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A complete topological classification of solutions in @Dsymmetric Ginzburg-Landau free energy has
been performed and a new class of solutions in weak external magnetic field carrying two units of magnetic
flux has been identified. These solutions, magnetic skyrmions, do not have a singular core as Abrikosov
vortices do and at low magnetic field they become lighter for strongly type Il superconductors. As a conse-
guence, the lower critical magnetic fiell.; is reduced by a factor of Ir. Magnetic skyrmions repel each
other as 1/ at distances much larger than magnetic penetration deftihming a relatively robust triangular
lattice. Magnetization neat.; increases gradually a$i(— H;)?. This behavior agrees very well with experi-
ments on heavy fermion superconductor YJPNewly discovered Ru based compoundsRarO, and
Sr,YRu, _,Cu,Og are other possible candidates to possess skyrmion lattices. Deviations from exagt SO
symmetry are also studief50163-182@09)06425-5

[. INTRODUCTION In addition, under certain conditions the rotational symmetry
(at least an approximate onketween different components
A rich variety of novel magnetic properties can be foundmight exist. In that case vortices are not the only type of
in superconductors with an unconventional type of pairingtopological solitons which can carry magnetic flux through
symmetry. At present several examples of unconventionahe sample. The corresponding phenomenological Ginzburg-
superconductors are known. The first of them is, of course, Aandau theory has the order parameter of a vector type with
family of T, cuprates. In connection with them a lot of recenta continuous symmetry. It is known in the theory of super-
effort has been devoted to the study dfvave pairing of  fluid He (Ref. 12 that in such a system there exist topo-
various types with a possible admixture ®fvave. On the |ogical defects which have no singularities even within the
other hand, a triplet type of pairing is believed to exist inondon approximation. On the other hand, vortices have a
UPt; (Refs. 1,2 and in some other heavy fermion singularity at their core, at least for one of the components of
compounds. It is also suspected to occur in recently discov-the order parameter. This makes their energy roughly propor-
ered new cIasseASsof Ru based superconductors, layered pgkna| to Ink, similar to the case of a standard Abrikosov
ovskite SpRuQ,,™” and bulk compound $¥Ru, ,CUOs  \ortex. Therefore, for sufficiently large vortices are ex-

(Ref. § which has a double perovskite structure. Since all)o 104 to he heavier than nonsingular topological defects and

me"‘“o'f‘ed supgrconductors are stror_1g|y type II,_vortices_pIa)(he latter become the most likely candidates for thermody-
the major role in their therm_odynam|cal properties. In h'gh.'namically stable configurations of the order parameter field
T. superconductors, despite fundamental differences N 1o which a homooeneous su erconduciiMeissney state
mechanism and microscopic properties compared to convertlr— nsforms und rt% tion fp n external maanetic field
tional superconductors, vortices are quite similar to conven- ansforms under the action ot an external magnetc field.

It is the purpose of the present paper to investigate this

tional Abrikosov vortices. The reason for this is the existence N ) . . .
of a dominant single order parameter fietwave conden- possibility in detail. We find such a nonsingular in the Lon-
sate. Small(sometimes quite importanteviations can be don approximation solution, the magnetic skyrmion, describe

accounted for due to the admixture of therave component. its structure, and show that it is energetically favorable over
Then, the order parameter is effectively multicomponentthe Abrikosov vortex in a wide range of Ginzburg-Landau
This property leads generally to various new effects such aBarametei values. Lattices of magnetic skyrmions are par-
nonaxisymmetric vorticé$ and phase transitions within flux ticularly important at fields near the lower critical field. The
line lattices neaH,.° Similar phenomena exist and should most striking effects are the reduction df; by a factor of
be even more pronounced in systems with an intrinsicallyin x and a dramatic change in the behavior of magnetization
multicomponent superconducting order parantétérsuch  nearH,;. We also investigate what happens to magnetic
as heavy fermion compounds. skyrmions when the continuous symmetry breaking terms
The situation in triplet superconductors might be moreare introduced into the free energy. It is shown that they
exotic. The order parameter is necessarily multicomponensurvive under small perturbations and gradually evolve to
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other still nonsingular configurations under large perturbain the case of weak spin-orbit coupling in the pairing chan-
tions of a certain type. nel, but this is not a necessary interpretation. The case of the

Magnetic skyrmion lattices may have already been exstrong-spin—orbit interaction can also be addressed provided
perimentally observed in URt Magnetization curves near some modifications of the free energy functional are made.
H.; (Refs. 13,14 are rather unusudbee Fig. 1 of Ref. 15in Average spin of the Cooper pair at a specific point in the
which a short account of this work was presentdtheoreti-  space is given by
cally, if the magnetization is due to penetration of vortices
into a superconducting sample then one expec#stM to Si(F)Esz.*(F)(—isi jk)wk(F). 2
drop with an infinite derivative aH.;. On the other hand
experimentally—47M continues to increase smoothly. Such The material under study is assumed to be isotropic. Exten-
a behavior was attributed to strong flux pinning or surfaceSions of our results to anisotropic situations are discussed in
effects'® However, both experimental curves in Fig. 1 of Sec. V.
Ref. 15, as well as the other ones found in literature, are The Ginzburg-Landau free energy functional of the sys-
close to each other if plotted in units bf.;. We propose a tem has the form
more fundamental explanation of the universal smooth mag-
netization curve neat,. If one assumes that fluxons are of F=F +F. -+ iB-Z ®)

. : P ; : ot rad '

unconventional type for which interaction is long range then P g 8w !
precisely this type of magnetization curve is obtained. Indeed

magnetization neaH;; due to fluxons carryindN units of . B v B2 )
flux ®y=hc/2e, with line energye and mutual interaction Foo= — iy + = (il )+ =[], 4
V(r), is found by minimizing the Gibbs energy of a very
sparse triangular lattice 2
ﬁ *
BH Fgradzzm* (Dj¢i)(Dj¢i) ) )
G(B) = g le+3V(an) -7, 1)

where D;=d;—i(e*/hc)A; are covariant derivativesB;

where a, =(d,/B3)"2 is lattice spacing. WhenV(r) E(Vx,&)j , m* >0 is the effective mass of the pair, aati
~exf —Ar], the magnetic induction has the conventional be-s the effective charge of the pair. For a superconducting
havior B~[In(H—H;)]~%' while if it is long range, phase to exist the coefficient should be positive below the
V(r)~1/r", then one findB~(H—Hc,)""*. The physical phase transition point and we set=a’(T,—T) with o’
reason for this different behavior is very clear. For a short> g, while for positive definiteness of the potential the other
range repulsion, if one fluxon penetrated the sample, manygefficients of Eq(4) should satisfy8;>0 andB,>— ;.
more can penetrate almost with no additional cost of energy. The free energy density E43) has the following inde-
This leads to the infinite derivative of magnetization. On thependent symmetries. The spin rotations, forming a group
other hand for a long range interaction making a place forsospm(3), act on théndexi of the order parameter field, so
each additional fluxon becomes energy consuming. Derivathat it transforms as a vector. Two-dimensioratbital)
tive of magnetization thus becomes finite. space rotations, forming a different $GQ(2) group, act on

The remainder of the paper is organized as follows. Ingpatig| coordinates; and the electric charge transformations,
Sec. Il we present the ) symmetric model and note that torming a U1) group, rotate the complex phase of the order
it is an excellent approximation to certain successful mwe'%arameter. Note that in Eq3) we assumed that external
of UPt, (Ref. 17 as well as to otherS: The London approxi- magnetic fieldH is oriented along the direction. We will

mation is developed. In Sec. Ill we perform complete topo- id | i i . iant under t lati .
logical classification of solutions and find that the magneticconsI er only configurations invariant under transfations in

skyrmion carries two units of magnetic flux. General form ofthalg_dlr[ectlon or';he m'n film gefometry.t | tic field
cylindrically symmetrical solutions is given. In Sec. IV we ISt we consider the case of zero external magnetic Tield.

determine the magnetic skyrmion lattice structiitg and Pure superconductinfMeissnef phases that appear below

L2 i "
the magnetization curve. An example of deviations from ex-c are found by minimization oF o with respect toy;” .

act S@3) symmetry is considered in Sec. V. More specifi-This is_ co_nveniently done making use of the following pa-
cally, we address the case of a Zeeman-like interaction refametrization of the order parameter vector:

evant to the SIYRu,_,CuOg (Ref. 19 system which - - . L

initially motivated us to search for exotic vortices. Section y=yiei=f(ncosg+imsing), (6)

VI contains discussion of the results and possibilities to ex-

perimentally observe various effects of magnetic skyrmionsWheref=0, 0<¢<m/2, n andm are unit vectors that are

arbitrarily oriented with respect to some fixed coordinate

system in the spin space with orthonormal basise, ,es.
There exist two phases, depending on the sign of the coeffi-
A. Ginzburg-Landau free energy functional cient B5:

and its symmetries

Il. THE MODEL

>

B8>>0, fn+i Lm, p=ml4, f2
>0, = , nLm, o=ml4, =—.
? V2

3.

Let us consider a model Ginzburg-Landau theory with the

order parametewi(F) being a three-dimensional €1,2,3)
complex vector. It is convenient to consider indeas a spin @
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o« [(Ax/2)HZ,1/(a?28,)=10"°. Another model of UR
BBy which has similar structure to E@3), is the accidental de-
(8) generate AE.'® Estimates are similar with exception of
o . ) - K/(#2/2m*) which is now of order 1(found from fitting
Comblrjlng Egs.(2) and (6) one obtainsS=f?sin24 |,  transition lines neaH.,).
wherel=nxm. In phase | the projection of the spin of a  In general, topological solitons exist even in those cases
Cooper pairé on the vector is equal to eitherr 1 or —1, yvhen the symmetry is weakly broken. In Sec. V we consider
reflecting spontaneous time reversal symmetry breaking. I#! detail the influence of one symmetry breaking term, Zee-
phase Il this projection is always zero. man coupling, Eq.(9b), in connection to the material
SrLYRu, _,Cu,0g. We show that it does not affect the sta-
bility of solitons that we investigate in this paper.

I B,<0, ¢=fe'’n, n==xm; f2

B. Theories of triplet superconductors and terms breaking

SO4in(3) symmetry
. . . . C. London approximation
Obviously, the model of the previous subsection is an

idealization of the actual situation in triplet superconductors. The London approximation assumes that the order param-
In this subsection we note that some successful models &er has the form determined by the potential part of the free
UPt, notably that of Machidat al, '’ differ from this model ~ energy Eq.(4). In particular, the modulus of the order pa-
only by small less symmetric terms. These terms could béameter is fixed. Any variations of the order parameter field
considered as small perturbations, at least in some regions 8¥er the space are only due to changes of the degeneracy
the H-T diagram. The asymmetries are of several typesParameters which parametrize the vacuum manifold. From
First, the space symmetry S@(2) is normally broken this standpoint in usua-wave superconductors there are no
down to some Crysta”ographic point group of a given mate.tOpOloglcal §O|It0ns within the London apprpXImatlon. The
rial (Dg, for UPH, Dy, for SnRuQ,, D,, for famous Abrikosov vortex has a core—a region in which the
SKLYRU;_,Cu,Og). The effective mase* then becomes a modulus of the order parameter varies significantly and van-
ishes at some point. A vortex can be incorporated into the
London approximation at the cost of singularities: the vortex
core is assumed to shrink to a point in which energy diverges
logarithmically. Accordingly, a cutoff, the correlation length,
should be introduced and one obtaing ldependence for a
vortex line tension. As discussed above, this means that if
) @ ’ there exists a nonsingular solution it is bound to become
N+ (Te=T )l 4l?], (93 energetically favorable fok large enough.
Below we concentrate on the properties of nonunitary
AF pota= Ba(| 93] — [y |* = [ ] *)? phase |, Eq(7), of a triplet superconductor near the lower
2 2_ 2_ 2 critical field H;;. This phase is always assumed when we
* Bal sl "9l = vl ™= 1wl O ter to the superconducting state. We define magnetic pen-
_ Ny o\ % Ny etration depthan=c/|e*|\/B,m*/4ma, coherence length
AFgrad=KL(Dy) (D)™ + (D) (Bygy)™]. - (99 =#/\2am*, flux quantum ®y,=hc/e*, and Ginzburg-

symmetric tensomj*k. Second, the spifs can be coupled to
the magnetic field. This explicitly breaks §¢X3) down to
SOyi(2). Separate spin and orbital symmetries ;3(P)
®S0Q,pi(2) are broken down to diagonal $@2) as well.
The various types of perturbations are

’ (1)
AFpotZZ a'[(Te—T,

Landau parametex=\/¢&. For convenience we express all

AFzeemai= #S-B, (9d physical quantities in dimensionless units as follows:
AFnonlin:AX|¢'B|2- (%¢) - a’ -~ o~
X=\X, F= > F, f2= —f2,
We estimate their coefficients for the case of L JPRome Bik B1

models of UP§ do not have three-dimensional complex or-

der parameter and therefore will not be addressed here. Ex- ®d, ®,

amples includeE,, singlet pairing?® E,, triplet pairing?! A=_-—a, B= b. (10)
9 9 27\ 2\2

and the accidental degeneradB model?? On the other
hand, the model of weak spin-orbit coupling developed by. . : .
Machidaet all’ is of the type we are interested in. In this The tildes will be omitted hereafter.

; : ; - In order to determine the degeneracy parameters we con-
model asymmetric terms are very important in explaining the . . :
. o ider the symmetry breaking pattern of the superconducting
double superconducting phase transition at zero externdl

magnetic field. However, they are small in the low- State. Both _the spin rotation 36Y(3) symmetry and the su-
temperature superconducting phégbkase B well below its perconducting phase(ll) symmetry are spontaneously bro-

critical temperatureT<T,=0.45 K and at low magnetic ken, but a diagonal subgroup(l) survives. It consists of

: . combined transformations: rotations by anglearound the
fieldsH=H,,. Indeed, for the quadratic terms one gets from > y angl

experiment Te—Te1)/Te~0.2, (Tei—Tep)/To<0.05. The axisl which are accompanied by gauge transformatielfis
quartic terms Eq(9b) are an order of magnitude smaller. The These combined transformations together with rotations of
corrections to the gradient terms are very smallvector | itself, form the vacuum manifold. The vacuum
K/(#2/2m*)~0.01 andu/(%%/2m*)~0.01. The coefficient manifold is isomorphic to the S@) group. Our aim is to

of the nonlinear coupling term Eq(9c¢) is negligible: find nonsingular topological line defects in this case. We
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FIG. 2. Configuration of a magnetic skyrmion wi@=—1.

Solid arrows represerft field while “clocks” show that phase}
rotates twice clockwise as a round on the remote contour is com-
pleted.

FIG. 1. Definition of anglest and ©. Unit vectorsi, n, m
constitute a triad of perpendicular vectors in the spin spéds.the

superconducting phase defined in Etf). IIl. TOPOLOGICAL CLASSIFICATION OF SOLUTIONS

IN LONDON APPROXIMATION

choose a triad of orthonormal vectors m, | to be the In this subsection we develop a classification scheme for
degeneracy parameters. From the definition of these vectof8€ finite energy solutions to our model in the London ap-
the following important relations can be derived: proximation derived above. The main result is that the Lon-
don equationg15) and(17) in the presence of the magnetic
- - - flux admit nonsingular topologically stable solutions. This
ngim=—mo;n, (1D class of solutions contains cylindrically symmetric ones.
(ain)?+ (g;m)2=2(ngm)?+ (d;1)?, (12 A. General topological analysis
Let us consider boundary conditions for a superconductor
&pad p( il g) (9j15) = (dinp) (9;Mp) — (dimMp) (d;Nnp). which extends over the whole space. The free energy density

Eq. (14) is positive definite and contair? term. It follows

that magnetic field vanishes at spatial infinity. Then one has
To obtain the free energy density of the London approxi- g P y

) tutd i the © 1o th ) to specify the triach, m, [ at different distant points. The
mation we substituté) in the form Eq.(7) .|nto the gradient correspondingfirst) homotopy group of vacuum manifold is
part, Eq.(5), of the total free energy functional and make use

m[SO(3)]=2Z,.22 It yields a classification of finite energy
of Egs.(11) and(12). After some algebra we get solutions into two topologically distinct classes. This classi-

fication is too weak, however, because it does not guarantee
nontrivial flux penetrating the plane. We will see that con-
figurations having both “parities” are of interest.

In the presence of the magnetic flux, the configurations

Varying energy functional with respect to vector potenﬁal are further constrained due to the flux quantization condition.

1 - ..
FLzz(aiI)2+(n¢9im—ai)2+bi2. (14)

one obtains the supercurrent equation The vacuum manifold is naturally divided into SO(3)
—S0(2)®S,, where theS, is the direction ofl and the
> - S S SQO(2) is the superconducting phask defined in Eq.(16).
npVmp—a=vx(Vxa)=j, (15 For given number of flux quantdl=®/®d, the phased

makesN winds at infinity, see Fig. 2. The first homotopy
group of this part is therefore fixedt;[ SO(2)]=Z. If, in

addition, vector is fixed throughout the volume of a super-
conductor there is no way to avoid singularity in the phase
. . 3. It becomes ill defined at some point and, accordingly, the
n,Vmy,=—-V9. (16)  modulus of the order parameter have to vanish there. De-
struction of the superconducting state takes place in rather
Thus, the angled, which specifies the position the pair of small area, especially for large. Thus, we arrive at the
perpendicular unit vectors and m in the plane normal to usual picture of the Abrikosov vortex. _ _
vector [, takes the role of superconducting phase in the However, the general requirement that a solution has fi-

present casésee Fig. L Other field equations are most eas- nite energy'is much Wei':.lke.r.' It teII§ us that the directiorﬁ of
ily obtained by consideringL(r,ﬁ,rﬁ) as a functional of should be fixed only at infinity. This follows from the pres-
- 2 H H
and n only and performing conditional variation with con- fnce of the Qil)ﬂ term inF, [see Eq(_14)] which cannot be
straintsi- =0, [2=R2=1. This procedure yields the inde- 321980 away” as the corresponding term for the (30
" . : P y part. A relevant homotopy group i8,(S,)=Z. The second
pendent equation for homotopy group appears because the constanEyaofnfin—
o A R ity (say, up effectively “compactifies” the two-dimensional
Al=1(I-Al)+2j (1 X9 ]1)=0. a7 physical space int&,. One can have topologically nontrivial

where the Maxwell equation was used. Equatip® shows
that the superconducting velocitiy units of#/m*) is given

by
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configuration, skyrmions, which are markedly different from where energy is measured in units &= (®,/47\)2. The

vortices. Unit vectof can nontrivially wind towards the cen- first part ey is the same as in standard nonlineamodel
ter of the texture. The topological numbe should be Wwithout magnetic field”. The second term,, is analogous
introduced?® to the supercurrent contribution in the London approximation

of the usual superconducttiThe third term is the magnetic
1 .. energy. Equation23) shows that a singularity gt=0 is
Q= %I eyl (a1 X;1)dS. (18 apsent(integrand converggsince 1+ cosO(0)=0.

] ) _ _ _ The actual distribution of magnetic field and order param-
Configurations of the order parameter field with topologicaleter in this case can be found from the following system of
numberQ=—1(Q= +1) have vectot flipping its direction  equations:
from up to down(or from down to up until it reaches the

center of the texture from an infinitely remote poifsee 1 sin® [ 2+cos®

Flg 2) 0"+ ;®,:_T —+2a y (25)
To summarize, configurations fall into classes character-

ized by two integerdN and Q. The “parity” of the more ,

general topological analysis is judt=N(mod 2). Due to the a2 E(l+cos®). 26)

presence of two topological numbers an interesting possibil- p o p? p

ity arises. There exists topologically nontrivial configuration

that preserves the modulus of the order paramlatee Eq. In the next section we solve this equation.

(7)] at every point. We call these regular solutions magnetic

skyrmions. For them these two topological numbers are re- IV. MAGNETIC SKYRMION SOLUTION

lated to each other. We find this relation integrating the su- _ _ o

percurrent equatiofil5) along a remote contour and using of A. Blow up of single skyrmion by magnetic field

the identity (13): The general form of the solution of Eq&5) and (26) is

Q=N/2. (19 given in Fig. 2. The orientation of the unit vector(solid

arrows forms a skyrmion of S@) invariante model?® The
The lowest energy solution within the London approximationphased makes two rounds at infinityclock inside small
corresponds tdN/2=Q==*1. circles on the “infinitely remote” circl¢ If magnetic field
were absent there are infinitely many degenerate solutions
B. Cylindrically symmetric magnetic skyrmions

In the class of solutiofN/2=Q= —1 there are ones pos- Os(p)=2arctandlp) @7
sessing cylindrical symmetry. We will describe them in polaryhich have the same energy=2 for any size of the skyr-

coordinates) and ¢. The triadn, m, I has the form mion 8. The skyrmion of the nonlinear model possesses a
L. . scale invariance. This degeneracy in various physical prob-
| =e,cos0(p)+e,sin®(p), lem is lifted by perturbations. In some physical situations the

skyrmion is stabilized by four derivative terrfiSsometimes
ﬁz[éz sin®(p) —ép COS@(p)]Singo-l-é(p cose, (20 it shrinks and sometimes blows up. In the present context the
magnetic field lifts the degeneracy and we prove below that
m=[e,sin®(p)—e,cosO(p)] cosp—e,sine, the skyrmion blows up. Of course if there are many skyrmi-
R ons present, their repulsion will stabilize the system. This is
where® is the azimuthal angle df (see Fig. 1L This choice discussed in the next subsection.
corresponds to the situation when the pair of perpendicular To prove that the skyrmion blows up, we explicitly con-
vectorsn andm winds twice as a distant circle on Fig. 2 is struct variational configurations and show that as the size of
completed. Due to cylindrical symmetry of the solution in these configurations increases, the energy is reduced to a
question function®(p) satisfies boundary condition®  Vvalue arbitrarily close to the absolute minimum &fs=2.

=matp=0 and®=0 atp— . The first term in the energy Eq21) ¢, is the usual expres-
The free energy of the magnetic skyrmion per unit lengthsion for the energy of the skyrmion. It is bound from below
takes the form by the energy of usual skyrmicsr=2. To construct a varia-
tional configuration fol®, we pick up one of these solutions
€ms=€st Ecurt Emag» (21 Eqg. (27) of certain sizes. The second terma,,, the “super-

current” contribution is positive definite. Therefore its mini-
mum cannot be lower than zero. One still can maintain the
, (22)  zero value of this term when the field is a skyrmion.
Assuming this one gets the relation betweeand ©:a(p)
2 = — (14 cos0)/p=—2pl(p*+ &%). The magnetic field contri-

, (23)  bution (which is also positive definijefor such a vector po-
tential ise pag= 8/35%. To sum up, the energy of the configu-
ration iss =2+ 8/36°. It is clear that whers— o, we obtain

(24) energy arbitrarily close to the lower bound ef=2. The
' skyrmion therefore blows up.

dp

1(d®)2 Sir' ©
2p?

SSEJ pdp
8curEJ pdp

SmagEf pdez:f pdp

2

1+cos®
——+a

a da\?

_+_
p dp
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FIG. 3. Magnetic field of the isolated magnetic skyrmion. The £ 5. Energy of the unit cell of the magnetic skyrmion lattice.
distance from the centes varies from 0 to a cutoffpma With  pots are numerical values for differeRt The line is the fit of Eq.
boundary conditions @' +®/p)|,-, =0p|,_, =0 imitating (29).
the infinite domainp,,=40\ for the lowest curve and 600 for the
uppermost one. magnetic field on the boundaryWe approximate the hex-

agonal unit cell by a circle of radiut®= (34 \/27)a, hav-

We also solved Eq$25),(26) numerically on the segment ing the same area, Fig. 4.

of p from 0 to a cutoff pya, With boundary conditions We performed such calculations f& from R=5 until

blP:Pmaxzo and (®,+®/p)|P:Pmax:0. The second bound- g _ggg using the finite elements method. The result is pre-
ary condition allows us to approach the correct asymptotigented in Fig. 5. The energy per unit cell is described well in
behavior of ® at infinity ~1/p which follows from Egs. a wide range oR (deviation atR=10 is 1% by an approxi-
(25),(26). The results for the distribution of magnetic field mate expression

for pmax ranging from 50 to 600 are presented in Fig. 3. One

clearly sees that as the cutoff increases the magnetic field at 5.62

the centerp=0 decreases and the flux spreads out over Ecel=2F (28
larger area. This is in accord with the variational proof

above. The dominant constant contribution to the energy at l&ge
comes, as in the analytical variational state, above from the
B. Skyrmion lattice and H ¢, first terme, in the integrand of Eq(21). The contribution to
he energy Eq(21) from the supercurrent term,, is small

Skyrmions repel each other, as we will see shortly, an 2 .
therefore form a lattice. Since they are axially symmetric or large R but becomes significant at denser lattices. The
}hird term, magnetic energym,y yields a small deviation of

objects, the interaction is axially symmetric and hexagona . )
J y sy g magnetic skyrmion energy from 2 at lar§e

lattice is expecte@see Fig. 4 Assume that lattice spacing is . .

a, . At the boundaries of the hexagonal unit cells the angle P_roflle_of the angled (p) and of the magnetic f|eld are
0O is zero, while at the centers it is. Magnetic fieldb is d§p|cted in Figs. @) and &b), respectively. Rgdms of the
continuous on the boundaries. Therefore, to analyze ma _|rcu|:ar ceIII R vﬂines from 2dm to 3?0" In Fig. G(Sa) 6}I
netic skyrmion lattice we should solve Eq&5),(26) on the maller va uefoh corlre§pon s to a lower %urve. ma
unit cell with such boundary conditions demanding that two@SYMPptotics of the solution up 10’ terms rea

units of flux pass through the cdlby adjusting the value of )

p c?
O(p)—m+cp|l+ ) b(0)+ 3

b(0)  p°
a(p)H%pqL ’i—G[b(och],

wherec andb(0) are constants to be determined by numeri-
cal integration. Most of the flux goes through the region

where the vectof is oriented upwards. In other words, the
magnetic field is concentrated close to the center of a mag-
netic skyrmion.

The value ofh 1 (R— ) =¢,{(R—2)/4 for a triplet su-
perconductor filling the whole space is equal to 1/2. In physi-
cal units this result reads

FIG. 4. A fragment of the magnetic skyrmion lattice. For nu- o
merical calculations we approximate the symmetric unit cell by a Ho= 0 .
disk of the same are®=(3Y4\2m)a, . 47r\?

(29
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_ Ne, L b b
3 G(b)z%—zbmE 2+5.62\/7—)—2bh. (30)

The second equality follows the facts that magnetic induc-
tion b is related both to the number of magnetic skyrmions

@) ] N=Sh'2 and to the size of the magnetic skyrmion defined
aboveR?=4/b. Minimization of Eq.(30) with respect tob
1 ] yields
b=0.22 h 12h>h L 31
. ! =022 —~1|, h=hy=7. (31
0 100 200 300
(a) P

Equation(31) shows that a skyrmion lattice is character-
: ized by zero slope of magnetization curvehat, in contrast

to the infinite slope for the magnetization curve associated
with a vortex lattice. This circumstance provides a tool in the
experimental search for the triplet superconductivity with ap-
proximate S@3) symmetry. Our results agree well with the
earlier work of Burlachkowet al?® who also obtained zero
slop of the magnetization di.; for a stripef texture which
might arise in the case of very high anisotropy of effective
mass tensom* [see Eq(3)].

-0.15¢
V. INFLUENCE OF SO (3) BREAKING TERMS

20 30 40 . . .
(b) 0 In this section we consider influence of an(@Dsymme-

try breaking terms on skyrmion lattice. List of these terms
FIG. 6. Numerical solution of GL equations in London approxi- was given in Sec. [IB Eqg9a)—(9e). The perturbations are

mation for a unit cell of the magnetic skyrmion lattice. Radius of not expected to affect the existence of topological solitons—
the circular cellR varies from 20 to 30Q\. (a) Angle ©® as a  just modify their energy. When the coefficient of a breaking
function of the distance from the center of the cellb) Magnetic  term becomes of order 1, the soliton might disappear, al-
field b as a function of the distangefrom the center of the cell. A though it is not necessary. We study in detail the influence of
smallerR corresponds to a lower curve. Zeeman term Eq(9d). The choice is motivated by our pre-

vious study of possible spontaneous vortex state in a new
It is quite different fromH,, of conventional §-wave su-  bulk perovskite superconductor,$iRu; - CuOp.*
perconductors where an additional factoklis present. Line ~ This compound has very unusual magnetic properties and
energy of Abrikosov vortices, for the present model was 1S suspected to be@wave superconductor for the followmg
calculated numericallybeyond London approximatiorin reason$. At the temperature of about 60 K, at which super-

Ref. 19. Fork=20 and 50 we obtain2, /& ,&~3.5 and 4.4 conductivity sets in, these materials begin to exhibit basic
. me - |« ferromagnetic properties such as a hysteresis loop. Experi-

respectively. Therefore we expect that the lower critical field . . .
. . : . mental observation of a positive remanence suggests exis-
of UPt; is determined by magnetic skyrmions. o
tence of spontaneous magnetization in the absence of an ex-
ternal magnetic field. Exact overlap of superconductivity and
ferromagnetism lead us to consider an isotropic triplet model
Egs. (3)—(5) in nonunitary phase with spontaneous time re-
If h>h.,; the external magnetic field enforces a definiteversal symmetry breaking. In this case, a direct spin coupling
value of magnetic flux through a sample. Magnetic skyrmi-of the condensate to a magnetic field
ons, being topological objects, carry quantized magnetic flux
and their number in the sample is determined by the average - -
magnetic inductiorb, similarly to the case of vortices. En- nS B=
ergy of magnetic skyrmions as function BfEq. (28) actu-
ally determines the interaction between them. Howeverbecomes relevant. In what follows this coupling will be re-
magnetic skyrmions, contrary to vortices, are extended obferred to as Zeeman-like coupling and characterized by di-
jects and their linear sizR is also determined by the number mensionless parametgr For sufficiently large values of
of them in the sample. energetics of the triplet superconductor changes consider-
To qualitatively estimate the magnetization curve pro-ably. There exists a critical valug.;=1 above which the
duced by “skyrmion mixed state” we make use of the unit mixed state might respond on an external magnetic field fer-
cell energy obtained in the previous section. The Gibbs enromagnetically and, on the other hand, in the presence of an
ergy density of the sample of volumé=SxL, whereSis  external magnetic the field mixed state might occur even for
the transverse area ahdis longitudinal extension, is given temperatures above, .19 For larger Zeeman-like coupling,
in dimensionless units Eq10) by 0>0co~In k, vortex energy becomes negative. Spontaneous

C. Magnetization of the skyrmion lattice

e*h

SB 32
2m*cg (32
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FIG. 7. Energy of the isolated magnetic skyrmion as a function
of dimensionless Zeeman coupliggor R/\ =300.
-0.0005
vortex phase appears ldt=0 and exists for arbitrarily large b
magnetic field. The Meissner phase, therefore, completely
disappears. Vortices become thinner whdngrows. The -0.001
structure of the vortex core is markedly different from the
usual one. 0.0015
Our analysis in Ref. 19 was entirely based on the simplest 50 100 150 200
possible topological objects: vortices of the usual type. Value b) Je,

of « for the materials of Wiet al® are estimated to be quite
large and, consequently, vortices should be heavy compared FIG. 8. Magnetic field of the isolated magnetic skyrmion as a
to magnetic skyrmions. Spontaneously magnetized skyrmiofunction of distance from the center for different Zeeman cou-
lattice can also occur, as in the previous case of vortices gfling and for the case 0b,,=300\ (see Fig. 3 caption (a) ¢
usual type. Values df required to obtain spontaneous vortex =0,0.5,0.7,0.9,1.0,1.1(b) g=0,-0.5-0.7-0.9,-1.0-1.1. In
stateg=In «x were very high and made the scenario questionboth cases a smallég| corresponds to a lower at=0 curve.

able. This value is lowered tg~1 for magnetic skyrmion

lattice. _ _ _ Note, however, that afy| increases, the behavior of the
“The free energy per unit length for a single magnetic skyrfunction changes significantly in the interval pffrom the
mion now has form origin up to only some limiting value, after which it remains
approximately the same for differegt Thus we observe that
3 1/d®\? sif® [(1+cos® 2 nonzerog actually introduces new length scale in the prob-
L= pdp 2\dp 22 + P ta lem. Changes in the profile dd(p) with g are less pro-
nounced and are not displayed.
+ a+da2 a+da (] (33
—+—] —g|—+—|cos
p dp) 9 dp VI. DISCUSSION
The equations read In this paper we performed topological classification of
solutions in S@3) symmetric Ginzburg-Landau free energy.
1 sin® [ 2+ cos® a This model with addition of very small symmetry breaking
0"+ ;®’= T\ T +2a|+gsin®fa’'+ o) terms describes heavy fermion superconductogdRtl pos-

sibly other triplet superconductors. A class of topological
(34 solutions in weak magnetic field carrying two units of mag-
netic flux was identified. These solutions, magnetic skyrmi-
a2 2 1(1+cos®)— 967sin6. (35  ©ons, are nonsingulddo not have singular core as Abrikosov
p? P 2 vortices d9. They repel each other asr 1dt distances much
larger then magnetic penetration depttforming relatively
We use the same boundary conditions as that for the cagebust triangular lattice. At lattice spacings much larger than
of isolated magnetic skyrmion gt=0 (see Sec. IV A Cal- X their energy is reduced by a factor of the order ok las
culations were performed both for positive and negative valcompared to the usual Abrikosov vortex solutions and there-
ues ofg. Plot of the energy of the magnetic skyrmion as afore dominate the magnetic properties for strongly type Il
function ofg is presented in Fig. 7. The characteristic featuresuperconductors. The lower critical magnetic fidit},
of this dependence is a maximum negs 0. Profiles of the =®y/4m\? is reduced correspondingly by a factor Zin
magnetic fieldb(p) for different g of both signs are pre- Magnetization neaH; instead of sharply rising with in-
sented in Fig. 8. Zeeman interaction strongly influences théinite derivative increases gradually a$l{H.)2. This
behavior ofb(p) near the center of the magnetic skyrmion agrees very well with the experimental results for {JRee
and in quite different manner for positive and negative Fig. 1 of Ref. 15. For fields higher then sevelrgl; London
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approximation is not valid anymore since magnetic skyrmi-
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(4) The magnetic field profile is different: no exponential

ons will start to overlap. At distances between fluxons ofdrop even at very sparse lattices.

order N (or at the fieldH/;~H.12 Ink) one expects that

(5) Superfluid density |2 is almost constant throughout

ordinary Abrikosov vortices, which carry one unit of mag- the mixed state. There are no normal cores of the fluxons.
netic flux, become energetically favorable. The usual vortexThis can be tested using the scanning tunneling microscopy
picture has indeed been observed at high fields by Yarogechnique.

et al?* Curiously, our result on magnetization is similar to

(6) Due to the fact that there is no small normal core

the conclusions of Burlachkoet al?® who investigated where dissipation and pinning usually take place, one ex-

stripelike (quasi-one-dimensionaspin textures in triplet su-

pects that pinning effects are greatly reduced. Correspond-

perconductors. Magnetic skyrmions are quite stable objectidigly, the critical current should be very small.
and they are not destroyed by small perturbations of exact (7) The vortex lattice in the region arourtd,; can melt

SQO3) symmetry of the original model Eq$3)—(5). More-

into the so-called lower field vortex liquid due to thermal

over, deformed magnetic skyrmions might exist even at largéluctuations’® The melting of the usual Abrikosov vortex

deviations from exact S@) symmetry. We demonstrated
this including Zeeman-like interaction E(B2).

lattice is easy even in not very strongly fluctuating supercon-
ductors because the interaction between Abrikosov vortices

Let us list below the experimental features which can alis exponentially small. This is not so for magnetic skyrmi-

low the identification of the magnetic skyrmions lattice.
(1) The lower critical field is significantly smaller than

ons. Due to their long rangerlihteraction the lattice is more
robust and therefore no melting is expected.

usually expected. For such strongly type Il superconductors

as UP§, SpRuQ,, or SLYRuU; _,Cu,Og with k~50-70 the
reduction amounts 8 times. Althoudt,; is expected to be
very small(less than 1 Git is still measurable.

(2) Magnetization aboveH.;, but below crossover to
Abrikosov vortex latticeH ., ~ (®o/2m\?)In k is markedly
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