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ALGORITHMIC ASPECTS OF NEIGHBORHOOD NUMBERS*

GERARD J. CHANGer, MARTIN FARBER:I:, AND ZSOLT TUZA

Abstract. In a graph G (V, E), E[v] denotes the set of edges in the subgraph induced by N[v]
v t u V: uv e E }. The neighborhood-covering problem is to find the minimum cardinality of a set C of

vertices such that E t E[ v]: v e C }. The neighborhood-independence problem is to find the maximum
cardinality of a set of edges in which there are no two distinct edges belonging to the same E[v for any v e V.
Two other related problems are the clique-transversal problem and the clique-independence problem. It is
shown that these four problems are NP-complete in split graphs with degree constraints and linear time algorithms
for them are given in a strongly chordal graph when a strong elimination order is given.

Key words, neighborhood-covering, neighborhood-independence, clique-transversal, clique-independence,
chordal graph, strongly chordal graph, split graph, NP-complete
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1. Introduction. The concept of neighborhood number was first introduced by
Sampathkumar and Neeralagi SN ]. Suppose that G (F, E) is a finite undirected graph
with vertex set F and edge set E. The (open) neighborhood N(v) of a vertex v is the set
ofvertices adjacent to v, and the closed neighborhoodN[v is { v } t3 N(v). A neighborhood-
covering set C is a set of vertices such that E t3 { E[ v ]: v e C }, where E[ v] is the set
of edges in the subgraph induced by N[ v ]. (This definition is slightly different from the
original one in [SN]; we follow the terminology in [LT] .) The neighborhood-covering
number pN(G) of G is the minimum cardinality of a neighborhood-coveting set in G. A
neighborhood-independent set of G is a set of edges in which there are no two distinct
edges belonging to the same E[v for any v e F. The neighborhood-independence number
aN(G) of G is the maximum size of a neighborhood-independent set in G. These two
parameters are related by a min-max duality inequality: aN(G) <= PN(G) for any graph
G. A graph is called neighborhood-perfect if aN(H) 0N(H) for every induced subgraph
HofG.

Two other related problems are defined as follows. In a graph G (V, E), a clique
is a set of pairwise adjacent vertices. A maximal clique is a clique of size >_-2 that is
maximal under inclusion. A clique-transversal set of G is a set of vertices that meets all
maximal cliques of G. As defined in [T], the clique-transversal number zc(G) of G is
the minimum cardinality of a clique-transversal set in G. We now introduce the concept
ofa clique-independent set, which means a collection ofpairwise disjoint maximal cliques.
The clique-independence number ac(G) ofG is the maximum size ofa clique-independent
set in G. There is also a min-max duality inequality: ac(G) <= rc(G) for any graph G.
Note that the clique-independence number ofa triangle-free graph is equal to its matching
number and hence can be computed in polynomial time.

Various properties ofpN(G), OIN(G), ’c(G), and at(G) have been studied in SN],
LT ], T ], AST ], and EGT ]. The aim of this paper is to investigate some problems
concerning the algorithmic complexity of determining these four parameters of a given
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ALGORITHMIC ASPECTS OF NEIGHBORHOOD NUMBERS 25

graph. Erdrs, Gallai, and Tuza [EGT] proved that the problem of finding the clique-
transversal number is NP-complete over the class of triangle-free graphs, and more gen-
erally over the class of graphs with girth at least g for any fixed g >- 4. Lehel and Tuza
[LT] gave an O(I 11 / IEI algorithm for finding PN(G) and aN(G) ofan interval graph
G. Wu [W] gave an O(I VI 3) algorithm for determining pN(G) and aN(G) of a strongly
chordal graph G.

In 3 we prove that the problems of finding pN(G), aN(G), zc(G), and ac(G) are
NP-complete over the class of split graphs with degree constraints. Section 4 gives linear
time algorithms for determining tN(G), oN(G), "rc(G), and ac(G) of a strongly chordal
graph G if a strong elimination order is available.

2. Terminology. The concept of chordal graph was introduced by Hajnal and Sur-
nyi HS in connection with the theory of perfect graphs; see [Go]. A graph is chordal
(or triangulated) ifevery cycle oflength greater than three has a chord (i.e., every induced
cycle is a triangle). One of the most important properties of a chordal graph G is that
its vertices have a perfect elimination order v, v2, Vn; i.e., for each _-< _-< n),
Ni[ vi is a clique, where Ni[x] is the closed neighborhood ofx in the subgraph Gi of G
induced by { vi, vi +1 vn }. Note that any maximal clique of a chordal graph G is
equal to some Ni[ vi ], but Ni[ vi] is not necessarily an maximal clique.

Two interesting subclasses of chordal graphs discussed in this paper are strongly
chordal graphs and split graphs. An s-sun (or incomplete s-trampoline) is a chordal graph
with a Hamiltonian cycle x, y, x2, Y2 Xs, Ys, x such that each Yi is of degree two.
A strongly chordal graph (or sun-free chordal graph) is a chordal graph without any s-
sun as an induced subgraph for all s >_- 3. It was proved in [F1 that a graph is strongly
chordal if and only if its vertices have a strong elimination order v, v2,..., vn; i.e., for
each <= <= n), Ni[l)j]

_
Ni[l)k] when vj, vk Ni[l)i] andj < k. Note that a strong

elimination order is always a perfect elimination order. Anstee and Farber [AF] gave
O( V 3) algorithms; Hoffman, Kolen, and Sakarovitch HKS gave an O( V 3) algo-
rithm; Lubiw [Lu] gave an O(I El log2 EI) algorithm; Paige and Tarjan [PT] gave an
O(I El log EI) algorithm; and Spinrad [S] gave an O(I VI 2) algorithm for recognizing
if a graph G (V, E) is strongly chordal and for finding a strong elimination order when
G is strongly chordal.

A graph G (V, E) is split if its vertex set Vcan be partitioned into a clique /’1 and
an independent set V2. Every split graph is chordal, and a natural perfect elimination
order is given by listing the vertices in F2 first and then the vertices in V1. Note that an
s-sun in which { x, x2, Xs } is a clique is a split graph.

3. Split graphs and NP-completeness. Let us recall the following two problems;
see [CN1], [CN2 ], and IF2 ]. A dominating set D of a graph G (V, E) is a set of
vertices such that every vertex not in D is adjacent to some vertex in D; i.e., V t_J ( N[ v ]:
v e D }. The domination number (G) ofG is the minimum cardinality of a dominating
set in G. A 2-stable set of G is a set of vertices in which any two distinct vertices are of
distance greater than 2. The 2-stability number a2(G) of G is the maximum cardinality
of a 2-stable set in G. Note that c2(G) -< di(G) for any graph G.

THEOREM 1. It is NP-complete to determine the neighborhood-covering number,
the clique-transversal number, and the domination number of a split graph with only
degree-2 vertices in the independent set.

Proof. Suppose that G (V, E) is a split graph without isolated vertices such that
Vis the disjoint union ofa clique V and an independent set V. Without loss ofgenerality,
we may assume that N[x] is a proper subset of V for any x e V (otherwise, we move
x from V2 to V ). So the only maximal cliques of G are Vl and N[x] for all x V2.
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26 G. J. CHANG, M. FARBER, AND ZS. TUZA

By the fact that N[x]
_
N[y] for any x e V2 and y e N(x), we can always find a

minimum neighborhood-coveting set C V. The same is true for clique-transversal
sets and dominating sets. In fact, these three terms are then identical, and so PN(G)
c(G) =/(G).

Note that split graphs are in one-to-one correspondence to hypergraphs in which
multiple edges are allowed. Vertices in the clique V of a split graph G correspond to
vertices of the hypergraph, and a nonisolated vertex y in the independent set V2 corre-
sponds to an edge, which is NG(y), of the hypergraph. It is then clear that di(G) is equal
to the transversal number of the corresponding hypergraph HG, which is the minimum
number of vertices meeting all edges. Hence the theorem follows from the fact that
determining the transversal number of a 2-uniform hypergraph (i.e., a graph) is NP-
complete; this problem is called the "vertex cover" problem and also the "hitting set"
problem on pp. 190 and 222, respectively, of GJ ].

THEOREM 2. It is NP-complete to determine the neighborhood-independence num-
ber, the clique-independence number, and the 2-stability number of a split graph with
only degree-3 vertices in the independent set.

Proof. A neighborhood-independent set of a split graph G must be of the form
{ x’x e E" x e S} for some 2-stable set S

_
V2. Moreover, a clique-independent set of G

is of the form { N[x]" x e S } for some 2-stable set S
_

V2. These, together with the fact
that any 2-stable set of G is a subset of V2, imply that CN(G) ac(G) c2(G).

Also, c2(G) is equal to the matching number, which is the maximum number of
pairwise disjoint edges, of the corresponding hypergraph H as described in the proof of
Theorem 1. Hence the theorem follows from the fact that determining the matching
number of a 3-uniform hypergraph is NP-complete; a special case of this problem is
called "three-dimensional matching" (see GJ, p. 221 ). [2]

Note that Chang and Nemhauser CN proved that it is NP-complete to determine
the domination number and the 2-stability number of a split graph without degree con-
straints. Moreover, the NP-completeness of the neighborhood-coveting/independence
problem was first observed by Lehel [L] by a different reduction. Let us note further
that Theorems and 2 remain valid under the assumption that the degrees of all vertices
in the independent set are equal to k for some k >= 3.

For any graph G (V, E), we define the neighborhood-split graph S(G) of G in the
following way. The vertex set of S(G) is V U E. In S(G), any two vertices of V are
adjacent, E is an independent vertex set, and an e e E is adjacent to a v e V if and only
if e e E[ v]. Note that S(G) has no isolated vertex if G has at least two vertices. The
following statement is immediately seen from the definitions.

PROPOSITION 3. For any graph G with at least one edge, tav(G) (S(G)) and
ON(G) c2(S(G)).

A structural relation between G and S(G) is given by the following result.
THEOREM 4. IfG is strongly chordal, then so is S( G).
Proof. Since G is strongly chordal, its vertices have a strong elimination order v,

v2 Vn. We order the vertices of S(G) as el, e2, em, 1,/)2, ln in such a
way that, for any ei (1)i, I)i2), ej (l)j, l)j2), < j, i < i2, jl < j2, we have that < jl
or (i j and i2 < j2). It is easy to check that this order is a strong elimination order
of S(G). Thus S(G) is strongly chordal.

Note that the strong elimination order of S(G) in the proof of Theorem 4 can be
obtained in linear time from a strong elimination order of G. By Proposition 3 and
Theorem 4, we can use the linear algorithms [F2], [HKS] for the domination number
and the 2-stability number to find the neighborhood-coveting number and the neigh-
borhood-independence number of a strongly chordal graph. However, S(G) has VI /
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ALGORITHMIC ASPECTS OF NEIGHBORHOOD NUMBERS 27

IEI vertices and O(I VI IEI) edges. So this method gives an O(I VI IEI) algorithm.
Actually, the algorithm in [W] is just this method without describing S(G).

4. Efficient algorithms in strongly chordal graphs. In this section, we derive efficient
algorithms for finding pN(G), aN(G), re(G), ac(G), and the corresponding optimum
solution sets of a strongly chordal graph G. Suppose that a strong elimination order v,
v2, vn of G is given. Note that this is also a perfect elimination order. For technical
reasons, we add an isolated vertex Vo to G.

Recall that Ni[x] respectively, Ni (x)) is the closed respectively, open neighborhood
of vertex x in the subgraph Gi of G induced by { vi, vi + 1, Vn }. For simplicity, we
call vi < vj if < j. For each vi V, denote by Vm,) the maximum element in N[v ];
i.e., m(i) max { j: vj

LEMMA 5. A clique-transversal set is a neighborhood-covering setfor any graph.
Proof. The lemma follows from the fact that each edge is contained in a maximal

clique.
LEMMA 6. In a graph, replacing each edge ofa neighborhood-independent set by a

maximal clique containing it yields a clique-independent set.
Lemmas 5 and 6, together with the min-max duality inequalities in 1, give that,

for any graph G,

(4.1) aN(G) <= ON(G) <= ’c( G) and aN(G) <= ac( G) <= ’c( G).

The idea of our algorithms is to find a clique-transversal set C, which is also a
neighborhood-covering set by Lemma 5, a clique-independent set Ic, and a neighborhood-
independent set IN such that CI Icl I1. If such sets are found, then they are
optimum solutions for the four problems, and all inequalities in (4.1) are equalities. This
provides an algorithmic proof for a special case of the following result.

THEOREM 7 (see [LT]). ac(G) aN(G) ON(G) rc(G) for any odd-sun-free
chordal graph G.

Algorithm NHD (NHD means NeighborHooD)

lo
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.

C;
Ic ",-- ;
IN,--- J;
identify all such that N[v] is a maximal clique;
fori= ltondo

if N[ vii is a maximal clique ml N;[v] C thn d
vp max { Vo } U (N[v] C); { Note that v < v now.

v min (N(v) Np[vp]);
IN IN
Ic Ic { Ni[v }
Vmi) max N[v];
CC {Vm.};
end if;

end for.

THEOREM 8. Algorithm NHDgives a minimum clique-transversal set C, a maximum
clique-independent set Ic, and a maximum neighborhood-independent set INfor a strongly
chordal graph G in linear time when a strong elimination order is given.

Proof. By steps 6, 11, and 12 of Algorithm NHD, the final C is a clique-transversal
set of G.

D
ow

nl
oa

de
d 

04
/2

8/
14

 to
 1

40
.1

13
.3

8.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



28 G. J. CHANG, M. FARBER, AND ZS. TUZA

In step 8, vj must exist; otherwise, Ni[ l)i] Np[ 1)p] would imply that Ni[ l)i is not
a maximal clique. Suppose that vivj and vi,v, (with i’ < i) are two distinct edges of
that are both in some E[lq]. Consider the set C at the beginning of iteration i, i.e.,
when step 8 is just done. For the case of q =< i’, since q <= i’ < < j, v,,(i,
Nq[Vi,]

_
Nq[Vi] Nq[VA; i.e., viv and vi,v, both are in E[l)m(i,)]. For the case of i’ <

q, since i’ < q <= m(i’), vi, vj Ni,[Vq]
_

Ni,[Vm(i’]; i.e., viv and vi,v, both are in
E[ vm(;,]. Note that l)m(i, . C, since, in iteration i’, we put vi,v, into IN and 1)m(i, into
C. By the choice of Vp and vj. (in steps 7 and 8), VpVi E and VpVj E, and Vp
for some vi,tvj,t - IN with m(i’) < m(i") < i. So Vp l)m(i, . Nm(i’)[ Vi c7. Nm(i,)[ Vj], which
contradicts vpvj E. Therefore IN is a neighborhood-independent set of G.

By Lemma 6, Ic is a clique-independent set of G. Since CI lcl INI, these
three sets are optimum solutions of these four problems.

Next, we show that Algorithm NHD has running time linear in VI / EI. First,
step 4 can be performed by Gavril’s linear algorithm; see G]. In iteration i, step 6 needs
INi[ vi]l operations to check if Ni[ vii N C . This can be done if C is represented
by a Boolean function fas follows:

1, ifieC,
f(i)=

0, ifiqC;

then we check iff(q) 0 for all vq e Ni[ vi]. Step 7 can also be done in the same way.
For step 8, we keep an array g( :n) whose values are all initially zero. At the

beginning of iteration i, g(l:n) contains values < i. To find v. of step 8, we first set
g(q) -- for all vq N[vp and then check if g(q) < for each vq N[ vi to obtain v.
Note that Vp N[ vi] and vp < vi imply that Np[ vp] Np[ l)i] c: N[ vi]. So step 8 needs
[Ni(vi)[ + [Np[Vp][ <= 2[N[vi][ operations.

Finally, steps 9, 10, and 12 need constant time, and step 11 needs [N[vi ][ time.
So the total running time is O( ,i deg v + 1)= O([V[ + [El).

We can modify Algorithm NHD slightly to get a simpler one as follows. First, we
delete step 4 from the algorithm. Then we replace step 6 by step 6’ as follows:

6’. if N v fq C then do.

Also, insert step 8.5 between steps 8 and 9, shown below:

8.5. if v9 does not exist then go to 13.

All results are the same, except that we need not identify all maximal cliques.
THEOREM 9. The modified algorithm gives a minimum clique-transversal set C, a

maximum clique-independent set Ic, and a maximum neighborhood-independent set IN
for a strongly chordal graph G in linear time when a strong elimination order is given.

Proof. The argument is the same as in the proof ofTheorem 8, except that we must
prove that, in iteration i, N;[ vi is a maximal clique if and only if vj. exists.

Note that if vj- does not exist, then either Ni (vi) J, and so Ni[ vi { vi } is not
a maximal clique; else Ni[ vi] Np[Vp], and so Ni[vi] is not a maximal clique.

On the other hand, suppose that v exists. Then Ni l)i) :#: , and so INi[ l)i - 2.
Suppose that Ni[vi] is not a maximal clique; i.e., Ni[vi is a subset of some maximal
clique Nq[ Vq], where Vq < vi. Note that Nq[ vq] C 4: J by the algorithm now, say
Vm(i’) Nq[ Vq] N C. Then vi,v/, viv; E[/)m(i,)]. By a similar argument as in the proof
ofTheorem 8, to prove that IN is neighborhood-independent, we obtain a contradiction.
So Ni[ vi] is a maximal clique.
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5. Concluding remarks. According to Theorems and 2, we cannot expect a good
characterization for the class of graphs G satisfying PN(G) =< k (or aN(G) -< k) if k is
large. We must note here that many graphs G contain some induced subgraph G’ in
which PN(G’) is much larger than pN(G) (and the same holds even for aN(G)). The
following problems, however, seem to be easier.

1. Let k by a given natural number. Characterize the graphs G in which pN(G’)
(and/or aN(G’)) is at most k for all induced subgraphs G’. (For k 1, the question is
easy; cf. LT ].)

2. Prove that every neighborhood-perfect graph is perfect LT ].
3. Characterize neighborhood-perfect graphs.
4. Determine the algorithmic complexity of finding pN(G) and aN(G) for planar

graphs.
5. Find similar estimates and characterizations for coveting and independence, when

Ek[ v is defined as the set of edges in the subgraph induced by the vertices of distance at
most k from v. (With this notation, El[v] E[v].)

Acknowledgment. The authors thank J. Lehel for discussions on the subject.
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