
Consistency management in a process environment

J.-Y.J. Chen a,*, S.-C. Chou b,1

a Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC
b Department of Information Management, Minghsin Institute of Technology, Hsinfong, Taiwan, ROC

Abstract

Software inconsistency is primarily caused by changes. Changing a software product may cause other products to change.

Moreover, changing a part of product (sub-product) usually causes other parts to change too. This paper covers software con-

sistency management supports of advanced process environment research (Aper) by (1) decomposing software products into sub-

products and establishing relationships among products and sub-products, and (2) de®ning trigger processes and consistency

conditions in relationships. When a (sub-)product is changed, relationships can be traced to identify the a�ected ones. Trigger

processes then dictate developers to handle the a�ected ones, which normally need to change accordingly. Meanwhile, consistency

conditions should be kept among (sub-)products. Violation of the conditions will result in exceptions, which require handling by

developers. Ó 1999 Elsevier Science Inc. All rights reserved.

Keywords: Process-centered software engineering environment (PSEE); Consistency management; Software change

1. Introduction

Software processes (software development processes)
are becoming more and more complicated. To facilitate
their control, process-centered software engineering en-
vironments (PSEEs) have been developed (Sutton Jr.
et al., 1995; Chen, 1997; Jaccheri and Conradi, 1993;
Belkhatir and Melo, 1994; Kaiser and Barghouti, 1988;
Peuschel and Schafer, 1992; Iida et al., 1993; Bandinelli
et al., 1993; Doppke et al., 1998). A PSEE provides a
process language to represent process programs, which
can be enacted (executed) in the PSEE.

PSEEs manage software products (i.e., documents,
including programs) as well as processes. As agreed,
software products change frequently. The change may
result in ripple e�ects, because products generally de-
pend on others. Handling change ripple e�ects is essen-
tial in software consistency management.

Most PSEEs (Sutton Jr. et al., 1995; Chen, 1997;
Jaccheri and Conradi, 1993; Belkhatir and Melo, 1994;
Kaiser and Barghouti, 1988; Peuschel and Schafer, 1992;
Iida et al., 1993) facilitate handling change ripple e�ects
by using dependency relationships, which can be traced
to identify those a�ected when a product is changed. To
further facilitate managing consistency, some PSEEs

(Sutton Jr. et al., 1995) de®ne predicates to monitor
consistency conditions. Violation of a predicate will re-
sult in an exception and cause developers to correct the
inconsistency. Nevertheless, consistency management in
most current PSEEs su�ers from the following short-
comings.

(1) Developers may need to spend too much time in
identifying the exact parts to change. When a software
product is changed, a PSEE identi®es those a�ected and
inform developers to change them. To change a software
product, developers should browse the product and
identify the exact parts to change. This could take much
time, as the size of a software product is normally large.

(2) Handling of intra-product change ripple e�ects
cannot be supported. In most PSEEs, dependency rela-
tionships are established between software products.
Therefore, handling inter-product change ripple e�ects
can be supported. However, changing a part of a
product may cause other parts to change, which is called
intra-product change ripple e�ect. Handling in this re-
gard does not seem to be supported in most PSEEs.

To overcome the above shortcomings, software
products should be decomposed in order to establish
both inter- and intra-product relationships. One of the
inter-product relationships is product dependency,
which can be established among sub-products of di�er-
ent products. When a part of a software product (i.e.,
sub-product) is changed, a PSEE traces dependency

The Journal of Systems and Software 47 (1999) 105±110
www.elsevier.com/locate/jss

* Corresponding author. E-mail: jychen@csie.nctu.edu.tw
1 E-mail: lvscchou@ms15.hinet.net

0164-1212/99/$ ± see front matter Ó 1999 Elsevier Science Inc. All rights reserved.

PII: S 0 1 6 4 - 1 2 1 2 (9 9) 0 0 0 3 0 - 8

relationships to identify the a�ected sub-products, and
informs developers to change them. Since sub-products
are normally much smaller than products in size, de-
velopers will not spend too much time in identifying the
exact parts to change. Regarding intra-product rela-
tionships, including decomposition and invocation re-
lationships and perhaps others, they can be de®ned
among sub-products of the same product. Those rela-
tionships facilitate managing intra-product change rip-
ple e�ects.

We have developed a PSEE called concurrent soft-
ware process language (CSPL) environment (Chen,
1997; Chen and Tu, 1994a, b; Chen and Chou, 1998).
Currently, it is being enhanced to support (1) consis-
tency management, and (2) process evolution (Chou and
Chen, 1999). Moreover, the CSPL environment will be
ported onto the Internet platform. A new name Aper
(advanced process environment research) is thus given
to this research. This paper discusses Aper consistency
management which, like other techniques (Grundy et al.,
1996; Huh, 1998), is facilitated by relationships that can
be traced to handle change ripple e�ects. Aper also
monitors consistency conditions, which resemble predi-
cates used in other techniques (Sutton Jr. et al., 1995;
Decker, 1987; Hsu and Imielinski, 1985). Techniques of
Aper consistency management are (1) decomposing
software products and managing inter- and intra-prod-
uct relationships, (2) de®ning trigger processes in rela-
tionships, and (3) keeping consistency conditions. The
relationships and trigger processes facilitate managing
change ripple e�ects. And, the consistency conditions
monitor consistency among software products.

In the following text, Section 2 gives an overview of
the Aper environment. Section 3 describes consistency
management in Aper. Section 4 depicts an example.
Finally, Section 5 gives the conclusions.

2. Aper overview

Aper is an Internet-based process environment. It is
composed of (1) the Aper language, (2) the Aper com-
piler, (3) the Aper server, (4) the object management
system (Aper OMS), and (5) multiple Aper clients. Aper
clients communicate with the Aper server through In-
ternet. See Fig. 1 for the environment architecture.

The Aper compiler compiles process programs to
generate Java code which will be enacted (executed) by
the Aper server. During process enactment, the Aper
server interacts with Aper clients to assign work to de-
velopers, and stores and retrieves software products
(objects) via the Aper OMS. The Aper language inherits
most CSPL syntax (Chen, 1997). However, products are
modeled as Aper classes. For encapsulation purposes, a
class is composed of its speci®cation and body (see
Fig. 2). Regarding activities in a process, they are
modeled as Aper activities (see Fig. 3).

3. Aper consistency management

Basic considerations for Aper consistency manage-
ment are the following.

(1) Decompose software products and manage inter-
and intra-product relationships: With product decompo-

Fig. 1. Apper environment architecture.

Fig. 2. Aper class.

106 J.-Y.J. Chen, S.-C. Chou / The Journal of Systems and Software 47 (1999) 105±110

sition, both inter- and intra-product relationships can be
established. The inter-product relationships, which are
established among sub-products of di�erent products,
facilitate managing inter-product change ripple e�ects.
For example, suppose that ``sub-product_a1'' of
``product_a'' depends on ``sub-product_b1'' of ``prod-
uct_b''. When ``sub-product_b1'' is changed, the inter-
product dependency relationships can be traced to
identify that ``sub-product_a1'' is a�ected. Developers
will then be informed to change the a�ected one. Since
``sub-product_a1'' is expected to be much smaller than
``product_a'' in size, the time needed to identify the ex-
act parts to change will presumably be reduced.

Intra-product relationships facilitate managing intra-
product change ripple e�ects. For example, suppose that
``sub-product_1'' invokes ``sub-product_2''. When the
latter is changed, the intra-product invocation relation-
ships can be traced to identify that the former is a�ected.
Developers will then be informed to change the a�ected
one. To reduce intra-product change ripple e�ects, a
sub-product can be decomposed into its interface and
body. As long as the interface is not changed, changing
the body will not a�ect others.

(2) De®ne trigger processes and consistency conditions
in relationships: A trigger process de®nes an event re-
sponse. Trigger processes de®ned in relationships are for
consistency management. For example, a trigger process
in the relationship ``DependOn'' will inform developers
to change those a�ected when a (sub-)product is chan-
ged. Normally, di�erent relationships possess di�erent
trigger processes.

Consistency conditions de®ne conditions that should
be kept among (sub-)products. For example, the speci-
®cation and design document of a system should possess
the same system name. Violation of a consistency con-
dition results in an exception, which will trigger the
corresponding exception handler. In Aper, consistency
conditions are de®ned in relationships.

Aper models relationships as relationship types,
which are de®ned in relationship units. Trigger processes
and consistency conditions are de®ned in relationship
types. Moreover, various widely-used relationships such
as ``DependOn'' and ``PartOf'' are built-in relationship

types in Aper. In the following subsections, relationship
unit, built-in relationship type, and change ripple e�ect
management are respectively described.

3.1. Relationship unit

An Aper relationship unit de®nes a relationship type.
It begins with the keyword ``relationship'' (see Fig. 4). A
relationship type can inherits another by using the
keyword ``new''. For example, in Fig. 4, the relationship
type ``x_DependOn'' inherits the type ``DependOn''.
Each relationship type has two methods, namely ``es-
tablish'' and ``dissolve''. They are for establishing and
dissolving relationships of that type, respectively. For
example, the following statement establishes a ``x_De-
pendOn'' relationship between the products ``System-
Design'' and ``SystemSpeci®cation''.

x DependOn:establish�SystemDesign;

SystemSpecification�;
One or more trigger processes can be de®ned in a

relationship type. A trigger process begins with the
statement ``on EventName(parameters) do'', where
``EventName'' is an event and the statements after the
``on'' statement will be enacted when the event occurs.
Aper provides the following events for consistency
management: (1) ``establish'', (2) ``dissolve'', and (3)
``change_n''. The ®rst and the second catch events of
establishing and dissolving relationships, respectively.
For example, the statement ``x_DependOn.estab-
lish(p1,p2)'' will trigger the ``establish'' event of the re-
lationship type ``x_DependOn''. Upon that event, the
trigger process de®ned after the statement ``on estab-
lish(p1,p2) do'' will be enacted, where ``p1'' and ``p2''
are parameters passed to the trigger process. Thirdly,
the ``change_n'' event catches the event of changing the
nth (sub-)product in a relationship. For example, the
statement ``on change_2(p1,p2) do'' de®nes a trigger
process that will be enacted when the second (sub-)
product in the relationship (i.e., ``p2'') is changed.

One or more consistency conditions can be de®ned in
a trigger process. A consistency condition begins with the
keyword ``keep'', followed by the condition de®nition

Fig. 3. Aper activity.

J.-Y.J. Chen, S.-C. Chou / The Journal of Systems and Software 47 (1999) 105±110 107

(see Fig. 4). If the condition is violated, the exception
handler following the keyword ``exception'' will be en-
acted to handle the inconsistency. For example, in
Fig. 4, when the name consistency (i.e., the condition
``p1.name� p2.name'') is violated, the trigger process
will inform a developer to correct that error.

3.2. Built-in relationship type

Aper provides the following built-in relationship
types, in which the ®rst is used for inter-product rela-
tionships and the others for intra-product.

(1) The type ``DependOn'' de®nes dependency rela-
tionships among products or among sub-products of
di�erent products. Changing a (sub-)product will enact
a trigger process to change those dependent on it. This
relationship can be established using the following for-
mat, where the former (``product_a'') depends on the
latter (``product_b'').

DependOn:establish�product a; product b�;
(2) The type ``PartOf'' de®nes decomposition rela-

tionships between a product and its sub-products. If
necessary, the relationships can be de®ned between a
sub-product and its sub-products. That means both
products and sub-products can be decomposed in Aper.
With the relationships, when a (sub-)product is retrieved
for manipulation (e.g., browsing, reusing, or updating),
its sub-products will also be retrieved. This relationship
can be established using the following format, where the
former is a sub-product of the latter.

PartOf:establish�sub-product; product�;

(3) The type ``Invoke'' de®nes invocation relation-
ships among (sub-)products. Changing an invoked
(sub-)product will enact a trigger process to change the
possibly multiple invoking ones. This relationship can
be established using the following format, where the
former (``product_a'') invokes the latter (``product_b'').

Invoke:establish�product a; product b�;
(4) The type ``InterfaceOf'' separates product inter-

face from body. As long as the interface of a (sub-)
product remains unchanged, changing its body will not
a�ect others. This idea is directly inherited from infor-
mation hiding, which dramatically reduces change ripple
e�ects. This relationship can be established using the
following format:

InterfaceOf:establish�product interface; product body�;

3.3. Change ripple e�ect management

Change ripple e�ects are managed through the co-
operation of Aper OMS and Aper server. Aper OMS
detects the following events during process enactment:
(1) the establishment of a relationship, (2) the dissolu-
tion of a relationship, and (3) the change of a (sub-)
product. The events detected are then sent to the Aper
server, which will enact the trigger processes corre-
sponding to the events. For example, suppose that a
``x_DependOn'' (see Fig. 4) relationship between ``Sys-
temDesign'' and ``SystemSpeci®cation'' has been estab-
lished by the following statement:

x DependOn:establish�SystemDesign;

SystemSpecification�;

Fig. 4. Aper relationship unit.

108 J.-Y.J. Chen, S.-C. Chou / The Journal of Systems and Software 47 (1999) 105±110

When ``SystemSpeci®cation'' is changed, the Aper OMS
will detect the event ``change_2'' (see Section 3.1 for the
de®nition of the event ``change_2''). The event, together
with the product names ``SystemDesign'' and ``System-
Speci®cation'', will be sent to the Aper server. This will
cause the Aper server to enact the trigger process ``on
change_2''.

The Aper OMS also monitors consistency conditions
de®ned in relationship types. If a condition is violated,
the Aper OMS will raise the corresponding exception to
inform the Aper server, which will enact the handler of
the exception.

4. An example

The speci®cation and design document of a simpli®ed
supermarket management system is used as an example
here. Requirements for the system are described below.

The supermarket management system manages the
stock levels and re-order levels of goods. If the
stock level of an item is under its re-order level,
the system will order the item from a supplier.
The system also manages employee status.

The system's (sub-)products and relationships are
shown in Fig. 5. In Fig. 5, the system speci®cation is
decomposed into three sub-speci®cations, namely ``In-
ventorySpec'', ``OrderSpec'', and ``EmployeeSpec''.
Moreover, the design document is decomposed into
``InventoryDesign'', ``OrderDesign'', and ``Employee-
Design'', where the former two are further decomposed.
The sub-designs of ``InventoryDesign'' and ``OrderDe-
sign'' are separated into their interfaces and bodies. For
example, ``PlaceOrder'', which is a sub-design of ``Or-
derDesign'', is separated into the interface ``PlaceOr-
derInterface'' and the body ``PlaceOrderBody''. Note

that the sub-design ``PlaceOrder'' is not shown in Fig. 5,
because it is composed of its interface and body.

Suppose that the sub-speci®cation ``OrderSpec'' is
changed. Then, the invocation relationship between
``OrderSpec'' and ``InventorySpec'' will cause the latter
to change accordingly. Note that the change is accom-
plished by enacting trigger processes de®ned in the built-
in relationship type ``Invoke''. Moreover, the
dependency relationship (``x_DependOn'') between
``OrderSpec'' and ``OrderDesign'' will cause the latter to
change by enacting the trigger process ``on change_2''
de®ned in the relationship type ``x_DependOn'' (see
Fig. 4). Note that the following two consistency condi-
tions are de®ned in ``x_DependOn'': (1) ``p1.name-
� p2.name'' and (2) ``p1.paradigm� p2.paradigm''. The
former requires that the depending and depended
products should have the same name, while the latter
requires that those products should be of the same
paradigm (e.g., object-oriented and function-oriented).

When changing ``OrderDesign'', let us assume that its
sub-design ``PlaceOrder'' is changed. Then, if the inter-
face of ``PlaceOrder'' (i.e., the document ``PlaceOrder-
Interface'') is not changed, nothing will be a�ected.
However, if the interface is changed, the document
``CheckStockLevelBody'' will be a�ected owing to the
invocation relationship. The a�ected should then be
changed by enacting a trigger process de®ned in the
built-in relationship type ``InterfaceOf''.

5. Conclusions

This paper discusses consistency management in the
Aper environment, which is supported by managing
change ripple e�ects using the following techniques: (1)
decomposing software products and managing inter-
and intra-product relationships, and (2) de®ning trigger
processes and consistency conditions in relationships.

Fig. 5. Relationships between the supermarket speci®cation and design document.

J.-Y.J. Chen, S.-C. Chou / The Journal of Systems and Software 47 (1999) 105±110 109

Relationships can be traced to identify those a�ected
when a (sub-)product is changed. Trigger processes can
then inform developers to handle the a�ected ones.
And, consistency conditions are monitored to enforce
(sub-)product consistency.

In summary, Aper consistency management o�ers the
following features.

(1) Decompose software products to allow establish-
ing inter- and intra-product relationships. With them,
handling of both inter- and intra-product change ripple
e�ects can be supported. Moreover, since sub-products
can be much smaller than products in size, developers
need not spend too much time in identifying the exact
parts of a product to change.

(2) Trigger processes can be de®ned in relationship
types to catch and handle events that are relevant to
consistency management. In addition, consistency con-
ditions and their exception handlers can be de®ned to
enforce consistency.

(3) Aper relationship unit is capable of de®ning all
kinds of relationships and extending the built-in rela-
tionship types. This is expected to increase the ¯exibility
of consistency management.

Acknowledgements

The authors wish to thank ARES Corporation for
their suggestion during our visit there. This research is
sponsored by the National Science Council in Taiwan
under Grant NSC88-2213-E-009-035.

References

Belkhatir, N., Melo, W.L., 1994. Supporting software development

process in Adele 2. Comput. J. 37 (2), 621±628.

Bandinelli, S.C., Fuggetta, A., Ghezzi, C., 1993. Software process

model evolution in the SPADE environment. IEEE Trans.

Software Eng. 19 (12), 1128±1144.

Chen, J.-Y., Tu, C.-M., 1994a. An Ada-like software process language.

J. System Software 27 (1), 17±25.

Chen, J.-Y., Tu, C.-M., 1994b. CSPL: a process-centered environment.

Inform. Software Tech. 36 (1), 3±10.

Chen, J.-Y.J., 1997. CSPL: An Ada95-like, Unix-based process

environment. IEEE Trans. Software Eng. 23 (3), 171±184.

Chen, J.-Y.J., Chou, S.-C., 1998. Enacting object-oriented methods by

a process environment. Inform. Software Tech. 40(5±6), 311±325.

Chou, S.-C., Chen, J.-Y.J. Process evolution support in concurrent

software process language environment. Inform. Software Tech., to

appear.

Decker, H., 1987. Integrity enforcement on deductive databases. In:

Proceedings of the First International Conference on Expert

Database Systems, pp. 381±396.

Doppke, J.C., Heimbigner, D., Wolf, A.L., 1998. Software process

modeling and execution within virtual environments. ACM Trans.

Software Eng. Methodology 7 (1), 1±40.

Grundy, J.C., Hosking, J.G., Mugridge, W.B., 1996. Supporting

¯exible consistency management via discrete change description

propagation. Software Pract. Experience 26 (9), 1053±1083.

Hsu, A., Imielinski, T., 1985. Integrity checking for multiple updates.

In: Proceedings of the ACM-SIGMOD Conference on Manage-

ment of Data, Austin, pp. 152±168.

Huh, S.-Y., 1998. An object-oriented database model for a change

management framework in workgroup computing systems. Inform.

Software Tech. 40 (2), 79±92.

Iida, H., Mimura, K.-I., Inoue, K., Torii, K., 1993. Hakoniwa:

Monitor and navigation system for cooperative development based

on activity sequence model. In: Proceedings of the Second

International Conference on the Software Process, IEEE Computer

Society, pp. 64±74.

Jaccheri, M.L., Conradi, R., 1993. Techniques for process model

evolution in EPOS. IEEE Trans. Software Eng. 19 (12), 1145±1156.

Kaiser, G.E., Barghouti, N.S., 1988. Database support for knowledge-

based engineering environments. IEEE Expert 3 (2), 18±32.

Peuschel, B., Schafer, W., 1992. Concepts and implementation of rule-

based process engine. In: Proceedings of the 14th International

Conference on Software Engineering, pp. 262±279.

Sutton Jr., S.M., Heimbigner, D., Osterweil, L.J., 1995. APPL/A: A

language for software process programming. ACM Trans. Soft-

ware Eng. Methodology 4(3) 221±286.

Jen-Yen Jason Chen received a B.S. degree in Industrial Engineering
from Tung Hai University, Taiwan; an M.S. degree in Industrial En-
gineering, an M.S. degree in Computer Science, and a Ph.D. degree
(1986) in Computer Science and Engineering from the University of
Texas at Arlington. He is now a professor in the Department of
Computer Science and Information Engineering, National Chiao Tung
University, Taiwan. Dr. Chen won Top Scholar in the assessment of
system and software engineering scholars in 1995. He specializes in
software process programming and environment. And, he is a senior
member of IEEE.

Shih-Chien Chou received a Ph.D. degree in computer science and in-
formation engineering in 1996 from National Chiao Tung University,
Taiwan, ROC. Since 1997 he has served as an assistant professor in the
Department of Information Management, Minghsin Institute of
Technology, Taiwan, ROC. His research interests include software
engineering, process-centered software engineering environment, ob-
ject-oriented analysis and design, and software reuse.

110 J.-Y.J. Chen, S.-C. Chou / The Journal of Systems and Software 47 (1999) 105±110

