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Magnetic skyrmions and their lattices in triplet superconductors
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A complete topological classification of solutions in SO~3! symmetric Ginzburg-Landau free energy has
been performed and a new class of solutions in weak external magnetic field carrying two units of magnetic
flux has been identified. These solutions, magnetic skyrmions, do not have a singular core as Abrikosov
vortices do and at low magnetic field they become lighter for strongly type II superconductors. As a conse-
quence, the lower critical magnetic fieldHc1 is reduced by a factor of lnk. Magnetic skyrmions repel each
other as 1/r at distances much larger than magnetic penetration depthl forming a relatively robust triangular
lattice. Magnetization nearHc1 increases gradually as (H2Hc1)2. This behavior agrees very well with experi-
ments on heavy fermion superconductor UPt3. Newly discovered Ru based compounds Sr2RuO4 and
Sr2YRu12xCuxO6 are other possible candidates to possess skyrmion lattices. Deviations from exact SO~3!
symmetry are also studied.@S0163-1829~99!06425-5#
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I. INTRODUCTION

A rich variety of novel magnetic properties can be fou
in superconductors with an unconventional type of pair
symmetry. At present several examples of unconventio
superconductors are known. The first of them is, of cours
family of Tc cuprates. In connection with them a lot of rece
effort has been devoted to the study ofd-wave pairing of
various types with a possible admixture ofs wave. On the
other hand, a triplet type of pairing is believed to exist
UPt3 ~Refs. 1,2! and in some other heavy fermio
compounds.3 It is also suspected to occur in recently disco
ered new classes of Ru based superconductors, layered
ovskite Sr2RuO4,4,5 and bulk compound Sr2YRu12xCuxO6
~Ref. 6! which has a double perovskite structure. Since
mentioned superconductors are strongly type II, vortices p
the major role in their thermodynamical properties. In hig
Tc superconductors, despite fundamental differences
mechanism and microscopic properties compared to con
tional superconductors, vortices are quite similar to conv
tional Abrikosov vortices. The reason for this is the existen
of a dominant single order parameter field:d-wave conden-
sate. Small~sometimes quite important! deviations can be
accounted for due to the admixture of thes-wave component.
Then, the order parameter is effectively multicompone
This property leads generally to various new effects such
nonaxisymmetric vortices7,8 and phase transitions within flu
line lattices nearHc2.9 Similar phenomena exist and shou
be even more pronounced in systems with an intrinsic
multicomponent superconducting order parameter10,11 such
as heavy fermion compounds.

The situation in triplet superconductors might be mo
exotic. The order parameter is necessarily multicompon
PRB 600163-1829/99/60~1!/550~9!/$15.00
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In addition, under certain conditions the rotational symme
~at least an approximate one! between different component
might exist. In that case vortices are not the only type
topological solitons which can carry magnetic flux throu
the sample. The corresponding phenomenological Ginzb
Landau theory has the order parameter of a vector type w
a continuous symmetry. It is known in the theory of sup
fluid 3He ~Ref. 12! that in such a system there exist top
logical defects which have no singularities even within t
London approximation. On the other hand, vortices hav
singularity at their core, at least for one of the components
the order parameter. This makes their energy roughly prop
tional to lnk, similar to the case of a standard Abrikoso
vortex. Therefore, for sufficiently largek vortices are ex-
pected to be heavier than nonsingular topological defects
the latter become the most likely candidates for thermo
namically stable configurations of the order parameter fi
into which a homogeneous superconducting~Meissner! state
transforms under the action of an external magnetic field

It is the purpose of the present paper to investigate
possibility in detail. We find such a nonsingular in the Lo
don approximation solution, the magnetic skyrmion, descr
its structure, and show that it is energetically favorable o
the Abrikosov vortex in a wide range of Ginzburg-Land
parameterk values. Lattices of magnetic skyrmions are pa
ticularly important at fields near the lower critical field. Th
most striking effects are the reduction ofHc1 by a factor of
ln k and a dramatic change in the behavior of magnetiza
near Hc1. We also investigate what happens to magne
skyrmions when the continuous symmetry breaking ter
are introduced into the free energy. It is shown that th
survive under small perturbations and gradually evolve
550 ©1999 The American Physical Society
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other still nonsingular configurations under large pertur
tions of a certain type.

Magnetic skyrmion lattices may have already been
perimentally observed in UPt3. Magnetization curves nea
Hc1 ~Refs. 13,14! are rather unusual~see Fig. 1 of Ref. 15 in
which a short account of this work was presented!. Theoreti-
cally, if the magnetization is due to penetration of vortic
into a superconducting sample then one expects24pM to
drop with an infinite derivative atHc1. On the other hand
experimentally24pM continues to increase smoothly. Su
a behavior was attributed to strong flux pinning or surfa
effects.13 However, both experimental curves in Fig. 1
Ref. 15, as well as the other ones found in literature,
close to each other if plotted in units ofHc1. We propose a
more fundamental explanation of the universal smooth m
netization curve nearHc1. If one assumes that fluxons are
unconventional type for which interaction is long range th
precisely this type of magnetization curve is obtained. Ind
magnetization nearHc1 due to fluxons carryingN units of
flux F0[hc/2e, with line energy« and mutual interaction
V(r ), is found by minimizing the Gibbs energy of a ve
sparse triangular lattice

G~B!5
B

NF0
@«13V~an!#2

BH

4p
, ~1!

where an5(F0 /BA3)1/2 is lattice spacing. WhenV(r )
;exp@2lr#, the magnetic induction has the conventional b
havior B;@ ln(H2Hc1)#22,16 while if it is long range,
V(r );1/r n, then one findsB;(H2Hc1)n11. The physical
reason for this different behavior is very clear. For a sh
range repulsion, if one fluxon penetrated the sample, m
more can penetrate almost with no additional cost of ene
This leads to the infinite derivative of magnetization. On t
other hand for a long range interaction making a place
each additional fluxon becomes energy consuming. Der
tive of magnetization thus becomes finite.

The remainder of the paper is organized as follows.
Sec. II we present the SO~3! symmetric model and note tha
it is an excellent approximation to certain successful mod
of UPt3 ~Ref. 17! as well as to others.18 The London approxi-
mation is developed. In Sec. III we perform complete top
logical classification of solutions and find that the magne
skyrmion carries two units of magnetic flux. General form
cylindrically symmetrical solutions is given. In Sec. IV w
determine the magnetic skyrmion lattice structureHc1 and
the magnetization curve. An example of deviations from
act SO~3! symmetry is considered in Sec. V. More spec
cally, we address the case of a Zeeman-like interaction
evant to the Sr2YRu12xCuxO6 ~Ref. 19! system which
initially motivated us to search for exotic vortices. Secti
VI contains discussion of the results and possibilities to
perimentally observe various effects of magnetic skyrmio

II. THE MODEL

A. Ginzburg-Landau free energy functional
and its symmetries

Let us consider a model Ginzburg-Landau theory with
order parameterc i(rW) being a three-dimensional (i 51,2,3)
complex vector. It is convenient to consider indexi as a spin
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in the case of weak spin-orbit coupling in the pairing cha
nel, but this is not a necessary interpretation. The case o
strong-spin–orbit interaction can also be addressed prov
some modifications of the free energy functional are ma
Average spin of the Cooper pair at a specific point in t
space is given by

Si~rW ![c j* ~rW !~2 i« i jk !ck~rW !. ~2!

The material under study is assumed to be isotropic. Ex
sions of our results to anisotropic situations are discusse
Sec. V.

The Ginzburg-Landau free energy functional of the s
tem has the form

F5Fpot1Fgrad1
1

8p
Bj

2 , ~3!

Fpot52ac ic i* 1
b1

2
~c ic i* !21

b2

2
uc ic i u2, ~4!

Fgrad5
\2

2m*
~Djc i !~Djc i !* , ~5!

where Dj[] j2 i (e* /\c)Aj are covariant derivatives,Bj

[(¹3AW ) j , m* .0 is the effective mass of the pair, ande*
is the effective charge of the pair. For a superconduct
phase to exist the coefficienta should be positive below the
phase transition point and we seta5a8(Tc2T) with a8
.0, while for positive definiteness of the potential the oth
coefficients of Eq.~4! should satisfyb1.0 andb2.2b1.

The free energy density Eq.~3! has the following inde-
pendent symmetries. The spin rotations, forming a gro
SOspin(3), act on theindex i of the order parameter field, s
that it transforms as a vector. Two-dimensional~orbital!
space rotations, forming a different SOorbit(2) group, act on
spatial coordinatesxj and the electric charge transformation
forming a U~1! group, rotate the complex phase of the ord
parameter. Note that in Eq.~3! we assumed that externa

magnetic fieldHW is oriented along thez direction. We will
consider only configurations invariant under translations
that direction or the thin film geometry.

First we consider the case of zero external magnetic fi
Pure superconducting~Meissner! phases that appear belo
Tc are found by minimization ofFpot with respect toc i* .
This is conveniently done making use of the following p
rametrization of the order parameter vector:

cW 5c ieW i5 f ~nW cosf1 i mW sinf!, ~6!

where f .0, 0<f<p/2, nW andmW are unit vectors that are
arbitrarily oriented with respect to some fixed coordina
system in the spin space with orthonormal basiseW1 ,eW2 ,eW3.
There exist two phases, depending on the sign of the co
cient b2:

I: b2.0, cW 5 f
nW 1 imW

A2
, nW'mW , f5p/4, f 25

a

b1
.

~7!
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II: b2,0, cW 5 f eifnW , nW 56mW ; f 25
a

b11b2
.

~8!

Combining Eqs.~2! and ~6! one obtainsSW 5 f 2 sin 2f lW,

where lW[nW 3mW . In phase I the projection of the spin of

Cooper pairSW on the vectorlW is equal to either11 or 21,
reflecting spontaneous time reversal symmetry breaking
phase II this projection is always zero.

B. Theories of triplet superconductors and terms breaking
SOspin„3… symmetry

Obviously, the model of the previous subsection is
idealization of the actual situation in triplet superconducto
In this subsection we note that some successful model
UPt3, notably that of Machidaet al.,17 differ from this model
only by small less symmetric terms. These terms could
considered as small perturbations, at least in some region
the H-T diagram. The asymmetries are of several typ
First, the space symmetry SOorbit(2) is normally broken
down to some crystallographic point group of a given ma
rial (D6h for UPt3 , D4h for Sr2RuO4, D2h for
Sr2YRu12xCuxO6). The effective massm* then becomes a

symmetric tensormjk* . Second, the spinSW can be coupled to
the magnetic field. This explicitly breaks SOspin(3) down to
SOspin(2). Separate spin and orbital symmetries SOspin(2)
^ SOorbit(2) are broken down to diagonal SOtot(2) as well.
The various types of perturbations are

DFpot25a8@~Tc2Tc
(1)

!uc1u21~Tc2Tc
(2)

!uc2u2#, ~9a!

DFpot45b3~ uc3u22uc1u22uc2u2!2

1b4uc3u2~ uc3u22uc1u22uc2u2!, ~9b!

DFgrad5K@~Djc i !~Dic j !* 1~Dic i !~Djc j !* #, ~9c!

DFZeeman5mSW •BW , ~9d!

DFnonlin5DxucW •BW u2. ~9e!

We estimate their coefficients for the case of UPt3. Some
models of UPt3 do not have three-dimensional complex o
der parameter and therefore will not be addressed here.
amples includeE1g singlet pairing,20 E2g triplet pairing,21

and the accidental degenerateAB model.22 On the other
hand, the model of weak spin-orbit coupling developed
Machidaet al.17 is of the type we are interested in. In th
model asymmetric terms are very important in explaining
double superconducting phase transition at zero exte
magnetic field. However, they are small in the low
temperature superconducting phase~phase B! well below its
critical temperatureT!Tc

2.0.45 K and at low magnetic
fieldsH.Hc1. Indeed, for the quadratic terms one gets fro
experiment (Tc2Tc1)/Tc;0.2, (Tc12Tc2)/Tc,0.05. The
quartic terms Eq.~9b! are an order of magnitude smaller. Th
corrections to the gradient terms are very sm
K/(\2/2m* );0.01 andm/(\2/2m* );0.01. The coefficient
of the nonlinear coupling term Eq.~9c! is negligible:
In
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@(Dx/2)Hc1
2 #/(a2/2b1).1026. Another model of UPt3,

which has similar structure to Eq.~3!, is the accidental de-
generateAE.18 Estimates are similar with exception o
K/(\2/2m* ) which is now of order 1~found from fitting
transition lines nearHc2).

In general, topological solitons exist even in those ca
when the symmetry is weakly broken. In Sec. V we consi
in detail the influence of one symmetry breaking term, Ze
man coupling, Eq.~9b!, in connection to the materia
Sr2YRu12xCuxO6. We show that it does not affect the st
bility of solitons that we investigate in this paper.

C. London approximation

The London approximation assumes that the order par
eter has the form determined by the potential part of the f
energy Eq.~4!. In particular, the modulus of the order pa
rameter is fixed. Any variations of the order parameter fi
over the space are only due to changes of the degene
parameters which parametrize the vacuum manifold. Fr
this standpoint in usuals-wave superconductors there are
topological solitons within the London approximation. Th
famous Abrikosov vortex has a core—a region in which t
modulus of the order parameter varies significantly and v
ishes at some point. A vortex can be incorporated into
London approximation at the cost of singularities: the vor
core is assumed to shrink to a point in which energy diver
logarithmically. Accordingly, a cutoff, the correlation lengt
should be introduced and one obtains lnk dependence for a
vortex line tension. As discussed above, this means tha
there exists a nonsingular solution it is bound to beco
energetically favorable fork large enough.

Below we concentrate on the properties of nonunita
phase I, Eq.~7!, of a triplet superconductor near the low
critical field Hc1. This phase is always assumed when
refer to the superconducting state. We define magnetic p
etration depthl[c/ue* uAb1m* /4pa, coherence lengthj
[\/A2am* , flux quantum F0[hc/e* , and Ginzburg-
Landau parameterk[l/j. For convenience we express a
physical quantities in dimensionless units as follows:

x[l x̃, F[
a2

b1k2
F̃, f 2[

a

b1
f̃ 2,

A[
F0

2pl
a, B[

F0

2pl2
b. ~10!

The tildes will be omitted hereafter.
In order to determine the degeneracy parameters we

sider the symmetry breaking pattern of the superconduc
state. Both the spin rotation SOspin(3) symmetry and the su
perconducting phase U~1! symmetry are spontaneously bro
ken, but a diagonal subgroup U~1! survives. It consists of
combined transformations: rotations by angleq around the

axis lW which are accompanied by gauge transformationseiq.
These combined transformations together with rotations

vector lW itself, form the vacuum manifold. The vacuum
manifold is isomorphic to the SO~3! group. Our aim is to
find nonsingular topological line defects in this case. W
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PRB 60 553MAGNETIC SKYRMIONS AND THEIR LATTICES IN . . .
choose a triad of orthonormal vectorsnW , mW , lW to be the
degeneracy parameters. From the definition of these vec
the following important relations can be derived:

nW ] imW 52mW ] inW , ~11!

~] inW !21~] imW !252~nW ] imW !21~] i lW !2, ~12!

«pqsl p~] i l q!~] j l s!5~] inp!~] jmp!2~] imp!~] jnp!.
~13!

To obtain the free energy density of the London appro
mation we substitutecW in the form Eq.~7! into the gradient
part, Eq.~5!, of the total free energy functional and make u
of Eqs.~11! and ~12!. After some algebra we get

FL5
1

2
~] i lW !21~nW ] imW 2ai !

21bi
2 . ~14!

Varying energy functional with respect to vector potentiaaW
one obtains the supercurrent equation

np¹W mp2aW 5¹W 3~¹W 3aW !5 jW, ~15!

where the Maxwell equation was used. Equation~15! shows
that the superconducting velocity~in units of\/m* ) is given
by

np¹W mp52¹W q. ~16!

Thus, the angleq, which specifies the position the pair o
perpendicular unit vectorsnW and mW in the plane normal to
vector lW, takes the role of superconducting phase in
present case~see Fig. 1!. Other field equations are most ea
ily obtained by consideringFL( lW,nW ,mW ) as a functional oflW

and nW only and performing conditional variation with con
straintslW•nW 50, lW25nW 251. This procedure yields the inde
pendent equation forlW

D lW2 lW~ lW•D lW !12 j k~ lW3]klW !50. ~17!

FIG. 1. Definition of anglesq and Q. Unit vectors lW, nW , mW

constitute a triad of perpendicular vectors in the spin space.q is the
superconducting phase defined in Eq.~16!.
rs

-

e

III. TOPOLOGICAL CLASSIFICATION OF SOLUTIONS
IN LONDON APPROXIMATION

In this subsection we develop a classification scheme
the finite energy solutions to our model in the London a
proximation derived above. The main result is that the Lo
don equations~15! and ~17! in the presence of the magnet
flux admit nonsingular topologically stable solutions. Th
class of solutions contains cylindrically symmetric ones.

A. General topological analysis

Let us consider boundary conditions for a superconduc
which extends over the whole space. The free energy den

Eq. ~14! is positive definite and containsBW 2 term. It follows
that magnetic field vanishes at spatial infinity. Then one
to specify the triadnW , mW , lW at different distant points. The
corresponding~first! homotopy group of vacuum manifold i
p1@SO(3)#5Z2.12 It yields a classification of finite energ
solutions into two topologically distinct classes. This clas
fication is too weak, however, because it does not guara
nontrivial flux penetrating the plane. We will see that co
figurations having both ‘‘parities’’ are of interest.

In the presence of the magnetic flux, the configuratio
are further constrained due to the flux quantization conditi
The vacuum manifold is naturally divided into SO(3
→SO(2)̂ S2, where theS2 is the direction of lW and the
SO~2! is the superconducting phaseq defined in Eq.~16!.
For given number of flux quantaN[F/F0, the phaseq
makesN winds at infinity, see Fig. 2. The first homotop
group of this part is therefore fixed:p1@SO(2)#5Z. If, in
addition, vectorlW is fixed throughout the volume of a supe
conductor there is no way to avoid singularity in the pha
q. It becomes ill defined at some point and, accordingly,
modulus of the order parameter have to vanish there.
struction of the superconducting state takes place in ra
small area, especially for largek. Thus, we arrive at the
usual picture of the Abrikosov vortex.

However, the general requirement that a solution has
nite energy is much weaker. It tells us that the direction olW
should be fixed only at infinity. This follows from the pres
ence of the (] i lW)2 term inFL @see Eq.~14!# which cannot be
‘‘gauged away’’ as the corresponding term for the SO~2!
part. A relevant homotopy group isp2(S2)5Z. The second
homotopy group appears because the constancy oflW at infin-
ity ~say, up! effectively ‘‘compactifies’’ the two-dimensiona
physical space intoS2. One can have topologically nontrivia

FIG. 2. Configuration of a magnetic skyrmion withQ521.

Solid arrows representlW field while ‘‘clocks’’ show that phaseq
rotates twice clockwise as a round on the remote contour is c
pleted.
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configuration, skyrmions, which are markedly different fro
vortices. Unit vectorlW can nontrivially wind towards the cen
ter of the texture. The topological numberQ should be
introduced,23

Q5
1

8pE « i j lW ~] i lW3] j lW !dS. ~18!

Configurations of the order parameter field with topologi
numberQ521(Q511) have vectorlW flipping its direction
from up to down~or from down to up! until it reaches the
center of the texture from an infinitely remote point~see
Fig. 2!.

To summarize, configurations fall into classes charac
ized by two integersN and Q. The ‘‘parity’’ of the more
general topological analysis is justQ5N(mod 2). Due to the
presence of two topological numbers an interesting poss
ity arises. There exists topologically nontrivial configurati
that preserves the modulus of the order parameter@see Eq.
~7!# at every point. We call these regular solutions magne
skyrmions. For them these two topological numbers are
lated to each other. We find this relation integrating the
percurrent equation~15! along a remote contour and using
the identity~13!:

Q5N/2. ~19!

The lowest energy solution within the London approximati
corresponds toN/25Q561.

B. Cylindrically symmetric magnetic skyrmions

In the class of solutionN/25Q521 there are ones pos
sessing cylindrical symmetry. We will describe them in po
coordinatesr andw. The triadnW , mW , lW has the form

lW5eW z cosQ~r!1eW r sinQ~r!,

nW 5@eW z sinQ~r!2eW r cosQ~r!#sinw1eWw cosw, ~20!

mW 5@eW z sinQ~r!2eW r cosQ~r!# cosw2eWw sinw,

whereQ is the azimuthal angle oflW ~see Fig. 1!. This choice
corresponds to the situation when the pair of perpendic
vectorsnW andmW winds twice as a distant circle on Fig. 2
completed. Due to cylindrical symmetry of the solution
question functionQ(r) satisfies boundary conditionsQ
5p at r50 andQ50 at r→`.

The free energy of the magnetic skyrmion per unit len
takes the form

ems5«s1«cur1«mag, ~21!

«s[E rdrF1

2 S dQ

dr D 2

1
sin2 Q

2r2 G , ~22!

«cur[E rdrS 11cosQ

r
1aD 2

, ~23!

«mag[E rdrB25E rdrS a

r
1

da

dr D 2

, ~24!
l

r-

il-

ic
e-
-

r

ar

h

where energy is measured in units ofe05(F0 /4pl)2. The
first part ems is the same as in standard nonlinears model
without magnetic field.23. The second term«cur is analogous
to the supercurrent contribution in the London approximat
of the usual superconductor.16 The third term is the magnetic
energy. Equation~23! shows that a singularity atr50 is
absent~integrand converges! since 11cosQ(0)50.

The actual distribution of magnetic field and order para
eter in this case can be found from the following system
equations:

Q91
1

r
Q852

sinQ

r S 21cosQ

r
12aD , ~25!

a91
a8

r
2

a

r2
2a5

1

r
~11cosQ!. ~26!

In the next section we solve this equation.

IV. MAGNETIC SKYRMION SOLUTION

A. Blow up of single skyrmion by magnetic field

The general form of the solution of Eqs.~25! and ~26! is
given in Fig. 2. The orientation of the unit vectorlW ~solid
arrows! forms a skyrmion of SO~3! invariants model.23 The
phaseq makes two rounds at infinity~clock inside small
circles on the ‘‘infinitely remote’’ circle!. If magnetic field
were absent there are infinitely many degenerate solutio

Qs~r!52 arctan~d/r! ~27!

which have the same energy«52 for any size of the skyr-
mion d. The skyrmion of the nonlinears model possesses
scale invariance. This degeneracy in various physical pr
lem is lifted by perturbations. In some physical situations
skyrmion is stabilized by four derivative terms,23 sometimes
it shrinks and sometimes blows up. In the present context
magnetic field lifts the degeneracy and we prove below t
the skyrmion blows up. Of course if there are many skyrm
ons present, their repulsion will stabilize the system. This
discussed in the next subsection.

To prove that the skyrmion blows up, we explicitly con
struct variational configurations and show that as the size
these configurations increases, the energy is reduced
value arbitrarily close to the absolute minimum of«ms52.
The first term in the energy Eq.~21! «s is the usual expres
sion for the energy of the skyrmion. It is bound from belo
by the energy of usual skyrmion«52. To construct a varia-
tional configuration forQ, we pick up one of these solution
Eq. ~27! of certain sized. The second term«cur, the ‘‘super-
current’’ contribution is positive definite. Therefore its min
mum cannot be lower than zero. One still can maintain
zero value of this term when the fieldQ is a skyrmion.
Assuming this one gets the relation betweena and Q:a(r)
52(11cosQ)/r522r/(r21d2). The magnetic field contri-
bution ~which is also positive definite! for such a vector po-
tential is«mag58/3d2. To sum up, the energy of the configu
ration is«5218/3d2. It is clear that whend→`, we obtain
energy arbitrarily close to the lower bound of«52. The
skyrmion therefore blows up.
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We also solved Eqs.~25!,~26! numerically on the segmen
of r from 0 to a cutoff rmax with boundary conditions
bur5rmax

50 and (Q81Q/r)ur5rmax
50. The second bound

ary condition allows us to approach the correct asympt
behavior of Q at infinity ;1/r which follows from Eqs.
~25!,~26!. The results for the distribution of magnetic fie
for rmax ranging from 50 to 600 are presented in Fig. 3. O
clearly sees that as the cutoff increases the magnetic fie
the centerr50 decreases and the flux spreads out o
larger area. This is in accord with the variational pro
above.

B. Skyrmion lattice and H c1

Skyrmions repel each other, as we will see shortly, a
therefore form a lattice. Since they are axially symmet
objects, the interaction is axially symmetric and hexago
lattice is expected~see Fig. 4!. Assume that lattice spacing i
an . At the boundaries of the hexagonal unit cells the an
Q is zero, while at the centers it isp. Magnetic fieldb is
continuous on the boundaries. Therefore, to analyze m
netic skyrmion lattice we should solve Eqs.~25!,~26! on the
unit cell with such boundary conditions demanding that t
units of flux pass through the cell~by adjusting the value o

FIG. 3. Magnetic field of the isolated magnetic skyrmion. T
distance from the centerr varies from 0 to a cutoffrmax with
boundary conditions (Q81Q/r)ur5rmax

50,bur5rmax
50 imitating

the infinite domain.rmax540l for the lowest curve and 600 for th
uppermost one.

FIG. 4. A fragment of the magnetic skyrmion lattice. For n
merical calculations we approximate the symmetric unit cell b
disk of the same area:R5(31/4/A2p)an .
ic

e
at
r

f

d
c
l

e

g-

magnetic field on the boundary!. We approximate the hex
agonal unit cell by a circle of radiusR5(31/4/A2p)an hav-
ing the same area, Fig. 4.

We performed such calculations forR from R55 until
R5600 using the finite elements method. The result is p
sented in Fig. 5. The energy per unit cell is described wel
a wide range ofR ~deviation atR510 is 1%! by an approxi-
mate expression

«cell521
5.62

R
. ~28!

The dominant constant contribution to the energy at largR
comes, as in the analytical variational state, above from
first term«s in the integrand of Eq.~21!. The contribution to
the energy Eq.~21! from the supercurrent term«cur is small
for large R but becomes significant at denser lattices. T
third term, magnetic energy«mag yields a small deviation of
magnetic skyrmion energy from 2 at largeR.

Profile of the angleQ(r) and of the magnetic fieldb are
depicted in Figs. 6~a! and 6~b!, respectively. Radius of the
circular cell R varies from 20l to 300l. In Fig. 6~a! a
smaller value ofR corresponds to a lower curve. Smallr
asymptotics of the solution up tor3 terms read

Q~r!→p1crF11
r2

8 S b~0!1
c2

3 D G ,
a~r!→

b~0!

2
r1

r3

16
@b~0!1c2#,

wherec andb(0) are constants to be determined by nume
cal integration. Most of the flux goes through the regi
where the vectorlW is oriented upwards. In other words, th
magnetic field is concentrated close to the center of a m
netic skyrmion.

The value ofhc1(R→`)5«ms(R→`)/4 for a triplet su-
perconductor filling the whole space is equal to 1/2. In phy
cal units this result reads

Hc15
F0

4pl2
. ~29!a

FIG. 5. Energy of the unit cell of the magnetic skyrmion lattic
Dots are numerical values for differentR. The line is the fit of Eq.
~28!.
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It is quite different fromHc1 of conventional (s-wave! su-
perconductors where an additional factor lnk is present. Line
energy of Abrikosov vortices«v for the present model wa
calculated numerically~beyond London approximation! in
Ref. 19. Fork520 and 50 we obtain 2«v /«ms'3.5 and 4.4,
respectively. Therefore we expect that the lower critical fi
of UPt3 is determined by magnetic skyrmions.

C. Magnetization of the skyrmion lattice

If h.hc1 the external magnetic field enforces a defin
value of magnetic flux through a sample. Magnetic skyrm
ons, being topological objects, carry quantized magnetic
and their number in the sample is determined by the ave
magnetic inductionb, similarly to the case of vortices. En
ergy of magnetic skyrmions as function ofR Eq. ~28! actu-
ally determines the interaction between them. Howev
magnetic skyrmions, contrary to vortices, are extended
jects and their linear sizeR is also determined by the numbe
of them in the sample.

To qualitatively estimate the magnetization curve p
duced by ‘‘skyrmion mixed state’’ we make use of the u
cell energy obtained in the previous section. The Gibbs
ergy density of the sample of volumeV5S3L, whereS is
the transverse area andL is longitudinal extension, is given
in dimensionless units Eq.~10! by

FIG. 6. Numerical solution of GL equations in London appro
mation for a unit cell of the magnetic skyrmion lattice. Radius
the circular cellR varies from 20l to 300l. ~a! Angle Q as a
function of the distancer from the center of the cell.~b! Magnetic
field b as a function of the distancer from the center of the cell. A
smallerR corresponds to a lower curve.
d

-
x
ge

r,
b-

-

n-

G~b!5
N«cellL

V
2 2bh5

b

2 S 215.62
Ab

2 D 22bh. ~30!

The second equality follows the facts that magnetic ind
tion b is related both to the number of magnetic skyrmio
N5Sb/2 and to the size of the magnetic skyrmion defin
aboveR254/b. Minimization of Eq.~30! with respect tob
yields

b.0.225S h

hc1
21D 2

, h>hc15
1

2
. ~31!

Equation~31! shows that a skyrmion lattice is characte
ized by zero slope of magnetization curve athc1, in contrast
to the infinite slope for the magnetization curve associa
with a vortex lattice. This circumstance provides a tool in t
experimental search for the triplet superconductivity with a
proximate SO~3! symmetry. Our results agree well with th
earlier work of Burlachkovet al.25 who also obtained zero
slop of the magnetization athc1 for a stripelW texture which
might arise in the case of very high anisotropy of effecti
mass tensorm* @see Eq.~3!#.

V. INFLUENCE OF SO „3… BREAKING TERMS

In this section we consider influence of an SO~3! symme-
try breaking terms on skyrmion lattice. List of these term
was given in Sec. IIB Eqs.~9a!–~9e!. The perturbations are
not expected to affect the existence of topological soliton
just modify their energy. When the coefficient of a breaki
term becomes of order 1, the soliton might disappear,
though it is not necessary. We study in detail the influence
Zeeman term Eq.~9d!. The choice is motivated by our pre
vious study of possible spontaneous vortex state in a n
bulk perovskite superconductor Sr2YRu12xCuxO6.19

This compound has very unusual magnetic properties
is suspected to be ap-wave superconductor for the followin
reasons.6 At the temperature of about 60 K, at which supe
conductivity sets in, these materials begin to exhibit ba
ferromagnetic properties such as a hysteresis loop. Exp
mental observation of a positive remanence suggests e
tence of spontaneous magnetization in the absence of an
ternal magnetic field. Exact overlap of superconductivity a
ferromagnetism lead us to consider an isotropic triplet mo
Eqs. ~3!–~5! in nonunitary phase with spontaneous time
versal symmetry breaking. In this case, a direct spin coup
of the condensate to a magnetic field

mSW •BW 5
e* \

2m* c
gSW •BW ~32!

becomes relevant. In what follows this coupling will be r
ferred to as Zeeman-like coupling and characterized by
mensionless parameterg. For sufficiently large values ofg
energetics of the triplet superconductor changes consi
ably. There exists a critical valuegc151 above which the
mixed state might respond on an external magnetic field
romagnetically and, on the other hand, in the presence o
external magnetic the field mixed state might occur even
temperatures aboveTc .19 For larger Zeeman-like coupling
g.gc2' ln k, vortex energy becomes negative. Spontane

f



te

he

le
lu
e
ar
io

s
ex
on

yr

ca

a
a
r

-
th
n

e

s
t
b-

of
y.
g

al
g-
i-

v

an

re-
II

io

a

PRB 60 557MAGNETIC SKYRMIONS AND THEIR LATTICES IN . . .
vortex phase appears atH50 and exists for arbitrarily large
magnetic field. The Meissner phase, therefore, comple
disappears. Vortices become thinner whenH grows. The
structure of the vortex core is markedly different from t
usual one.

Our analysis in Ref. 19 was entirely based on the simp
possible topological objects: vortices of the usual type. Va
of k for the materials of Wuet al.6 are estimated to be quit
large and, consequently, vortices should be heavy comp
to magnetic skyrmions. Spontaneously magnetized skyrm
lattice can also occur, as in the previous case of vortice
usual type. Values ofg required to obtain spontaneous vort
stateg5 ln k were very high and made the scenario questi
able. This value is lowered tog;1 for magnetic skyrmion
lattice.

The free energy per unit length for a single magnetic sk
mion now has form

FL5E rdrF1

2 S dQ

dr D 2

1
sin2 Q

2r2
1S 11cosQ

r
1aD 2

1S a

r
1

da

dr D 2

2gS a

r
1

da

dr D cosQG . ~33!

The equations read

Q91
1

r
Q852

sinQ

r S 21cosQ

r
12aD1gsinQS a81

a

r D ,

~34!

a91
a8

r
2

a

r2
2a5

1

r
~11cosQ!2

g

2
Q8sinQ. ~35!

We use the same boundary conditions as that for the
of isolated magnetic skyrmion atg50 ~see Sec. IV A!. Cal-
culations were performed both for positive and negative v
ues ofg. Plot of the energy of the magnetic skyrmion as
function ofg is presented in Fig. 7. The characteristic featu
of this dependence is a maximum nearg50. Profiles of the
magnetic fieldb(r) for different g of both signs are pre
sented in Fig. 8. Zeeman interaction strongly influences
behavior ofb(r) near the center of the magnetic skyrmio
and in quite different manner for positive and negativeg.

FIG. 7. Energy of the isolated magnetic skyrmion as a funct
of dimensionless Zeeman couplingg for R/l5300.
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Note, however, that asugu increases, the behavior of th
function changes significantly in the interval ofr from the
origin up to only some limiting value, after which it remain
approximately the same for differentg. Thus we observe tha
nonzerog actually introduces new length scale in the pro
lem. Changes in the profile ofQ(r) with g are less pro-
nounced and are not displayed.

VI. DISCUSSION

In this paper we performed topological classification
solutions in SO~3! symmetric Ginzburg-Landau free energ
This model with addition of very small symmetry breakin
terms describes heavy fermion superconductor UPt3 and pos-
sibly other triplet superconductors. A class of topologic
solutions in weak magnetic field carrying two units of ma
netic flux was identified. These solutions, magnetic skyrm
ons, are nonsingular~do not have singular core as Abrikoso
vortices do!. They repel each other as 1/r at distances much
larger then magnetic penetration depthl forming relatively
robust triangular lattice. At lattice spacings much larger th
l their energy is reduced by a factor of the order of lnk as
compared to the usual Abrikosov vortex solutions and the
fore dominate the magnetic properties for strongly type
superconductors. The lower critical magnetic fieldHc1
5F0/4pl2 is reduced correspondingly by a factor 2lnk.

Magnetization nearHc1 instead of sharply rising with in-
finite derivative increases gradually as (H2Hc1)2. This
agrees very well with the experimental results for UPt3, see
Fig. 1 of Ref. 15. For fields higher then severalHc1 London

n

FIG. 8. Magnetic field of the isolated magnetic skyrmion as
function of distance from the centerr for different Zeeman cou-
pling and for the case ofrmax5300l ~see Fig. 3 caption!. ~a! g
50,0.5,0.7,0.9,1.0,1.1.~b! g50,20.5,20.7,20.9,21.0,21.1. In
both cases a smallerugu corresponds to a lower atr50 curve.
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approximation is not valid anymore since magnetic skyrm
ons will start to overlap. At distances between fluxons
order l ~or at the fieldHc18 ;Hc12 lnk) one expects tha
ordinary Abrikosov vortices, which carry one unit of ma
netic flux, become energetically favorable. The usual vor
picture has indeed been observed at high fields by Ya
et al.24 Curiously, our result on magnetization is similar
the conclusions of Burlachkovet al.25 who investigated
stripelike~quasi-one-dimensional! spin textures in triplet su-
perconductors. Magnetic skyrmions are quite stable obj
and they are not destroyed by small perturbations of ex
SO~3! symmetry of the original model Eqs.~3!–~5!. More-
over, deformed magnetic skyrmions might exist even at la
deviations from exact SO~3! symmetry. We demonstrate
this including Zeeman-like interaction Eq.~32!.

Let us list below the experimental features which can
low the identification of the magnetic skyrmions lattice.

~1! The lower critical field is significantly smaller tha
usually expected. For such strongly type II superconduc
as UPt3 , Sr2RuO4, or Sr2YRu12xCuxO6 with k;50–70 the
reduction amounts 8 times. AlthoughHc1 is expected to be
very small~less than 1 G! it is still measurable.

~2! Magnetization aboveHc1, but below crossover to
Abrikosov vortex latticeHc18 ;(F0/2pl2)ln k is markedly
distinct from the usual one due to long range nature of
magnetic skyrmions.

~3! The unit of flux quantization is different: 2F0.
J.

C.

,

et
-
f
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ct

e
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~4! The magnetic field profile is different: no exponenti
drop even at very sparse lattices.

~5! Superfluid densityucW u2 is almost constant throughou
the mixed state. There are no normal cores of the fluxo
This can be tested using the scanning tunneling microsc
technique.

~6! Due to the fact that there is no small normal co
where dissipation and pinning usually take place, one
pects that pinning effects are greatly reduced. Correspo
ingly, the critical current should be very small.

~7! The vortex lattice in the region aroundHc1 can melt
into the so-called lower field vortex liquid due to therm
fluctuations.26 The melting of the usual Abrikosov vorte
lattice is easy even in not very strongly fluctuating superc
ductors because the interaction between Abrikosov vort
is exponentially small. This is not so for magnetic skyrm
ons. Due to their long range 1/r interaction the lattice is more
robust and therefore no melting is expected.
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