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Valence-band mixing efFects on hole oscillations in coupled quantum wells
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Valence-band mixing effects on the dynamics of the heavy- and light-hole oscillations in coupled quan-
tum wells are described by a numerical implementation using the time-dependent Schrodinger equation
with the Luttinger Hamiltonian. With a nonzero in-plane wave vector (k~I@0), mixing tunneling (be-
tween heavy- and light-hole states) and spatial tunneling (from one well to the other) occur at the same
time. This time-dependent analysis clearly resolves these two tunneling mechanisms and shows several
effects which have not been addressed by previous time-independent analysis.

I. INTRODUCTION

Spatial HH tunneling HH band

Mixing tunneling

Spatial LH tunneling LH band

FICx. 1. Schematic potential profiles of mixing tunneling, spa-
tial heavy-hole tunneling, and spatial light-hole tunneling in
light- and heavy-hale bands of coupled quantum wells with
band-mixing effects.

Recently, there has been considerable interest in the in-
vestigation of the tunneling effects in the coupled
quantum-well structures that consist of two quantum
wells located sufficiently close together. ' ' Electron
spatial oscillations via coherent tunneling through a clas-
sically impenetrable thin barrier in a very short period of
time have bee reported. ' The emission of an electromag-
netic wave due to this spatial oscillation has been ob-
served. In addition, the application of the time-
development operator according to the time-dependent
Schrodinger equation has been used to describe the oscil-
lation frequency and oscillation amplitude associated
with these tunneling mechanisms. '

In the case of the hole tunneling in the coupled quan-
tum wells, the tunneling mechanisms are significantly
complicated due to band-mixing effects. ' Two possi-
ble mechanisms, spatial tunneling (from one well to the
other) and mixing tunneling (between heavy- and light-
hole states), are involved in the process. An illustration is
given io Fig. 1. Leo et al. , have shown that heavy- to
light-hole mixing tunneling is less effective compared
with heavy-hole spatial tunneling. However, some
theoretical studies have suggested the importance of
band-mixing effect in the hole tunneling in coupled wells
and double barrier structures. It is pointed out that

heavy-hole tunneling can be much faster due to band
mixing effects. Although no conclusive evidence is re-
ported, several experiments also point out the significance
of band-mixing effects on the spatial tunneling of the
heavy hole in coupled quantum wells. " In addition,
the importance of band-mixing effects can be greatly
enhanced if the mixing is further induced by an external
stress. '

In previous theoretical works, ' ' the Luttinger
Hamiltonian is incorporated into the time-independent
Schrodinger equation to obtain a description of mixing
effects. This work goes beyond the time-independent
analysis by using the time-dependent Schrodinger equa-
tion with the Luttinger Hamiltonian. In this approach,
va1ence-band mixing is taken into consideration by the
Luttinger Hamiltonian, and the evolution of the heavy-
and light-hole wave functions is shown by the time-
dependent Schrodinger operator with the Luttinger Ham-
iltonian. Using this time-dependent analysis, the mixing
tunneling and spatial tunneling, which happen at the
same time, can be clearly resolved. This is not possible
by previous time-independent analysis. ' ' In addi-
tion, using a properly defined tunneling probability, some
properties based on this time-dependent analysis can be
shown. For example, light- to heavy-hole mixing tunnel-
ing is found to be more effective than heavy- to light-hole
mixing tunneling, and induces a significant spatial
heavy-hole tunneling. The mixing tunneling, which has a
higher oscillation frequency, also modulates the spatial
tunneling. For the spatial tunneling, band-mixing effects
seem to slow down rather than speed up the tunneling
process for both pure heavy- and light-hole wave func-
tions.

Section II summarizes the numerical techniques for
solving the time-dependent Schrodinger equations with
the Luttinger Hamiltonian. For k~~=0 (no mixing), the
spatial heavy- and light-hole tunneling are described in
Sec. III. Section IV shows mixing tunneling, spatial
heavy-hole tunneling, and spatial light-hole tunneling for
k~~&0 (band mixing). The tunneling probability, oscilla-
tion frequency, and oscillation amplitude are also calcu-
lated.
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II. METHOD OF NUMERICAL ANALYSIS

The valence band can be described by a 4 X 4
Luttinger-Kohn Hamiltonian with bias elements

13/2, +3/2) as heavy-hole states and 11/2, +1/2) as
light-hole states. To further simplify the calculations, the
4 X4 Luttinger-Kohn Hamiltonian is converted to a
block diagonal matrix using a unitary transformation as
described in detail in Refs. 13 and 14.
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and Hz and HI', are the upper and lower blocks of the
Hamiltonian, Vi, (z) is the quantum-well potential for the
hole, y, , y2, y3 are the Luttinger parameters and are posi-
tion dependent in the heterojunction structures, m p is the
electron rest mass, k

II
=k„+k . The symmetry coupled

quantum wells are grown along the [001] direction, and
denoted as the z axis. Note that the momentum opera-
tors in P, Q, R are modified to the form of BenDaniel and
Duke's effective Hamiltonian' ' so as to preserve the
conservation of the probability. ' The new basis elements
become a linear combination of the heavy-hole and light-
hole states' '

11 &
=a13/2, 3/2 ) —a*

I
3/2 —3/2 ),

12 &
=pl 3/2, —1/2) —p*13/2, 1/2 &,

3 ) =p13 /2, —1 /2 ) +p*13 /2, 1/2 ),
14 & =a13/2, 3/2) +a*13/2, —3/2 &,

(3)

where 6 and n are the time spacing and time index, re-
spectively. In addition, H&" can be converted to a
difference matrix operator with respect to space and is
given by

where P and a are constant complex numbers. Since Hh"

(corresponding to 11 ) and 2 ) state) are decoupled from
Hh (corresponding to 13) and 14) states), they can be
treated separately. Assuming that 11) and 12) states are
heavy-hole (HH1) and light-hole states (LH1), respective-
ly, the time-dependent Schrodinger equation with the
upper block of the Luttinger-Kohn Hamiltonian can be
written by

H„P'(x, t) .
h

~ P'(x, t)
(4)P'(x, t) dt P'(x, t)

where P'(x, t) and P (x, t) are HH1 and LH1 state en-
velope wave functions, respectively. The discretization of
Eq. (4) with respect to time gives"
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Note that the first-order differential terms in operators R
and R * are discretized using the front and back
differencing techniques, respectively, to ensure Hermitici-
ty of the upper block matrix Hz". By inserting Eq. (6) into
Eq. (5), the resulting difference equation can be obtained.
This difference equation can be written in linear Ax =b
matrix equation with 3 being a complex symmetry ma-
trix. By calling the IMsL subroutine on a supercomputer,
this linear matrix equation is solved. With an initial
wave function, time evolution can be obtained by itera-
tive multiplications of the inveted matrix. In the numeri-
cal calculations, the space interval e and time interval 6
are chosen to be 1 A and 4 fsec (10 ' ).

III' WITHOUT MIXING (kll 0)

Coupled quantum-well systems of 25-15-25 (first well
width —barrier width —second well width in angstroms)
with a barrier height of 0.2506 eV, which corresponds to
50 at%%uo Al content in an Al Ga& „As/GaAs system
with a 60 to 40 ratio of hE, to AE, are investigated. The
Luttinger parameters (Y, , Yz, Y3) are chosen to be 6.85,
2.1, 2.9 in the well region and 5.15, 1.39, 2.10, which are
obtained by a linear interpolation of the Luttinger param-
eters of GaAs and A1As, in the barrier region. ' The ini-
tial wave functions are the heavy- and light-hole wave
functions in the first well, and the tunneling process is ini-
tiated at t =0.

Figure 2 shows the interwell tunneling of the heavy

P(t)= ~(P'(x, 0) P', (x, &))
~

(8)

where Pz(x, 0), i =1,2, denotes the heavy-hole or light-
hole eigenfunctions in the second well, and P'&(x, t)
denotes the heavy-hole or light-hole wave functions in the
first we11. In the beginning the wave packet is mainly lo-
cated in the first well, and P(t) is small. When the wave
packet has left the first well and tunnels into the second
well, the P(t) approaches 1. Figure 3 shows the tunnel-
ing probability P(t) for the heavy- and light-hole wave

hole and light hole in the 25-15-25 A quantum wells. The
initial wave function is the eigenfunction of the first well.
In Fig. 2, the heavy-hole wave packet tunnels from the
first well to the second well during around the first 252
fsec. However, as time increases, the wave packet tun-
nels back to the first well. As shown, a larger portion of
the wave packet is involved in this tunneling process.
The arrows in the figures indicate the oscillation of the
wave packet. Since there is no mixing (k~~ =0), the only
factor that differentiates the tunneling processes of the
heavy and light holes is the effective mass. The lighter
the particle is, the faster the tunneling process should be.
Thus, it takes a much shorter time for the light-hole wave
packet to reach the peak in the second well and then to
tunnel back.

In order to further characterize the properties of in-
terwell tunneling based on time-dependent analysis, the
tunneling probabiity P(r) is defined as
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the light-hole to the heavy-hole band) at the same time.
Since mixing tunneling is effective, the spatial tunneling
(7.03 THz) is less dominant and is significantly modulated
by the mixing tunneling, which has a high oscillation fre-
quency (9.45 THz). When compared with the spatial
light-hole tunneling without mixing (k~~ =0), the oscilla-
tion frequency of the spatial light-hole tunneling with
mixing becomes smaller. This also indicates that band-
mixing effects slow down the light-hole tunneling process
if a pure initial light-hole wave packet is used, which is
consistent with the spatial tunneling of the heavy hole.
For a pure initial heavy hole, there is no wave packet in
the light-hole band in the beginning. Due to the mixing
tunneling, the particle tunnels into the heavy-hole band
and proceeds to the spatial tunneling. However, the
heavy- to light-hole mixing tunneling is less effective.
Thus, the light-hole spatial tunneling is less significant
when a pure heavy hole is used as the initial wave func-
tion.

V. CONCLUSIONS

Compared to the time-independent analysis currently
in use, the method presented in this work offers a better

picture to describe the mixing tunneling and spatial
heavy- and light-hole tunneling in coupled quantum
wells. Time evolution of the heavy- and light-hole wave
packets in the coupled quantum wells with and without
band-mixing effects is shown by a numerical implementa-
tion of the time-development operator of the Schrodinger
equation with the Luttinger Hamiltonian. With this
time-dependent analysis light- to the heavy-hole mixing
tunneling is found to be more effective than heavy- to
light-hole mixing tunneling, and induces a significant spa-
tial heavy-hole tunneling. The mixing tunneling, which
has a higher oscillation frequency, also modulates the
spatial tunneling. In addition, the band-mixing effects
seem to slow down the spatial tunneling process for both
pure heavy- and light-hole wave functions.
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