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Abstract 

In possibilistic regression analysis proposed by Tanaka and lshibuchi (1992), linear programming (LP) formulation of 
necessity analysis has no feasible solution under the enormous variation of the given data. This work proposes a general 
piecewise necessity regression analysis based on LP rather than a non-linear interval model that they recommended to 
obtain the necessity area of the given data. In addition to maintaining a linear property, the proposed method prevents 
the necessity analysis from having no feasible solution. The problematic univariate example and a multivariate example 
with respect to different number of change-points are demonstrated by the general piecewise necessity regression. The 
proposed method characteristic is that, according to data distribution, practitioners can specify the number and the 
positions of change-points. The proposed method maintains the linear interval model and the order of necessity 
regression function does not need to be determined. (~ 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

The possibility theory on possibility distribu- 
tions has been proposed by Zadeh [14] and ad- 
vanced by Dubois and Prade [1]. In the early 
1980s, Tanaka et al. [11] have introduced a linear 
programming (LP) based regression method using 
a linear fuzzy model with symmetrics triangular 
fuzzy parameters. Since Tanaka et al. introduced 

*Corresponding author.  Tel.: +88623146515;  fax: + 8 8 6 2  
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fuzzy linear regression, previous literature dealing 
with fuzzy linear regression has grown rapidly. 
Then possibility and necessity analyses have been 
clearly defined in Tanaka [8]. Recently, Sakawa 
and Yano [5, 6] have generalized the minimization, 
maximization and conjunction formulation de- 
veloped by Tanaka et al. [11], Tanaka [8] and 
Tanaka et al, [9], respectively. Tanaka and 
Ishibuchi [I0] proposed the possibility and necess- 
ity analyses on possibilistic regression analysis. 
However, a weakness of the fuzzy regression model 
has arised. In necessity analysis, the necessity area 
cannot be obtained owing to the large variation 
data [8, 10]. Tanaka [8] pointed out that if a 
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polynomial is taken, then there is an optimal solu- 
tion in the necessity problem. In addition, Tanaka 
and Ishibuchi [10] suggested using an adequate 
non-linear interval model to obtain the necessity 
area for this kind of data. However, two related 
issues arise. First, does the non-linear or poly- 
nomial interval model adhere to large fluctuations 
in the given data? The model must be analyzed with 
respect to data property rather than merely to add 
the terms of the polynomial. In addition, how many 
degrees are required in the function of non-linear 
interval model? The above issues show that it is 
difficult to manage the large variation data by ap- 
plying a polynomial or non-linear form. That  is the 
reason we suggest piecewise concept to manage the 
large variation data. 

This work proposes another option of solving 
necessity problem, a general piecewise linear-inter- 
val regression model-based LP that can solve their 
problem easily. Change-points which are the joints 
of the pieces are quoted from conventional statist- 
ical piecewise regression [7]. This terminology is 
employed throughout the work. Initially, this 
method assumes every ordered datum except the 
final one or the suspicious datum is a change-point. 
Results obtained herein demonstrate how our 
method works by employing the problematic data 
[10] and multivariate data [8]. Principally, the less 
the number of change-points, the more parsimoni- 
ous the model attained in the necessity problem. 

The organization of the work is as follows. 
Section 2 reviews traditional necessity regression 
analysis with the interval model. Based on the pre- 
sentation, Section 3 proposes necessity analysis 
with a piecewise linear interval model including 
univariate and multivariate analysis. Finally, 
univariate and multivariate examples illustrate the 
approach in necessity problems. These two exam- 
ples indicate a rather useful approach in the treat- 
ment of suspicious outliers. 

2. Necessi ty  regression analysis with interval model  

This section reviews fuzzy regression analysis 
via the interval model proposed by Tanaka and 
Ishibuchi [10]. Their efforts cause failure since 
the necessity analysis of LP problem has no feas- 
ible solution for the given data. This finding 

suggests that the linear-interval model of the 
necessity area cannot be obtained under some 
conditions. The reason why no feasible solution 
for necessity area exist is sometimes due to vari- 
ous fluctuations of data. Obviously, the solution 
of such kind of data is not merely a linear-interval 
model. 

2.1. Interval arithmetic 

A linear-interval model with q independent vari- 
ables is represented using interval parameters Ai 
a s  

Y(x j )  = Ao + A 1 X l j  + "'" + Aqxqj ,  (1) 

where Y(x j )  is the predicted interval corresponding 
to the input vector xj and j is the jth sample 
(j = 1, 2, . . . ,  n) and xj = (Xlj, x2j, ... , xqj). Through- 
out this work, closed intervals are denoted by up- 
per case letters A and B. An interval is defined by an 
ordered pair in brackets as 

A = [aL,  aR]  = {a:aL ~ a ~ aR}, (2) 

where a L is the left limit and as is the right limit of 
A. Interval A is also denoted by its center and 
radius as 

A = (a¢, aw) = {a:a¢ - aw <<. a ~ a¢ + aw}, (3) 

where a¢ is the center and aw is the radius, i.e., 
half of the width of A. From (2) and (3), the 
center and the radius of interval A can be cal- 
culated as 

ac = (aR + ae)/2, (4) 

aw = (aa -- ae)/2. (5) 

The following additions and multiplications are 
employed herein: 

A + B = (ac, aw) + (be, bw) = (a¢ + be, aw + bw), 

(6) 

rA = r(ac, aw) =(rac,  ]rlaw), (7) 

where r is the real number. 
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2,2. Linear-interval model 

The following linear model (1) is reperesented in 
detail: 

Y(xj)  = Ao + A l x l j  + "" + Aqxqj 

= (ao¢,aow) + (al¢,axw)Xlj + "'" + (aqc, aqw)Xqj 

q 

Subject to ao~. + 
i=1 

aic, Xlj  4- aow, 

q 

- ~ alw*lXijl >1 YjL, (17) 
i=1 

q 

aoc* 4- 2 aic*Xij 4- aow* 
i=1 

= (Y¢(xj), Yw(xj)), (8) 

and 

Y~(xj) = ao~ + al~x~j + ... + aqcxqj, (9) 

Yw(xj) = aow + alwlXlj] + "'- + aqwlxqil, (10) 

where Y¢(xj) is the center and Yw(xj) is the radius 
of the predicted interval Y(xj). 

2.3. Necessity regression analysis 

Y , (x j )  = Ao, + A I . X l j  + "" + A q . x q j ,  

= (ao~*, aow*) +(al¢. ,  alw*) x l i  

+ ""  + (aqc., aqw.)Xqj,  

= (Y~.(xj), rw.(Xj)), (11) 

q 

+ ~ alw*lXijl <~ YjR, (18)  
i= I  

alw. ~> O, j = l , 2  . . . . .  n, (19) 

where z is the total vagueness of Y,(xj) .  
Owing to the various fluctuations of the given 

data, the LP problem (16)-(19) does not always 
have feasible solutions. There are cases where the 
linear-interval model Y , ( x j )  cannot be obtained 
from the given data. However, a general piecewise 
linear interval model can treat these cases easily. 
This problem is resolved herein by employing the 
proposed method in Section 3. 

Furthermore, Sakawa and Yano [5] proposed 
using regression analysis for fuzzy input-out- 
put data. Their approach encounters the same 
problem with necessity analysis. Improving the 
same problem by employing our method is prefer- 
able. 

which satisfies the following conditions: 

Y, (x j )  ~_ Y j, j = 1, 2 . . . . .  n, (12) 
3. Necessity analysis with a general piecewise 
linear-interval model 

where Y j is the j th observation. 

2.3.1. Maximization problem for  interval-valued data 
Maximize Yw*(Xl)+ Yw*(x2)+ "'" + Yw,(x,)  (13) 

Subject to Y,(x j )  ~_ Yj, j = 1,2, ... ,n, (14) 

aiw, >~ 0, i = 0,1,2 . . . . .  q. (15) 

This LP problem is written as follows: 

Maximize z = ~ (aow. + axw.lx,jl 
j = l  

+ ... + aqw,lXqjl) (16) 

An LP formulation is presented to determine the 
necessity area by the piecewise linear-interval 
model. For simplicity, univariate piecewise linear 
regression in the necessity problems is performed 
first and then multivariate piecewise linear regres- 
sion in the necessity problems is described. 

3.1. Univariate piecewise linear regression 
in the necessity problems 

k - I  
Y. (x j )  = h(xj) + ~ Bt.(Ixj  - P,I + xj - P,)/2, 

t= l  
(20) 

h(xj) = Ao. + AI.Xj. 
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If P is a change-point, then 

( I x a -  P[ + x , -  P) /2  = { 0  j 
P if 1 Xj  > P, 

if xj  <~ P. 

P =  {P1,P2,  ... ,Pk} are the values of variable 
x and are subject to an ordering constraint 
P1 < P2 < "'" < Pk, k ~< n. For easy illustration, 
the following formulation assumes every datum is 
a change-point except Pk. Therefore, k - 1 change- 
points in the initial necessity regression model are 
available. 

The difference between (20) and (11) is (21), i.e., 
the piecewise expression for the given data. 

k - i  

Z B,.([xj  - P,[ + xj - Pt)/2 
t = l  

k - 1  

b,c.(lxj - Pt + xj - Pt)/2 
t = l  

k - I  

+ ~ b~w.(lxj - P,[ + xj - P,)/2, 
t = l  

j = 1,2 . . . .  ,n. (21) 

The piecewise LP formulation for the necessity 
analysis is as follows: 

Maximize 

z = aow* + alw.lXi[ + ~ b,w.(lx~ - P,I 
j = l  t = l  

+ xj  -- P,)/2[ 
A 

Subject to 

k - 1  

ao~* + ax¢,xj + ~ b,¢.(Ixj - Pt[ + Xj  --  Pt)/2 
t = l  

k - 1  

- -  [aow* + alw.Xj + ~ btw.(lxj - P t [  + xj -P t ) /2 ]  
t = l  

> YjL, 
k - 1  

aoc* + a~c.xj + ~ b,c.(lxj - P,[ + xj - P,)/2 
t = l  

k--1 

+ [aow* + alw.Xj + ~ b,w.(lx i - P,I 
t = l  

+ x j -  P,)/2] ~< Y jR, j = l ,2,  ... ,n. 

The above assumption is not unique. Accommo- 
dating the interval-valued data, practitioners can 
merely specify the suspicious outliers as change- 
points. The formulation can be extended as multi- 
variate piecewise linear regression model as long as 
the number of independent variables is increased. 

3.2. Multivariate piecewise linear regression 
in the necessity problems 

The output Y may be generally related to q input 
variables. According to the raw data, the ith input 
variable has k, different values. Therefore, in the 
beginning, Xl,X2, ... ,xq have k l -  1 , k 2 -  1 . . . . .  
kq - 1 change intervals, respectively. Y.(xj) is the 
necessity model 

q 

Y, (x j )  = Ao* + ~ Ai, xij 
, =1  

q k i - 1 

+ 2 Z Bi t* (Jx i j  - -  P,[  + xij - -  P , ) / 2 .  
, =1  t = l  

Maximize 

z =  ~ Iaow. + ~ a,w.lX,,I 
j = l  ,=1  

~ '  k i -1  1 
+ Z bi tw*(lxi j  - P,[ + xo - Pt)/2 

i=1 t = l  

Subject to 

q q k i - 1 

aoc* + • ai¢.xij + Z Z bit¢*(lxij-  Pt[ 
i=1  /=1  t = l  

I q 
+ xij -- Pt)/2 - aow* + ~ a,w.lx,/ 

i=1  

+ ~ b,,w.(lxgj - P,I + x~j - Pt)/2 >>- YjL, 
i=1 t = l  

q q k i - 1 

ao¢. + ~ aic*xi j  "4- Z Z b,~.(lx~j - P,[ 
i = i  i=1  t = l  

+ x , , -  p,)/2 + Iaow. + ,=1 a,w.JX,,I 

k i -1  1 + ~ bl,w*(Ixij - P,I + xlj - P,)/2 ~ Yjt~, 
' = 1  t = l  

j = 1,2, ... ,n. 
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4. Numerical example 

Two examples are shown in this section. From 
the following examples, the problem of enormous 
variation data and multivariate piecewise linear 
regression are done by the proposed method. In 
these two examples, all ordering data except the 
last one are assumed as change-points. As men- 
tioned above, practitioners can select some suspi- 
cious outliers as change-points rather than all 
ordering data except the last one. 

Example 1. The data used herein provide an 
example which shows that a necessity analysis of 
Tanaka-Ishibuchi 's method [10] cannot obtain the 
necessity area. By applying the piecewise concept, 
the necessity area represented by a piecewise linear- 
interval model can be obtained rather than a non- 
linear-interval regression model. The significant ad- 
vantage of our model is that practitioners do not 
need to determine the order term of Y , ( x ) .  

Let us consider the following interval-valued 
data: 

{(x i; yj)} = {(3; [12, 173), (6; [10, 133), (9; [13, 183), 

(12, [14, 18]), (15; [19, 24]), (18; [16, 19])}. 

Sample size is 6. The distribution of x ranges from 
3 to 18. We use P1 = 3 ,  P 2 = 6 ,  P 3 = 9 ,  P 4 =  12, 
Ps = 15 as change-points. The model is as follows: 

+ (1.667,0)(Ixj - 61 + xj - 6)/2 

+ ( -  0.333,0)(Ixj - 91 + xj - 9)/2 

+ (0.667,0)(1xj - 121 + xj - 12)/2 

+ (-2.333,0)(1x~- 151 + x i -  15)/2, 

which satisfies the conditions 

Y , ( x f l<_  Y j, j =  l , 2  . . . . .  6 

and depicts the analysis results of the necess- 
ity analysis. From Fig. 1, the area which the 
two solid lines contain is the necessity area. The 
area that the two dashed lines contain is the obser- 
vation area. 

On the other hand, if just the influential data 
x = 6, 15 are chosen as change-points, then 

Y , ( x j )  = (15, 1) + ( - 0 . 6 7 , 0 ) x j  

+ (1.667,0)(Ix~ - 61 + x j  - 6)/2 

+ ( -  1.83,0.17)(1xj - 151 + x~ - 15)/2. 

The comparison with the raw data is depicted in 
Fig. 2. It is flexible to set the number and the 
positions of change-points. Basically, k -  1 is the 
maximum. This method resolves the problematic 
example that necessity area cannot be obtained by 
the Tanaka-Ishibuchi method. The reason for such 
an occurrence is the large variation of the given 
data. 

Y . ( x j )  = (aoc.,ao,v*) + (a l c , , a lw , )X  

+ (b,c*, blw,)(Ixj - 

+ ( b 2 ~ . , b 2 w , ) ( l x j  - -  

+ (b3c , , b3w , ) ( [ x j  - 

+ (b4c, ,  b 4 w , ) ( I x j  - 

+ (bs¢,, bsw*)(Ix~ - 

The following piecewise 
sequently obtained: 

Y , ( x j )  = (0, 1.5) + (4.5,0)xj 

31 + x j  - 3)/2 

61 + x j  - 6)/2 

91 + x j  - 9)/2 

121 + xj - 12)/2 

151 + xj  - 15)/2. 

linear model is sub- 

+ ( -  5.167,0)(1xj- 31 + x j -  3)/2 

Example2. Multivariate fuzzy data are from 
Tanaka [8]. 

{(Xlj; X2j; X3j; Yj)}  

= {(3; 5; 9; [96,42]), (14; 8; 3; [120,47]} (7; 1; 4; 

[52, 33])(11; 7; 3; [106, 45], (7; 12; 15; [189, 79]), 

(8; 15; 10; [194, 65]), (3; 9; 6; [107, 42]), (12; 15;11; 

[216, 78]), (10; 5; 8; [108, 52]), (9; 7; 4; [103,44])}, 

n =  10. 

The distributions of variable x~j, x2j and x3) have 
8 different crisp values {3,7,8,9, 10, 11, 12, 14}, 
7 crisp values { 1, 5, 7, 8, 9, 12, 15} and 8 crisp values 
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Fig. 1. Piecewise linear-interval model y(x). 
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Fig. 2. Piecewise model with two change-point. 

21 

{3,4, 6, 8, 9, 10, 11, 15}, respectively. In the extreme 
case, variable xxj, x2j and x3j have 7 change-points 
{3,7,8,9,10,11,12}, 6 change-points {1,5,7,8,9, 

12} and 7 change-points {3,4,6,8,9,10,11}, re- 
spectively. There are 20 change-points in the begin- 
ning. According to the method in Section 3, the 
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multivariate necessity model with 10 change-points 
is the following: 

Y , ( x ~ ,  Xzj ,  x3j)  

= (0, 2.35) + (1.87,0.6)xlj + (4.08,0)Xzj 

+ (6.9,0.7)x3j + (0,0.2l)(Ixlj - 71 + xls  -- 71) 

+ ( l .75,0)(Ixl j--  8[ + x l s -  81) 

+ ( - 1 . 3 6 , 0 ) ( [ x l j -  91 + x l j  - 91) 

+ ( - 3 . 5 7 , 0 . 3 ) ( I x l i -  121 + X l~ -  121) 

+ (0.21,0)(IXzj- 51 + X z j -  5[) 

+ (2.61,2.02)(Ix2i  - 12] + x2j  - 121) 

+ ( -  2.28,0)(1x3~ - 31 + x3~ - 31) 

+ ( -  1.59,0.87)(Ix3j - 41 + x3j - 41) 

-4- (0,0.38)(IX3 j -- 61 + x3j - 61) 

+ (2.99,0)(Ix3~- I l l  + x 3 j -  Ill). (22) 

The total vagueness of Eq. (22) z~ = 378.7. 
For a parsimonious form, only suspicious outlier 

can be set as change-points. For  instance, from the 
raw-data distribution and Eq. (22), (7; 1; 4; [52, 33]) 
is a relative influential interval. If xl = 7, x 2 = 1, 
x3 = 4 are chosen as change-points, then 

Y , ( X l j ,  XZ.j, X3j) 

= (5.6,0) + (3.28,0.83)xlj + (4.84,0)Xzj 

+ (2.11,0.72)x3j + ( -1 .73,0)(]xl j  - 71 

+ x ~ i -  71) + (0, 3.11)([xz~ -- 11 + x z j -  11) 

+ (l.43,0.37)(Ix3j - 41 + x3j  -- 41). (23) 

The total vagueness of Eq. (23) z2 = 365.8. The 
concept of assuming every change-point is a 
change-point except the final one is like interpola- 
tion but not really. In fact, the case of every 
change-point is a change-point except the final one 
is an extreme assumption. From Table 1, Eq. (23) 
with fewer change-points than Eq. (22) achieves 
a promising result which approximates the result of 
Eq. (23) and the total vagueness z2 with 3 change- 
points is slightly smaller than z~ with 10 change- 
points. Hence, for an effective and parsimonious 

Table 1 

Observed output Prediction of Prediction of 
Eq. (22) zl = 378.7 Eq. (23) 22 = 365.8 

1 [96, 42] [90.2, 48] [89.1, 42.5] 
2 [120, 47] [120, 47] [120, 47] 
3 [52, 33] [52, 33] [50.5, 33.1] 
4 [106,45] [106,453 [105, 45] 
5 [189, 79] [189, 79] [189, 79] 
6 [194, 64] [194, 64] [192.4, 72.4] 
7 [107,42] [107,42] [107,42] 
8 [216, 78] [216, 78] [206.2, 78] 
9 [108, 52] [108, 52] [108, 52] 

10 [103, 44] [101.8, 44] [103, 44] 

form, considering the number of change-points 
must depend on the raw-data distribution and 
lower the number of change-point the better. 

From these two examples, we have seen in detail 
how the general piecewise necessity regression 
analysis work. In this section, h(x) denotes a linear 
interval function. By adjusting the order terms of 
h(x), the proposed method can also be presented as 
the non-linear-interval model. If the property of 
data is non-linear, we can adjust the order term of 
h(x) and then Y , ( x )  turns into a non-linear piece- 
wise interval regression model, 

5. Concluding remarks 

Under the circumstance of a large variation of 
data, a general piecewise linear interval model can 
obtain the necessity area that Tanaka-lshibuchi 's  
method cannot. The advantage reserves the linear- 
interval characteristic. By using a non-linear inter- 
val model, the practitioner must address the 
problem of deciding the degrees of the function. 
Assuming that every datum except the final one or 
the suspicious outlier is a change-point, the pro- 
posed method resolves Tanaka and [shibuchi's 
problem easily. From Example 2, obviously, 
Eq. (23) with 3 change-points is more parsimonious 
and effective than Eq. (22) with 10 change-points, 
Therefore, considering the number and the change- 
points positions must depend on raw data distribu- 
tion. Generally, a less number of change-points 
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would achieve a better performance. In the above 
section, h(x) denotes a linear interval function. If 
the property of data is non-linear, practitioners can 
adjust the order term of h(x) and then Y,(x) turns 
into a non-linear piecewise interval regression model. 

As the sample size increases, the number of 
change-points increases and the piecewise linear- 
interval model also become complex, thus, preven- 
ting from considering it as interpolation. Therefore, 
to effectively control the change-point number is 
a serious problem. For this purpose, you may refer 
the concept of Li and Yu I-2] who proposed 
a method to adequately control the number of 
change-points by using a modified goal program- 
ming. Change-points detecting and controlling is 
a topic for our future study. Furthermore, if the 
interval-valued data distribution shows structure 
change, then fuzzy piecewise regression is more 
appropriate than conventional fuzzy regression. 

References 

[1] D. Dubois, H. Prade, Possibility Theory, Prenum Press, 
New York, 1988. 

[2] H.L. Li, J.R.Yu, Estimation of piecewise regression with 
unknown change-points by a modified goal programming 
method, SIAM J. Sci. Comput., 1996, submitted. 

[3] D.C. Montgomery, Introduction to Linear Regression 
Analysis, Wiley, New York, 1992. 

[4] D.T. Redden, W.H. Woodal, Properties of certain fuzzy 
linear regression methods, Fuzzy Sets and Systems 64 
(1994) 361-375. 

[5] M. Sakawa, H. Yano, Multiobjective fuzzy linear regres- 
sion analysis for fuzzy input-output data, Fuzzy Sets and 
Systems 46 (1992) 173-181. 

[6] M. Sakawa, H. Yano, Fuzzy linear regression and its 
application, in: J. Kacprzyk, M. Fedrizzi (Eds.), Studies in 
Fuzziness, Fuzzy Regression Analysis, vol. 1, Omnitech 
Press, Warsaw, Poland, 1992, 61-80. 

[7] G.A.F. Seber, C.J. Wild, Nonlinear Regression, Wiley, 1989. 
[8] H. Tanaka, Fuzzy data analysis by possibilistic linear 

models, Fuzzy Sets and Systems 28 (1987) 363-375. 
[9] H. Tanaka, I. Hayashi, J. Watada, Possibilistic linear re- 

gression analysis for fuzzy data, European J. Oper. Res. 40 
(1989) 389-396. 

[10] H. Tanaka, H. Ishibuchi, Possibilistic regression analysis 
based on linear programming, in: J. Kacprzyk, M. Fedrizzi 
(Eds.), Studies in Fuzziness, Fuzzy Regression Analysis, 
vol. 1, Omnitech Press, Warsaw, Poland, 1992, pp. 47-60. 

[11] H. Tanaka, S. Uejima, K. Asai, Linear regression analysis 
with fuzzy regression model, IEEE Trans. Systems, Man 
and Cybernet. 12 (1982) 903-907. 

[12] H. Tanaka, J. Watada, Possibilistic linear systems and 
their application to the linear regression model, Fuzzy Sets 
and Systems 27 (1988) 275-289. 

[13] W.L. Winston, Operations Research: Applications and 
Algorithm, PWS, KENT, 1987. 

[14] L.A. Zadeh, Fuzzy sets as basis for a theory of possibility, 
Fuzzy Sets and Systems 27 (1977) 3-28. 


