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Mixing macro and micro ¯ owtime estimation model: wafer fab example

T.-Y. TSENG² , T.-F. HO² and R.-K. LI² *

Accurately predicting the order ¯ owtime for a wafer fab is a critical task. Previous
investigations involving ¯ owtime estimation of the regression approach have
extensively applied the macro ¯ owtime estimation concept. The `macro’ ¯ owtime
estimation concept constructs only one aggregate model to estimate the ¯ owtime
as a whole. In contrast, the `micro’ ¯ owtime estimation approach constructs an
individual regression model for each stage of operation to estimate its individual
¯ owtime. The cumulative order estimated ¯ owtime is then the sum of the indi-
vidual estimated operation ¯ owtime. Each approach has its own merits and lim-
itations. Therefore, in this study we examine the feasibility of mixing the macro
and micro ¯ owtime estimation models. Comparing the proposed model with a
variety of macro and micro models reveals that the mixed macro and micro
¯ owtime estimation model can achieve a balance between ¯ owtime estimation
error and model complexity.

1. Introduction

Accurately predicting the order ¯ owtime for a wafer fab is a critical task. Typical
applications include assigning due-dates for customers, planning the order release,
and evaluating the performance of scheduling policies for any unforeseen disturb-
ances. Calculating the order ¯ owtime allowance is not straightforward owing to the
dynamic nature of wafer fab, in which new wafers are constantly arriving and order
priorities are constantly changing. Although developing a system capable of always
accurately predicting order ¯ owtime is impossible, a relatively simple yet accurate
method is highly desired.

The order ¯ owtime is based on the processing time of operations and the order
interoperation time, which consists of queue time, move time and waiting time. The
queue delays are caused by resource contention due to factors such as machine
status, variability in processing times, variability in arrival times, and variability in
batch sizes. Investigations involving ¯ owtime estimation have generally applied four
di� erent approaches. The ® rst is the simulation approach (Weeks and Fryer 1977,
Weeks 1979, Bertrand 1983, Baker 1984, Srivatsan and Kemf 1995, Lawrence 1995) .
By using current orders on shop and shop loads to simulate forward in time, the
simulation is extremely general and can model nearly any conceivable production
system; however, it is computationally expensive and time consuming (Connors et al.
1996).

The second approach is analytical research such as the queueing model. Previous
works involving analytical models (Heard 1976, Seidmann and Smith 1981, Cheng
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and Gupta 1989, Bookbinder and Noor 1985, Karmarkar 1987, Wein 1991, Lynes
and Miltenburg 1994, Enns 1995, Connors et al. 1996) have elucidated problems that
limit their practices. For example, they are valid only for a ® rst-come, ® rst-served
(FCFS) dispatch rule. However, in practice, the FCFS is not generally recognized as
the optimal one. Another problem is that the shop ¯ oor must be in a steady state,
which is impossible in nearly every job shop (Baudin et al. 1992).

The third approach is the neural network model. By using historical data as the
input variables, the neural network can capture the previous pattern of the system
and predict on the basis of future events. Although a few cases have been imple-
mented in manufacturing (Udo 1992, Philipoon and Fry 1992, Zhang and Huang
1995) , the unknown process engine of a neural network increases the suspicion and
unwillingness to accept in most practitioners.

The fourth approach is the regression model. By using historical data similar to
how a neural network functions, the regression model di� ers from a neural network
only in that the former appears to be more reasonable than the latter from the
statistical perspective. Earlier works on ¯ owtime estimation such as CON, RDM,
TWK, NOP, JIQ (Eilon and Chowdhury 1976) , JIS (Week 1979) , OFS (Vig and
Dooley 1991), and COFS (Vig and Dooley 1993) belong to this approach. However,
these heuristic models can be viewed as ¯ owtime prediction models only if regression
analysis is used to determine the parameters.

Although numerous regression related heuristics have been developed and tested
for estimating the ¯ owtime or due-date (with some of these apparently quite e� ec-
tive), these rules have still not been fully developed owing to two features: the linear
independence of explanatory variables and a macro view. The linear independent
assumption prevents more explanatory variables to join the regression model
because the mutually independent explanatory variables are rare in reality.
Consequently, a trade-o� arises between easy explanation and better ® tting regard-
less of whether or not more dependent variables are involved. Therefore, the relative
importance of the explanatory variables and their in¯ uence on the ¯ owtime deter-
mination must be systematically investigated to minimize the prediction error.
Stepwise regression is commonly used to identify the following: (1) the important
variables in the ¯ owtime estimation, (2) the interaction e� ects between the input
variables, (3) the optimal form of explanatory variables and (4) the coe� cients of
estimation equation.

With the regression prediction approach, either the macro or micro ¯ owtime
estimation concept can be applied. The `macro’ ¯ owtime estimation concept con-
structs only an aggregate regression model to estimate the ¯ owtime as a whole. Its
explanatory variables are total processing time, total number of jobs, or total
number of operations. This concept prevails in conventional regression ¯ owtime
estimation approaches. However, in a wafer fab, over 100 operational stages are
common, and each operational stage may have unique features. The coe� cients of
the regression ¯ owtime estimation model for each operation may be not equivalent
statistically; and then the forecasting error with the macro ¯ owtime estimation
approach may be too large to be acceptable. Thus, the validity of the macro concept
is questionable. A `micro’ ¯ owtime estimation approach, unlike a macro view, con-
structs an individual regression model for each operation stage to estimate its indi-
vidual operational stage ¯ owtime. Assume that only interaction e� ects among
explanatory variables of the same stage are included, and that those of di� erent
stages are less signi® cant and are thus neglected. Then the total order estimated
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¯ owtime equals the sum of the individual estimated operation ¯ owtime. An illus-
trative example presented here demonstrates that properly selecting the explanatory
variables can reduce the interaction e� ects between operation stages.

Chatterjee and Price (1991) analysed a situation in which a regression equation
for a pooled data set can represent separated regression equations for subsets of the
data collected. A serious bias may be incurred if one regression relationship is used
to represent the pooled data set. Figure 1 depicts two ¯ owtime estimation models:
macro and micro models. Let Y represent the ¯ owtime and let Xbe work in process
(WIP). In the macro model, the operational stage distinction is ignored, the data are
pooled and only one line exists. However, in the micro model two separate regression
lines are available for the both operational stages, l and m, each with distinct regres-
sion coe� cients. The graph indicates that if Xl and Xm have been set at certain levels
of WIP for operational stages l and m respectively, by using the macro model, the
total expected ¯ owtime is ap + bp(Xl + Xm) when total WIP on the shop is Xl + Xm .
However, if the micro model is selected, the actual ¯ owtime estimates are
Y l(= al + blXl) for stages l and Ym(= am + bmXm) for stage m when the individual
stages WIP are Xl and Xm . Substituting (ap + bp(Xi + Xm)) for
(al + am + blXl + bmXm) represents a bias for stages l and m. Whether the macro
or micro model is used depends on if (ap + bp(Xl + Xm)) is within a certain level of
con® dence intervals of (al + am + blXl + bmXm).

Owing to the unavoidable bias incurred for the macro ¯ owtime estimation from
pooled data (Chatterjee and Price), predicting micro ¯ owtime estimation is more
accurate than estimating the macro ¯ owtime. Although the micro concept reduces
the forecasting error, the complexity of the estimation model is too high. This model
is too di� cult to implement in practice, particularly in a wafer fab, where over 100
operational stages are common. Therefore, in this study we examine the feasibility of
mixing the macro and micro ¯ owtime estimation models. The proposed model initi-
ally applies the micro approach to construct an individual regression equation for
each operation stage. A macro approach is then used to group together those opera-
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Figure 1. Pooled and distinct regression.
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tional stage regression equations that have the same combination of explanatory
variables but with di� erent coe� cients. A macro ¯ owtime estimation equation is
then ® tted for those clustered operation stages. The criterion of whether those opera-
tion stages can be ® tted into a macro regression equation is based on its prediction
error. The mixed macro and micro ¯ owtime estimation model is constructed and
updated on the basis of the samples of the recently completed orders. Next, the total
¯ owtime through all operational stages is estimated by merely summing the value of
explanatory variables of each stage into the corresponding grouped macro equations
instead of summing individual stage ¯ owtimes estimated by micro equations. Thus, a
balance can be achieved between ¯ owtime estimation error and model complexity. In
addition, the proposed model is also compared with various macro and micro ¯ ow-
time estimation models in terms of factors such as mean absolute deviation, mean
square error, mean absolute percent error, number of tardy jobs, percent of tardy
jobs, average lateness, and standard deviation of lateness.

2. Fundamental concept and algorithm for the mixed macro and micro ¯ owtime

estimation model

Assume that a set of data consists of K explanatory variables, X1, X2, . . . , Xk ,
which may include interaction e� ects among input variables of the same operation
stage and P operational stages, then the macro and micro ¯ owtime estimations
through the whole stages are

ª
Y and

ª
Y , respectively:

ª
Y = b 0 + b 1X1 + + b KXK

ª
Y =

P

i=1

ª
Y =

P

i=1
( b i0 + b i1Xi1 + + b iKXiK).

(1)

The coe� cients of the macro equation, ( b 0, b 1, . . . , b K), are recalculated from pooled
data of P operation stages. If one macro ¯ owtime estimation can replace P micro
¯ owtime estimation equations, then the micro approach total ¯ owtime estimation

ª
Y

can be replaced by the macro approach ¯ owtime estimation
ª
Y which is simply

calculated by summing the explanatory variables of P operation stages into the
macro equation, where

X1 =
P

i=1
Xi1, . . . , XK =

P

i=1
XiK.

Since the micro ¯ owtime estimation model ® ts the shop well and the total ¯ owtime
estimation used in the micro ¯ owtime estimation model is equal to the summation of
the ¯ ow time estimation of each individual operation stage, no bias variance is
incurred. Therefore, the sum of square error (SSE) for micro ¯ owtime estimation
is lower and the complexity is higher than that for macro ¯ owtime estimation. On the
other hand, the SSE for the macro ¯ owtime estimation is in the upper bound and the
complexity is in the lower (Chatterjee and Price).

Therefore, this work attempts to achieve a balance between estimation complex-
ity and variability. Towards this end, we propose mixed macro and micro ¯ owtime
estimation. The proposed model initially applies micro ¯ owtime estimation to con-
struct a regression equation for each individual operation stage. Those individual
operational stage regression equations that have the same combination of explana-
tory variables but di� erent coe� cients are then grouped together. A test is per-

2450 T.-Y. Tseng et al.
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formed to observe whether those grouped operational stage regression equations can
be represented as a macro regression equation. If not, we discard the stage regression
equation that has the highest SSE and repeat the process again until a new ® tted
macro equation can be accepted. The algorithm involves two stages.

The ® rst stage consists of regression equation ® tting for each operation stage.
This stage resembles any stepwise regression equation ® tting. Stepwise regression
attempts to achieve the following.

(a) Identify the most signi® cant explanatory variables that in¯ uence ¯ owtime,
including interaction among input variables of the same stage.

(b) Perform the variable transformation. The forms of explanatory variables and
equations for each stage could be entirely di� erent, as attributed by shop
status such as WIP distribution, and di� erent workloads. The variable trans-
formation adopted here attempts to increase the prediction accuracy.

(c) Estimate the coe� cients of the estimated equation for each operation stage.
In addition, any statistical package such as SAS or SPSS can easily perform
this task.

The second stage consists of individual regression grouping and new macro
regression equation ® tting. Based on the above fundamental concept, the grouping
and ® tting processes can be performed in six steps.

Step 1. Temporally groups together those operational stages that have the same
combination of explanatory variables but di� erent coe� cients. For each
group, perform steps 2 to 6.

Step 2. For each group two sets S and S and a function Sj j are given, where S = all
operation stages that intend to be grouped into the same group, S = all
operation stages that are deleted from S Sj j = number of elements in S.
The group of regression equations expressed as follows is called model 1.

Model 1 :
ª
Y1 = b 10 + b 11X11 + + b 1kX1k + e 1(operation stage 1)
ª
Y2 = b 20 + b 21X21 + + b 2kX2k + e 2(operation stage 2)

ª
YP = b P0 + b P1XP1 + + b PkXPk + e P (operation stage P),

(2)

where the explanatory variables, (Xi1, Xi2, . . . , XiK, i = 1, 2, ..., P), of P
operation stages may include interaction among input variables of the
same operation stage.

Step 3. For each group, construct a new macro regression equation called model 2.
In model 2, operation stage distinction is ignored, the data are pooled, and
there is one re-estimated regression line.

Model 2 :
ª
Y = b 0 + b 1X1 + + b KXK + e (pooled) . (3)

Step 4. Test the hypothesis to see whether those operational stages of each group
can be represented as a macro regression equation. Assume that a macro
group has p operation stages (S1, S2, . . . , SP) and that each operation stage

Mixing macro and micro ¯ owtime estimation model 2451
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has n observations with K identical explanatory variables but di� erent coef-
® cients. The model 2 is the macro regression equation of the P operation
stages. The operational stage distinction is ignored and nP observations are
included. Model 1 is an individual regression equation for each p operation
stage with n observations individually. Formally, we want to test the null
hypothesis

H0 : b 10 = b 20 = = b p0,

b 11 = b 21 = = b p1, . . . , b 1k = b 2k = = b pk

against the alternative that there are substantial di� erences among them.
The test can be performed using P indicator variables (T1, T2, . . . , TP),
where,

T1 =
1, if observation was from stage 1

0, otherwise

Tp =
1, if observation was from stage P

0, otherwise.

(4)

A new model, model 3, which represents any stage regression equation in
model 1 is then expressed as:

Model 3 :
ª
Y = b 0 + b 1Xi1 + + b KXiK

+ g 1T1 + g 2 T2 + g PTP

+ d 11 T1Xi1 + d 12 T1Xi2 + + d 1k T1Xik

+ d 21 T2Xi1 + d 22 T2Xi2 + + d 2k T2Xik

+ d P1 TPXi1 + d P2 TPXi2 + + d Pk TPXik,

(5)

where b i0 ­ b 0 = g i , b ij ­ b j = d ij , i = 1, 2, . . . , P, j = 1, 2, . . . , K and by
changing indicator variables the model 3 becomes
ª
Y1 = ( b 0 + g 1) + ( b 1 + d 11)X11 + + ( b K + d 1K)X1K + e 1 (operation 1)
ª
Y2 = ( b 0 + g 2) + ( b 1 + d 21)X21 + + ( b K + d 2K)X2K + e 2 (operation 2)

ª
YP = ( b 0 + g P) + ( b 1 + d P1)XP1 + + ( b K + d PK)XPK + e P (operation P).

(6)

Assume that Var ( e 1) = Var ( e 2) = = Var ( e p) and the null hypothesis
test of H0 becomes

g 1 = g 2 = = g 1 = g 2 = = g P = d 11 = d 21 = = d PK = 0

2452 T.-Y. Tseng et al.
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whether each operation stage regression equation of model 3 can be com-
bined into one macro equation of model 2. Model 3 is referred to here as the
full model (FM) and model 2 is referred to here as the reduced model (RM).
Let

ª
Y and

ª
Y be the estimates for actual ¯ owtime Y by the full model and the

reduced model respectively. In the full model there are P estimation equa-
tions and each estimate has n observations. While in the reduced model,
there is only an estimation equation with nP observations. The SSE for the
full model and reduced model are as follows:

SSE(FM) =
P n

(Y ­
ª
Y )2

SSE(RM) =
nP

(Y ­
ª
Y )2.

(7)

In the full model there are P(K + 1) parameters
( g 1, g 2, . . . , g P, d 11, d 12 , . . . , d PK) and in the reduced model there are K + 1
parameters ( b 0, b 1, . . . b k) . To assess the feasibility of the reduced model,
we compare SSE(RM) ­ SSE(FM) with SSE(FM). The ratio is as follows:

F =
[SSE(RM) ­ SSE(FM)]/ (K + 1)(P ­ 1)

SSE(FM)/P(n ­ K ­ 1) . (8)

If the observed F value is larger than the tabulated value of
F(1 ­ a , (K + 1)(P ­ 1), P(n ­ K ­ 1)) at a percent level, then the reduced
model is unsatisfactory, and the null hypothesis is therefore rejected (imply-
ing that those operation stages cannot be grouped together); in this case, go
to step 5. Otherwise, the null hypothesis is accepted, implying that those
operation stages can be grouped together; then go to step 6. Recall that it
was assumed that variances were identical in the p subgroups. A plot of
residuals versus the indicator variables veri® es this assumption. If the p
sets do not signi® cantly di� er, the equal variance assumption is accepted.
Otherwise, this implies that the remaining P stages do not correlate with the
grouping, go back to step 1 and ® t another group.

Step 5. Delete the operation stage m with maximum SSE(FMi) de® ned as

Max (SSE(FMi)) = Max
n

i=1
(Y i ­

ª
Y i )2 (9)

from set S and put it into set S. A situation in which the number of elements
in S is less than 2 implies no grouping; then go to step 6. Otherwise, rede® ne
the full model and the reduced model without stage m; then go back to step 2.

Step 6. Reconsider the possibility of grouping to one regression equation from all
stages in S . Although the operational stages in S are those deleted from S,
they may still be grouped together. Therefore, put all stages in S back to S
and repeat step 2 again. If the number of elements in S is less than 2, leave
that operation alone.

Mixing macro and micro ¯ owtime estimation model 2453
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After all groups formed in step 1 complete their ® tting, the mixed macro and
micro ¯ owtime estimation model is constructed. The total ¯ owtime through all
operational stages is estimated by summing the value of explanatory variables for
each stage into corresponding grouped macro equations (model 2) instead of sum-
ming individual stage ¯ owtime estimated by micro equations (model 1).

3. Illustrative examples

To demonstrate the feasibility of our developed procedure, two examples are
presented. Details of the test are provided for example one and the second example
provides the results only.

3.1. Example 1:
The data used to perform the developed concept are accumulated from Mosel

Vitelic Inc., one of Taiwan’s largest semiconductor-manufacturing companies. The
data are automatically downloaded from Mosel’s real-time shop ¯ oor control soft-
ware (WORKSTREAM) to our model. The data collection spans from March to
December 1996 on a weekly basis. Data from March to August are used to deter-
mine the regression parameters, while data from September to December are used
for performance evaluation. Since this research is intended to demonstrate the
feasibility of the mixed model, only the ® nal 21 operation stages of the 4MB
DRAM fabrication process are demonstrated.

Here, let Y be the cycle time, let X1 be the WIP in lot (1 lot = 50 wafers) , let X2

be the process time, and let X3 be the move volume in lots. The mixed model initially
performs regression equation ® tting for each operational stage. Table 1 lists those 21
regression equations after performing stepwise regression. The forms of explanatory

2454 T.-Y. Tseng et al.

No. Stage name Regression equation

1 BPSG2 CVD Y = 23.4 ­ 0.07(X1) + 152.6 log (X2) + 1.08(X3)1/ 2 + 0.4 log (X2) (X3)1/ 2

2 BPSG2 FLOW Y = 8.23 ­ 0.9(X1)1/2 + 3.3 log (X2) + 1.98(X3)
3 3C PHOTO Y = 120.23 ­ 27.7 log (X1) + 0.74(X2)1/ 2 + 0.69(X3)
4 3C ETCHING Y = 43.7 ­ 108.3 log (X1) + 115.1 log (X2) + 1.36(X3)
5 RTA Y = 12.2 ­ 10.3 log (X1) + 20.3 log (X2) + 0.5(X3)
6 TI SPUTTER Y = 21.1 ­ 1.5(X1)1/2 + 143.6 log (X2) + 0.44(X3)
7 PLANKET W CVD Y = 3.4 ­ 0.02 (X1) + 103.3 log (X2) + 1.1(X3)1/ 2 + 0.5 log (X2) (X3)1/ 2

8 W ETCH BACK Y = 32.2 ­ 20.1 log (X1) + 0.5(X2)1/ 2 + 0.7X3
9 BAKING Y = 23.7 ­ 93.1 log (X1) + 89.3 log (X2) + 1.05(X3)

10 WEB SCRUBBING Y = 2.1 ­ 9.7 log (X1) + 27.1 log (X2) + 23.1 log (X3)
11 AlSiCu SPUTTER Y = 13.43 ­ 1.7(X1)1/ 2 + 154.1 log (X2) + 0.65(X3)
12 METAL PHOTO Y = 9.3 ­ 1.0(X1) + 3.7 log (X2) + 2.1(X3)
13 METAL ETCHING Y = 34.7 ­ 18.3 log (X1) + 19.2 log (X2) + 1.54(X3)
14 SINTERING Y = 14 ­ 1.4(X1)1/ 2 + 3.0 log (X2) + 1.86(X3)
15 PAD PSG CVD Y = 12.6 ­ 10.2 log (X1) + 94 log (X2) + 10.7(X3)
16 PE-NITRIDE CVD Y = 3.1 ­ 9.3 log (X1) + 24.3 log (X2) + 30.7 log (X3)
17 PV PHOTO Y = 99.1 ­ 0.8(X1)1/2 + 123.3 log (X2) + 0.3(X3)
18 PV ETCH Y = 13.7 ­ 116.2 log (X1) + 125.4 log (X2) + 2.76(X3)
19 PI PHOTO Y = 2.6 ­ 8.30 log (X1) + 26.5 log (X2) + 26.9 log (X3)
20 UV03 ASHING Y = 6.6 ­ 117 log (X1) + 104(log (X2) + 9.3(X3)
21 PI CURE Y = 17.6 ­ 1.6(X1)1/2 + 164.3 log (X2) + 0.54(X3)

Table 1. Regression equations for 21 operational stages.
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variables and equations for each stage are not exactly the same, which may possibly
be attributed to factors such as WIP distribution, and di� erent workload ratios. As
mentioned earlier, variable transformations are adopted herein to increase prediction
accuracy.

By performing step 1 of stage 2, those operational stages with the same combina-
tion of explanatory variables but di� erent coe� cients are then placed into ® ve
groups, as follows:

Group 1: operation stages 1, 7
Group 2: operation stages 2, 6, 11, 12, 14, 17, 21
Group 3: operation stages 3, 8
Group 4: operation stages 4, 5, 9, 13, 15, 18, 20
Group 5: operation stages 10, 16, 19.

Next, the feasibility of combining those operation stages grouped into one macro
model is examined. Group 4 is considered as an example. For the full model
(model 3), 7 (P = 7) regression equations exist, each with 4 (K = 3) parameters
and 25 (n = 25) observations, yielding a total of 28 degrees of freedom. However,
for the reduced mode (model 2), there are 4 parameters after merging 175 observa-
tions of operation stages 4, 5, 9, 13, 15, 18, and 20. The reduced model (or macro
model) for group 4 is then expressed as follows:

Y = 32.2 ­ 106.1Z1 + 102.4Z2 + 1.45Z3

Z1 = log (X1), Z2 = log (X2) , Z3 = X3.

Now, assume that

Var ( e 1) = Var ( e 2) = Var ( e 3) = = Var ( e 7)
and by adding P(=7) indicator variables (T1, T2, . . . , T7), the model 3 becomes

Model 3 :
ª
Y = b 0 + b 1Z1 + b 2Z2 + b 3Z3

+ g 1T1 + g 2 T2 + + g 7 T7

+ d 11 T1Z1 + d 12T1Z2 + d 13T1Z3

+ d 21 T2Z1 + d 22T2Z2 + d 23T2Z3

+ d 71 T7Z1 + d 72T7Z2 + d 73T7Z3.

Table 2 lists each of the parameter values.
The SSE for the full model is 699 230 and for the reduced model it is 1097 690,

and the F ratio is then computed as:

F =
[SSE(RM) ­ SSE(FM)]/ (K + 1)(P ­ 1)

SSE(FM)/P(n ­ K ­ 1)

=
(1097 690 ­ 699 230)/ [(3 + 1)(7 ­ 1)]

699 230/7(25 ­ 3 ­ 1) = 3.49.

Since
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Fa ((K + 1)(P ­ 1), P(n ­ K ­ 1)) = F0.05(24, 147) = 1.6

it is larger than Fa (24, 147). Therefore, the null hypothesis is rejected, implying that
those operational stages in group 4 cannot be combined into one macro model. It is
then initiated to compute the SSE(FMi) for each operational stage in step 5.
Operational stage 5 is then deleted from the group because its SSE(FMi) is the
maximum. Perform step 2 again and the operation stage 13 is further deleted from
the group. Finally, the operational stages 4, 9, 15, 18, 20 can be grouped into the
equation

Y = 7.2 ­ 117.1Z1 + 105.4Z2 + 1.03Z3

for F ratio is equal to 1.69 and less than F0.05(16,105) = 1.80.
Step 6 then considers the possibility of grouping operational stages 5, 13 in S and

® nds that they can be grouped to the equation

Y = 23.4 ­ 14.2Z1 + 19.8Z2 + 1.02Z3

for F ratio equal to 1.43 and less than F0.05(4, 42) = 2.61. Finally, after passing
residuals analysis that veri® es equal variances among seven stages, all seven opera-
tional stages in group 4 can be statistically grouped into the two following regression
equations:

Y = 7.2 ­ 117.1Z1 + 105.4Z2 + 1.03Z3

Y = 23.4 ­ 14.2Z1 + 19.8Z2 + 1.02Z3.

The total ¯ owtime through all operational stages in group 4 is the sum of two
¯ owtime estimations. The ® rst one is estimated by summing the value of explanatory
variables for stages 4, 9, 15, 18, and 20 into the macro equation

Y = 7.2 ­ 117.1Z1 + 105.4Z2 + 1.03Z3

and the second one is those for stages 5 and 13 into macro equation

Y = 23.4 ­ 14.2Z1 + 19.8Z2 + 1.02Z3.

The same procedure is performed for the groups 1, 2, 3, and 5. The results are listed
as follows:

Group 1: operation stages 1 and 7 can be grouped into the equation

Y = 13.6 ­ 0.05(X1) + 130.1 log (X2) + 1.09(X3)1/2 + 0.45 log (X2) (X3)1/ 2

Group 2: operation stages 2, 12 and 14 can be grouped into the equation

2456 T.-Y. Tseng et al.

g 1 = 11.5, g 2 = ­ 20, g 3 = ­ 8.5, g 4 = 2.5, g 5 = ­ 19.6, g 6 = ­ 18.5, g 7 = ­ 25.6
b 0 = 32.2, b 1 = ­ 106.1, b 2 = 102.4, b 3 = 1.45
d 11 = ­ 2.2, d 12 = 12.7, d 13 = ­ 0.09
d 21 = 95.8, d 22 = ­ 82.1, d 23 = ­ 0.95
d 31 = 13, d 32 = ­ 13.1, d 33 = ­ 0.4
d 41 = 87.8, d 42 = ­ 83.2, d 43 = 0.09
d 51 = 4.1, d 52 = ­ 8.4, d 53 = 9.25
d 61 = ­ 10.1, d 62 = 23, d 63 = 1.31
d 71 = ­ 10.9, d 72 = 1.6, d 73 = 7.85

Table 2. The parameter value of group 4.
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Y = 10.7 ­ 1.1(X1)1/ 2 + 3.4 log (X2) + 1.97(X3)
Operation stages 6, 11 and 21 can be grouped into the equation

Y = 17.3 ­ 1.59(X1)1/2 + 152.1 log (X2) + 0.51(X3)
Operation stage 17 becomes

Y = 99.1 ­ 0.8(X1)1/2 + 123.3 log (X2) + 0.3(X3)
Group 3: operation stages 3 and 8 can be grouped into the equation

Y = 129.2 ­ 24.1 log (X1) + 0.6(X2)1/ 2 + 0.7X3

Group 5: operation stages 10, 16 and 19 can be grouped into the equation

Y = 99.1 ­ 0.8(X1)1/2 + 123.3 log (X2) + 0.3(X3).
In summary, the regression equations for all 21 operational stages can be reduced
to 8.

The total estimated ¯ owtime of mixed macro and micro model is then the sum of
estimated ¯ owtime of 21 operational stages by summing the value of explanatory
variables into 8 macro models instead of 21 micro models. Next, the performance
evaluation for our mixed macro and micro model is compared with various macro
and micro models (with and without variable transformations) . The reasons why
both macro and micro models with and without variable transformation are
included in the performance evaluation is to verify whether or not variable trans-
formation increases the prediction accuracy at the cost of the di� culty to compre-
hend. The macro models include seven conventional ¯ owtime estimation models, as
proposed by Cheng and Gupta (1989) , and two new macro models with and without
variable transformations. All de® nitions of explanatory variables for seven conven-
tional macro models are the same as those of previous studies except WIP.
Apparently, WIP in lots is used to replace the number of jobs in the system. Both
new macro models use the same input variables with mixed model except the one
without transformation, which uses the original input variables. Table 3 presents the
equations and coe� cients of the seven models and two new macro ¯ owtime estima-
tion models in which the coe� cients are acquired by summing the value of expla-
natory variables of 21 stages into the macro equation. Table 1 and 4 present the
parameters of micro ¯ owtime estimation with and without variable transformation,
respectively. The evaluation criteria are based on the factors related to due date
performance, e.g. mean absolute deviation, mean square error, mean absolute per-
cent error, number of tardy jobs, percent of tardy jobs, average lateness and stan-
dard deviation of lateness. Detailed performance measures are taken from Vig and
Dooly (1993) . Table 5 lists the performance equations and compares the results. The
coe� cients of regression equations are determined from data from March to August.
Meanwhile, seven performance results are generated on the basis of data from
September to December where the total observations are n (= 8). Four important
® ndings are observed.

(a) The selection of explanatory variables is critical to the performance of macro
models. The relative priorities of the explanatory variables are as follows:
¯ owtime distribution (OFS, COFS, JIS), WIP (JIQ, COFS), processing time
(TWK, SLK), and the number of operations (NOP). Selecting the proper
combination of explanatory variables can increase the prediction accuracy.
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(b) The micro models outperform macro models even if interaction e� ects
among stages are neglected in this case.

(c) The models with variable transformations outperform those without variable
transformations, regardless of whether they are in macro or micro models.

2458 T.-Y. Tseng et al.

No. Stage name Regression coe� cients

1 BPSG2 CVD b 0 = 3.2, b 1 = ­ 1.2, b 2 = 5.6, b 3 = ­ 11.3
2 BPSG2 FLOW b 0 = 1.4, b 1 = ­ 3.2, b 2 = 4.4, b 3 = ­ 3.41
3 3C PHOTO b 0 = 0.5, b 1 = ­ 12.2, b 2 = 21.1, b 3 = ­ 0.19
4 3C ETCHING b 0 = 2.1, b 1 = ­ 132.2, b 2 = 0.9, b 3 = ­ 42.3
5 RTA b 0 = 0.4, b 1 = ­ 142.2, b 2 = 3.6, b 3 = ­ 7.5
6 TI SPUTTER b 0 = 90.2, b 1 = ­ 13.9, b 2 = 5.0, b 3 = ­ 23.2
7 PLANKET W CVD b 0 = 12.2, b 1 = ­ 321.7, b 2 = 6.2, b 3 = ­ 9.63
8 W ETCH BACK b 0 = 4.2, b 1 = ­ 42.2, b 2 = 0.77, b 3 = ­ 31.2
9 BAKING b 0 = 23.1, b 1 = ­ 101.2, b 2 = 7.6, b 3 = 21.3

10 WEB SCRUBBING b 0 = 42.2, b 1 = ­ 11.2, b 2 = 3.5, b 3 = 7.3
11 AlSiCu SPUTTER b 0 = 203.2, b 1 = ­ 1.2, b 2 = 44.1, b 3 = 52.1
12 METAL PHOTO b 0 = 12.2, b 1 = ­ 42.2, b 2 = 9.1, b 3 = 1.23
13 METAL ETCHING b 0 = 93.0, b 1 = ­ 31.1, b 2 = 32.1 b 3 = 62.7
14 SINTERING b 0 = 42.2, b 1 = ­ 25.2, b 2 = 1.14 b 3 = 122.0
15 PAD PSG CVD b 0 = 52.6, b 1 = ­ 47.2, b 2 = 15.2 b 3 = 8.9
16 PE-NITRIDE CVD b 0 = 24.1, b 1 = ­ 34, b 2 = 3.4, b 2 = 7.4
17 PV PHOTO b 0 = 52.7, b 1 = ­ 541.7, b 2 = 4.31, b 3 = 19.3
18 PV ETCH b 0 = 23.2, b 1 = ­ 182.3, b 2 = 2.77, b 3 = 6.6
19 PI PHOTO b 0 = 96.2, b 1 = ­ 121.6, b 2 = 5.1, b 3 = 7.23
20 UV03 ASHING b 0 = 104.4, b 1 = ­ 51.1, b 2 = 0.76, b 3 = 11.7
21 PI CURE b 0 = 9.2, b 1 = ­ 47.1, b 2 = 3.0, b 3 = 33.3

Table 4. The parameter value of micro regression without variable transformations. Model 1:ª
Y1 = b 10 + b 11X11 + + b 13X13 + e 1 (operation 1).

ª
Y2 = b 20 + b 21X21 + + b 23 + e 2

(operation stage 2) . . .
ª
Y21 = b 21,0 + b 21,1X21,1 + + b 21,3 + e 21 (operation stage 21).

Model Equation Coe� cients

1 TWK CT = KPO1 K = 1.82
2 NOP CT = Knu K = 159
3 SLK CT = Pi + K K = 1385
4 JIQ CT = KlPi + K2Qi K1 = 345, K2 = 28
5 JIS CT = Pi + D + a(Ji) s D D = 1390 s D = 34.9
6 OFS CT = K1Fi + K2Ni + K3Pi K1 = 33, K2 = 43, K3 = 33
7 COFS CT = K1F1 + K2ni + K3Pi + K4Qi K1 = 33, K2 = 2.45, K3 = 22, K4 = 2.3
8 Macro CT = K0 + K1Qi + K2Pi + K3Oi K0 = 31, K1 = 6.12, K2 = 12.4, K3 = 10.2

without
trans.

9 Macro CT = K0K1 log Qi + K2 log Pi + K3 K0 = 2.7, K1 = 50.4, K2 = 24.4,
with log Oi + K4(QiPi)1/ 2 K3 = 11.2, K4 = 2.41
trans.

CT = cycle time estimation, Pi = total processing time of product i, ni = number of operations of
product i, Qi = WIP in lots of product i, D = Mean waiting in the system, s D = standard deviation of
waiting time in the system, Ji = WIP in the system when job I arrives, J = mean WIP in the system, s j =
standard deviation of WIP in the system, a(Ji) = ­ 1 if Ji < J ­ s j , = 0 if J ­ s j < Ji < J + s j , = 1 if
Ji > J + s j , Fi = T ni , T = average ¯ owtime per operation for newly completed batches, Oi = move out
quantity of product i.

Table 3. Macro models and the model equations.
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(d) The performance of the mixed ¯ owtime estimation model ranks between the
micro and macro models. In this example, the model complexity reduced by
62% (from 21 equations to 8). Although the prediction error only increases
4% comparing with micro models, two models do not signi® cantly di� er.
This ® nding con® rms that our mixed model not only reduces the estimation
complexity, but also does not degrade the prediction variability.

3.2. Example 2
The test procedures for Example 2 are the same as in Example 1 except that the

test data are collected from the ® rst 21 stages (instead of the ® nal 21 stages of
Example 1) of the 4MB DRAM fabrication process. Table 6 presents the compara-
tive performance results.

4. Conclusion

The fact that interaction e� ects occur among operational stages accounts for why
most investigations on ¯ owtime estimation concentrate on the macro approach
instead of the micro approach. From a practical perspective, macro approach
models usually do not ® t in long operational stages manufacturing environments,
especially in wafer fabrication. Although the micro model reduces the forecast error,
the complexity of the estimation model is too high. This study presents a novel mixed
macro and micro ¯ owtime estimation model, capable of overcoming the complexity
(micro approach) and variability (macro approach) of ¯ owtime estimation, particu-
larly for environments such as wafer fab in which hundreds of operational stages are
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MAD MSE MAP NT PT Mean SE

TWK 962 1 163 900 23.76 5 20 - 467.88 5394
NOP 2051 6 024 619 36.14 21 84 1821.96 12 273
SLK 1137 1 721 310 25.51 18 72 445.36 6560
JIQ 881 1 161 106 22.17 3 12 - 628.88 5388
JIS 598 512 055 14.87 7 28 - 300.84 3578
OFS 405 304 129 10.15 9 36 - 151.92 2757
COFS 474 382 917 11.13 9 36 - 298.2 3094
Macro 271 100 217 17.13 5 20 ­ 210.16 2931

without
trans.

Macro 150 37 464 6.63 4 16 ­ 60.99 894
with
trans.

Micro 200 69 846 12.05 4 16 190.23 1929
without
trans

Micro 88 12 757 1.94 3 12 41.91 4.19
with
trans

Mixed 91 13 435 1.99 3 12 ­ 45.16 580

MAD = mean absolute deviation = n j Y ­
ª
Y j /n; MSE = mean square error = n(Y ­

ª
Y )2/ n;

MAP = mean absolute percentage error = n j Y ­
ª
Y j / n Y ; NT = no. of tardy jobs

= f i j i = 1, 2, . . . , n and Y >
ª
Y g ; PT = percentage of tardy jobs = (1/ n) f ij i = 1, 2, . . . , n and Y >

ª
Y g ;

Mean = average lateness = (1/n) n(Y ­
ª
Y ); SD = standard deviation of lateness

= (1/ n) n[(Y ­
ª
Y ) ­ (1/n) n(Y ­

ª
Y )]2.

Table 5. Performance evaluation for Example 1.
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common. According to the result, the proposed model outperforms other conven-
tional ¯ owtime estimation models and does not signi® cantly di� er from the micro
approach. This ® nding con® rms that the mixed model proposed here not only
reduces the estimation complexity, but also does not degrade the prediction varia-
bility.

The proposed model is developed while assuming that only interaction e� ects
among explanatory variables of the same stage are considered and those of di� erent
stages are neglected, Although the assumption is veri® ed in this case, a future inves-
tigation should develop a more general model. In addition, variable transformation
through stepwise regression obviously increases prediction accuracy at the cost of
di� culty in comprehension. However, it is unnecessary for the mixed model.

In this study, cycle times are the only input variables. However, more data can be
obtained and new factors that can in¯ uence production performance can be
included. By doing so, more promising and meaningful models can be developed.
Based on the mixed model construction procedure presented in this study, Mosel
Vitelic Inc. is planning to construct and implement the performance prediction
system.
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