1m+1),u(k— patterns can be collected. Observing this input/output characteristic,

1),...,u(k —7)]* whereu denotes the inputy, is the output, and we find that the input/output mapping of the two sets is about the

yret 1S the reference output. In the training phase, the switch S1 and &fIne. So only one set, which contains 90 training patterns, is needed

are connected to nodes 3 and 4, respectively, to form a training loéqr. the off-line training of NFIN. From (22), the input vector of the

In this loop, we can define a training pattern with input vedidr) = network controller clearly can be decidedsas= 1 andn = 0, i.e.,

[p(k 4+ 1), yp (k) yp(k = 1 + 1) ulk = 1), u(k = 2)]" I(k) = [yp(k 4+ 1),5,(F)]".

and desired outputi(k), where the input vector of the network For the BPNN, a four-layer feedforward network with two hidden

controller is the same as that used in the off-line training schereyers is used. To find a suitable number of hidden nodes, three net-

(see Section IV-B). With this training pattern, the network controlleworksBPNN (5, 5), BPNN(10,10), andBPNN(15, 15) are chosen,

can be supervised and trained at each time &tép minimize the where the notatioBPNN(a, b) denotes that the number of nodes in
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Fig. 4. Regulation performance of each trial of the simulated system through

Fig. 3. Convergence curves of the simulated system through off-line trainifg-in€ training using (QBPNN(15,15) based on the conventional on-line

using (a) BPNN(5,5), (b) BPNN(10,10), (c) BPNN(15,15), and (d) training scheme, (DBPNN(15,15) based on the new on-line training
NFIN. scheme, and (c) NFIN based on the conventional on-line training scheme.

the first and second hidden layer arandb, respectively. To increase deteriorates at others. Furthermore, we find its performance index
the convergence speed, a modified form of the generalized delta rvddue after 20 trials of on-line training is larger than its initial. The
[14] is used. over-tuned phenomenon still exists for tB®NN(15,15) based on
For the NFIN, the learning parameters are setrtg: = 0.1, the new on-line training scheme, although such a method increases
n = 0.003, 3 = 0.7, F, = 0.1, F,.. = 0.7, anda = 0.5. Values the on-line convergence speed and improves control performance
Tiniv, @, and F,,,, are usually kept the same for different modelingas expected. From the corresponding errors in Fig. 5(b), we also
problems, and the valug influences mainly the learning speedobserve that it only improves the performance at the upper and middle
In general, the parameter that needs to be reassigned for differgettpoints, not at the lower set-points. Furthermore, the additional
modeling problems is,. In the off-line training, the convergencetraining of the adjacent patterns increases the computational load
curves of the NFIN and the three BPNN’'s are shown in Fig. er sampling period. The NFIN based on the conventional on-line
The curves show the sum square error per iteration as a functioaining scheme shows the highest on-line convergence speed and,
of the number of iterations. For the three BPNN's, we find thaiwing to the local tuning property of fuzzy rule-based systems,
the BPNN(15,15) shows the highest convergence speed of all. Akere is little over-tuned phenomenon after 20 trials of on-line
expected, the convergence speed of the NFIN is much higher themining. According to the corresponding errors in Fig. 5(b), the
that of the BPNN(15,15). It is noted that the error of the NFIN NFIN shows good regulation ability at all set-points, and few errors
[curve (d)] before the first iteration is unknown, since it is an emptgxist. According to the performance index, among the three cases
(no rule) network before learning. the NFIN shows the best regulation-control performance for the
In the on-line training, the NFIN an8PNN(15,15) controllers overall process. Fig. 6(a) shows the final assignment of fuzzy rules
are trained by the conventional on-line training scheme shown df the NFIN after 20 trials of on-line training in tHe(k), y(k + 1)]
Fig. 2. Moreover, the new on-line training method that performglain. The number of generated rules is seven, and the numbers
multiple updating operations during each sampling period [10] is als fuzzy sets on they(k) and y(k + 1) dimensions are four and
applied to theBPNN(15,15) for comparison. In the new on-line four, respectively, as shown in Fig. 6(b). In total, the number of
training method, we choose 20 additional adjacent training pattematwork-structure parameters is 29, but that of BIBNN(15, 15)
per sampling period. To test their regulation performance in each trii, 270.
a performance index, sum of absolute error (SAE), is defined by  For the simulation studies, a summary of comparisons between the
_ i i two networks, NFIN andBPNN(15, 15), is shown in Table I. The
SAE = ; [Yrer () = wp (K)] (23) NFIN has fewer structure parameters and higher off-line convergence
speed than the BPNN. Also, the NFIN based on the conventional on-
wherey..r (k) andy, (k) are the reference output and the actual outpy,e training scheme has a higher on-line convergence speed than the
of the simulated system, respectively. The performance index SAFPNN(15,15) based on the conventional or the new on-line training
is calculated fork: ranging from 1-120, which is called a trial. scheme proposed in [10]. After training, the regulation performance

After 20 trials of on-line training, the regulation performance obf the NFIN outperforms th8PNN(15,15) controller.
each trial of the aforementioned three cases is shown in Fig. 4, and the '

final regulation performance of the NFIN and the regulation errors
of the three cases in the twentieth trial of the on-line training are
shown in Fig. 5. The curves in Fig. 4 show the sum of absolute
error per trial as a function of the number of trials. As expected,: \Water Bath Temperature-Control System

the global learning ability for theBPNN(15,15), based on the The experiment is performed on a real water bath temperature-
conventional on-line training scheme, leads to seriously over-tunedntrol system. It imitates the water bath temperature-control system
phenomenon. From the corresponding errors in Fig. 5(b), we fi(BT-5 model) from a Yamato Science Inc. laboratory [11]. The
that it only performs good regulation at the upper set-point butater bath is an example of an important component in a batch-

V. EXPERIMENTAL STUDIES
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Fig. 5. Final regulation performance of the simulated system in the twentieth trial of on-line training using (a) NFIN based on the conventimmal on-li
training scheme. (b) The corresponding errorsBRNN(15, 15) based on the conventional on-line training schemeBBNN(15,15) based on the new
on-line training scheme, and C: NFIN based on the conventional on-line training scheme.
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Fig. 6. Final structure of the NFIN after 20 trials of on-line training. (a) The final assignment of fuzzy rules iy(the y(k + 1)] plain. (b) The
corresponding membership functions on thgk) and y(k + 1) dimensions.

TABLE | based on a solid state relay (SSR). A brief description of the five
SUMMARY OF COMPARISONS BETWEEN THE Two NETWORK components follows. The capacity of the water bath is 8 liters, with
CONTROLLERS ON THE SMULATED WATER BATH SySTEM dimensions280 * 200 * 150 (mn?*). It is heated by a 1000 W heater.

< T N:""' z:k) s T T To ensure even temperature distribution, a stirrer which can rotate at

-y oL 180 r/min is used. An industrial personal computer with Intel 486-

Change M M DX2-66 CPU is used in this experiment. To measure the water bath
in NS Ps | ps | PM temperature and send out the control signals, a temperature-control
Emor zg| NL | M | NS | ZzE | s | pM | PL board (ETC) is used. The temperature-control board is developed
Ae(k) pg NS | Ns | ps | pm | PL by the Industrial Technology Research Institute, Taiwan. It provides
PM IM | PS | PM | PL the ability to measure temperature and control signal output. For the

PL NL | PS | PL | PL temperature measurementkaype thermocouple (WSS.02) sensor

is connected to the temperature-control board in order to measure
reactor process. A schematic diagram of the experimental setughg water bath temperature. The output signals of the temperature-
shown in Fig. 7. The system consists of five main components:cantrol board are pulse width modulated (PWM) and are connected
6-liter stirrer tank, an industrial personal computer, a temperatui@the SSR to switch the heater on or off. The main control program
control board, ak-type thermocouple sensor module, and a heater written in Microsoft-C, which decides on the control signals sent
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Fig. 8. Performance of the NFIN using four different input vectors after
Fig. 7. Schematic diagram of the water bath temperature-control systemoff-line training.

to the water bath system through the temperature-control board. Th@ased on the above idea, four input vectdis:) defined in
control action is according to the following constraints: Section Il are selected for the water bath system as follows:

Case A I(k) = [yp(k+ 1)]";

Case BI(k) = [yp(k+ 1), yp(k)]";

Case CI(k) = [yp(k+1),yp(k), yp(k = D];
Case D I(k) = [yy(k + 1), yp(k),u(k = 1)]".

IF u(k) <0, THEN P(k) = 0.0% heater off
IF u(k) > 100.0, THEN P(k) = 100.0% heater on
IF 0.0 < u(k) < 100.0, THEN P(k) = u(k)%, heater on

In the first case (Case A), only the plant output is used as the input
vector. In the second and third cases (Cases B and C), in addition
to the plant output, the delayed plant outputs are used in the input
Sctor. For Case D, a delayed plant input is included. As described in
ection I, for all of the above four cases, the desired output s,

wherek is the sampling numbéi: = 1,2,3,...), u(k) is the output
of the controller, andP(k) is the output of the temperature-control
board.

For a discrete-time control system, it is necessary to deci

on an appropriate sampling period. In many practical applications, . . o
the sampling frequency cannot or should not exceed some Iin{ _ecurrent input. The input/output training data of the four cases are
llected from the 110 selected training patterns. If the above four

Therefore, for the water bath system, by considering its transieft i tth irol . t th ther t finput

response behavior and the resolution of sensor, we chpse 30 \(jastesr C?]nncl)d rSeE;ri de Z‘%n r)c() r?iqr;urﬁtn:en ’ nt(renl 3:]0 lerntypeto tlntpu

seconds as the sampling period. ector should be tred. experiment to control the plant output to
follow two set-points

40°C, for k <40

B. Determination of the Input Vector of the NFIN Controller yret (k) = {55 °C. for 40 < k < 80

As we have noa priori knowledge of the plant (especially the,

plant's order), an experimental method is used to determine tﬁeﬁtahzid' i . h ;  the four NEIN'
proper input variables of the network controller. First, with this er the off-line training, the performance of the four Sare

method some different sets of input variables (i.e., input vectorsyoWn N Fig. 8. Case A shows_ the Ia_rgest regulation error and the
are selected in advance. These input vectors are all tried by porest convergence status during training. Therefore, we kpow that
NFIN, and the one with the smallest input dimension and satisfactt ||3|/ ane 'ngt vaélagle fodr g‘e NFLN (r:]ontroller gannot n|1akef|t work
control result is adopted. More clearly, each NFIN with a differe ell. For Lases b, L and b, each shows goo coptro performance
input vector is trained by the off-line training scheme. To perforrﬁnd relatively fast convergence dur.lng training. This means that all
off-line training, we need to collect training data in advance. Th%f Case? B, C alr_1d_ D catch tlhe bas(,jls ordr(]er of thg Watgr batr;] system.
input/output training data are collected the same way as in Section yence, for simplicity, we only need to choose Case B as the input
A sequence of random input signal¢k) in 0 and 100 is injected vector of the NFIN controller for the water bath system. In other
into the water bath system with an initial temperature neaf @5 words, the NFIN controller_pased on input vectgg(k +1). y, (k)]

The temperature rises when the input signals are injected into %s a good control capability for the water bath temperature-control
system continuously and reaches the boiling point of 1Q0after system.

110 input signals are injected. The temperature remains near 100

°C when succeeding random input signals are injected. From tfis FLC and PID Control

input/output characteristic, the first 110 patterns covering the entireOne way to test whether the NFIN control works well is to compare
output range are selected as training patterns for off-line trainingdirectly with other types of existing controllers. In this paper, we
After off-line training, each NFIN is configured as a controller to theompare the NFIN controller to two traditional controllers: the FLC
plant, and then the plants are controlled to follow some referenaad the PID controller. Each of these three controllers is applied to
outputs. From the experimental results, we can find a proper inghe water bath temperature-control system. The formed three control
vector for the NFIN controller. systems are tested experimentally. The comparison indexes include
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TABLE 1l
1 T T T i T T T T Fuzzy RULES FOR THEWATER BATH TEMPERATURE CONTROL SYSTEM
0.5F 4
L. BPNN(15,15)
Criteria NFIN BPNN(15,15) | (Using New On-line

Training Scheme, [10])

(@ Network Structure

Parameters 29 270 270

Convergence Speed 8 iterations | 10000 iterations | 10000 iterations

0.5 R (Off-linc)
o . " .
14 08 06 -04 -02 0 02 04 06 08 1 Convergence Speed 13 trials 30 trials 30 trials
(On-line)
(b)

The Final Regulation
Performance

SAE=Y1y,, (k)-y, &)
k=i

SAE=341.7778| SAE=356.7284 SAE=344.1059

Computational Load | 29 parameters | 270 parameters 21 times of
h (On-line) are tuned are tuned conventional method
-40 -20 0 20 40 60 80 100

(©)
Fig. 9. Membership functions of the three fuzzy variables of the water b
system. (a) Input variable(k), (b) input variableAe(k), and (c) output
variable u(k). For the aforementioned controllers (NFIN, FLC, and PID), four
groups of experiments are conducted on the water bath temperature
) ) ) . ) ) control system. Each experiment is performed over 120 sampling
set-points regulation, ramp-points tracking, the influence of mpulﬁgne steps, which result in a 60 min duration

noise, and a large parameter variation in the system. In the first set of experiments, the regulation capability of the

For t;e Flr_]Ch we hspemfy tt)he input r\]/anafbles as the perfo(;man@ee controllers with respect to set-point changes are studied. Three
errore(k), which is the error between the reference output and act t-points to be followed are

temperature of the water bath system, and the rate of change of the

el Experimental Results

performance errorAe(k). The output variablew(k) is the PWM 40 :C7 for k < 40,
signal between 0% and 100%. We quantified the three variables into Yrot (k) = ¢ 55 OC= for 40 < k < 80,
seven fuzzy subsets from negative large (NL) to positive large (PL). 70°C, for80 <k < 120.

The Gaussian membership function is chosen for the fuzzy subset\@f mentioned in Section V-B, in obtaining the NFIN controller,
the three fuzzy variables as shown in Fig. 9. According to comman g training patterns are chosen from the input—output characteristic
sense and engineering judgment, 25 fuzzy rules are specified in MagdXorder to cover the entire reference output space. According to

form as shown in Table II. the selected training patterns based on the determined input vector
For the PID control, a velocity-form discrete PID controller [3] iS(Case B in Section V-B), the NFIN is trained off-line. The learning
used and is described by parameters are selectedas: = 0.1, « = 0.5, n = 0.005, 3 = 0.7,
T P, =0.1, andF,., = 0.7. After off-line training, where eight rules
Au(k) = K{C(k) —e(k—1)+ 21? [e(k) + e(k —1)] are generated, the NFIN is configured as a direct controller to the
T ‘ water bath system, and then the conventional on-line training scheme
+ Td[e(k) —2e(k— 1)+ e(k— 2)]} is performed on the trained NFIN controller. The same learning
s parameters are used as those used in the off-line training scheme. The
= Kple(k) —e(k = 1)] + Kye(k) regulation performance after one trial of on-line training is compared
+ Kple(k) — 2e(k — 1) + e(k — 2)] (24) to that of the other two controllers.
The regulation performance of the NFIN controller is shown in
where Fig. 10(a), and the regulation errors of the three controllers are shown
N o1 . KT, . KTy in Fig. 10(b). The PID controller only performs good regulation at
Kp=K-ki. k= T Kp = T. ° @5 one operating point (at the middle set-point) but deteriorates at others.

. . ) The NFIN seems to operate much faster in achieving the set-points. It
The parameterhu(k) is the increment of the control input(k)  pag 4 shorter rise-time than the other controllers. For the steady-state
is the performance error at the sampling instantand K'r. K7, grror of set-points, the NFIN also shows the smallest error.
and Kp are the proportional, integral, and derivative parameters, |, the second set of experiments, the tracking capability of the

respectively. In order not to aggravate noise in the plant, only a Weyee controllers with respect to ramp-points is studied. We define
term PID controller is used, i.elf;; is set to zero in the water bath three ramp-point regions as

system. The other two parametel§, and K; are set as 90 and

60, respectively. For the above designed FLC and PID controller, [34 +0.5(k — 30)] °C, for 30 < k <50
we have tried our best to achieve their respective best performance ¥ref () = § [44 +0.8(k —50)] °C,  for 50 < k <70
through several trial-and-error experiments. [60 4+ 0.5(k = 70)] °C, for 70 < &k < 90.
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Fig. 10. Regulation performance of the three controllers for the water bath system. (a) NFIN. (b) Corresponding errors: A: NFIN; B: FLC; C: PID.
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Tracking performance of the three controllers for the water bath system. (a) NFIN. (b) Corresponding errors: A: NFIN; B: FLC; C: PID.
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Behavior of the three controllers under the impulse noise for the water bath system. (a) NFIN. (b) Corresponding errors: A: NFIN; B: FLC; C: PID

Fig. 12.
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Fig. 13. Behavior of the three controllers when a change occurs in the water bath system dynamics. (a) NFIN. (b) Corresponding errors: A: NFIN;
B: FLC; C: PID.

For the NFIN control, the same on-line training scheme and learning TABLE I
parameters are used as those used in the first set of experiments. In SUMMARY OF COMPARISONS AMONG THE THREE
implementing the FLC and the PID controller, the same controller CONTROLLERS ON THEEXPERIMENTAL WATER BATH SYSTEM

parameters are also used as in the first set of experiments. Hae
tracking performance of the NFIN controller is shown in Fig. 11(a),

and the tracking errors of the three controllers are shown in Fig. 11(b).  CTieria NFIN FLC PID
As shown in the error curves, the NFIN has the smallest error. The
FLC and PID show poor tracking-control capability. R"l‘;s a‘;d Controll
The third set of experiments is carried out for the purpose of ) membersiup ontroller
. . L - Self-tuning, no | functions have to parameters
studying the noise-rejection ability of the three controllers when some ) )
. . L . Design Effort controller be decidedand | K,, K, and K,
unknown impulse noise is imposed on the process. To make fair o
. . . parameters have to | tuned a priori. have to be tuned
comparisons among the controllers, two impulse noise value$&.0 - .
be tuned a priori. a priori.

and —5.0°C are added to the plant output at the fortieth and eightie
sampling instants, respectively. A set-point of 50@ is performed
in this set of experiments. The behavior of the NFIN control systemy,

)
ﬂe‘:gulation Performance
AE = SAE= SAE = SAE =

. i o i 221.7828 227.8678 228.1601
under the influence of impulse noise is shown in Fig. 12(a), and th@|¥ s (k) — ¥, (k)|
corresponding errors of the three controllers are shown in Fig. 12(BF2%—
It is observed that the NFIN performs quite well. It recovers very fakivé Perf_"”"a““ ~ - -
quickly and steadily after the presentation of the two impulse noises, SAE= f’;i; 5?1959; 182ﬁ;s
quever, the FL(; and PID are affected seriously by the Impulsg|y . (k) -y, (k)| ’ ’ ’
noise and unpredictable behavior occurs. k=30

One common characteristic of many industrial-control processes ifluence of Impulse
that their parameters tend to change in an unpredictable way. To test ~ Noises SAE = SAE = SAE=
the robustness of the three controllers, a valu®.of« u(k — 2) is SAE = 197440 223247 23.0082
. P . 120

added to the plant input after the sixtieth sample in the fourth set Oﬁl}'ref(k)—yp(k)l
experiments. Although it is difficult to imagine a real plant behaviok=40
in such a drastic way, it can help to understand their robustnessffect of Change in
A set-point of 50.0°C is used in this set of experiments. The Plant SAE= SAE = SAE =
behavior of the NFIN controller when there is a change in the plant ~ Dynamics 7.0567 27.4009 14.4143

dynamics is shown in Fig. 13(a), and the corresponding errors of the ~ SAE=

three controllers are shown in Fig. 13(b). For the NFIN, the on-Iine‘zz(:’|y -y, (1)
training scheme helps to improve its performance. We find that a littl€eo e P
fluctuation resulted after the sixtieth sample. However, the FLC and

PID are affected more seriously after the sixtieth sample.

For the experimental studies, a summary of comparisons amahgrefore, they usually require a long time in design for achieving
the three controllers on the water bath temperature-control systgaod performance. In implementing the NFIN controller, however,
is shown in Table Ill. In implementing the FLC, the number oho controller parameters have to be decided in advance. We only
rules and membership functions have to be decided and tunedraed to choose proper training patterns and the input vector of the
hand. As for the PID controller, the parametdts, K7, and K'p  NFIN controller. After off-line and on-line training, it can achieve
also have to be decided properly. For the FLC and PID controlleggod control performance. In general, the NFIN usually spends a
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relatively short time training to reach good performance. From tH&7] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its
regulation performance of the three controllers, the NFIN controller ~ applications to modeling and controlEEE Trans. Syst., Man, Cybern.
has the shortest rise-time and the best regulation-control performal vol. SMC-15, pp. 116-132, Jan. 1“985' . . .

. H. R. Berenji and P. Khedkar, “Learning and tuning fuzzy logic
of all. From the tracking performance of the t_hree contrqllers, the = controllers through reinforcementdEEE Trans. Neural Networksol.
NFIN controller has the smallest errors of all in the tracking path. 3, pp. 724-740, Sept. 1992.

Finally, when testing the robustness, since the NFIN controller adoit®] C. T. Lin and C. S. G. Lee, “Neural-network-based fuzzy logic control
the on-line training scheme, it also shows better performance under &nd and decision systemEEE Trans. Computvol. 40, pp. 1320-1336,

. . . . Dec. 1991.
impulse noise and changes in the plant dynamics. [20] C. T. Lin, Neural Fuzzy Control Systems with Structure and Parameter

Learning Singapore: World Scientific, 1994.
[21] C. T. Lin and C. S. G. LeeNeural Fuzzy Systems: A Neural-Fuzzy
Synergism to Intelligent SystemsEnglewood Cliffs, NJ: Prentice-Hall,
In this paper, an NFIN is proposed and applied to the water bath May 1996.

temperature-control problem. The on-line self-constructing proper§2] C. J. Lin and C. T. Lin, “Reinforcement learning for ART-based fuzzy

of the NFIN reduces the design efforts when it is applied as a adaptive learning control networkdEEE Trans. Neural Networksol.
AR 7, pp. 709-731, May 1996.

controller, as compared to other existing intelligent controllers such as

neural networks or fuzzy controllers. Also, this property makes it able

to deal with the problem of a changing environment or plant, which

cannot be handled perfectly by conventional controllers like the PID

controller. As for the network size, the input clustering method in the

precondition part and the flexible linear-combination structure in the Sensor-Based Fuzzy Reactive Navigation of a Mobile

VI. CONCLUSION

consequent part of fuzzy rules, reduce not only the number of rules Robot Through Local Target Switching
but also the number of parameters in each rule. These advantages of
the NFIN have been verified by the water bath temperature-control W. L. Xu and S. K. Tso

experiments performed in this paper. Future work is to investigate a
recurrent NFIN controller such that we need no additional efforts to

find the input order of the plant, as the recurrency of the network can(\Pstract—Fuzzy reactive control, incorporating a local target-switching
deal with this problem implicitly scheme, is applied to the automatic navigation of an intelligent mobile

robot in an unknown and changing environment. Sensed-ranging signals
and relative target position signals are input to the fuzzy controller.
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