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Abstract

The (n; f; k) system consists of n components ordered in a line or a cycle, while the system fails if, and only if, there
exist at least f failed components or at least k consecutive failed components. For the linear (n; f; k) system with equal
component reliabilities, the system reliability formula was given by Sun and Liao (1990). In this paper, we obtain the
system reliability formulas for the linear and the circular systems with di�erent component reliabilities by means of a
Markov chain method. c© 1999 Elsevier Science B.V. All rights reserved
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1. Introduction

As the systems in real world become more and more complicated, the notion of multiple failure criteria
for systems is more important. The (n; f; k) system is such an example. The (n; f; k) system consists of n
components ordered in a line or a cycle, while the system fails if, and only if, there exist at least f failed
components or at least k consecutive failed components. The concept of an (n; f; k) system was �rst raised
by Tung (1982) in a slightly di�erent way for an application to a complex system such as the infrared (IR)
detecting and signal processing portion of a system. The IR system consists of 112 detector channels and 28
MUX cards. The failure criteria are the occurrence of any of the following conditions:
1. more than �ve dead or noisy channels,
2. three or more dead or noisy channels adjacent to one another,
3. one or more dead or noisy channels in the central 10% of the array.
Sun and Liao (1990) generalized Tung’s failure model, with criterion (3) removed. They called it the (n; f; k)
system (note that their de�nition of f is slightly di�erent from ours). The (n; f; k) system becomes popular
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as it models many practical problems, such as automatic payment systems in banks (Sun and Liao, 1990),
evaluation of reliabilities for furnace systems (Zuo and Wu, 1996).
The system reliability formula for the linear (n; f; k) system with equal component reliabilities was given

by Sun and Liao (1990). The purpose of this paper is to present the system reliability formulas for the linear
and the circular (n; f; k) system with di�erent components reliabilities. We employ a Markov chain method
for the solution. Numerical examples are illustrated.

2. Markov chain representation for (n; f; k) systems

As the (n; f; k) system becomes the well-known f-out-of-n : F system for the case of f6k, in this paper
we only consider the case of f¿k.
We �rst give the system reliability formula for the linear (n; f; k) system in which component i has a

working probability pi.
The Markov chain method was �rst employed by Fu (1986), Fu and Hu (1987), and subsequently by Chao

and Fu (1989,1991) in the study of system reliabilities. (For historical interest, the term “�nite Markov chain
imbedding” was formally introduced by Fu and Koutras 1994.) They showed that many important systems,
such as series system, standby systems, k-out-of-n systems, consecutive k-out-of-n : F systems, deterioration
systems, and repair systems, can be embedded into a Markov chain {Y (t)} de�ned on the state space S =
{1; 2; : : : ; N} and the discrete index space T = {1; 2; : : : ; n} while the system fails if there exists t0 (with
16t06n) such that Y (t) = N for all t06t6n.
For the (n; f; k) system with f¿k, we de�ne the state space for process Y (t) as

S = {(i; j): 06i6k − 1 and i6j6f − 1} ∪ {sN};
where (i; j) indicates a working state in which the system (1; 2; : : : ; t) has failed last i components but the
(t− i)th component working and the system (1; 2; : : : ; t) has j failed components, and sN indicates the state in
which the system fails. We may view sN as a join state of failed sub-states (i; j) while either k6i or f6j,
there are

N = |S|= (2f − k + 1)k=2 + 1
states.
For convenience, we re-label state (i; j), with 06i6k − 1 and i6j6f − 1, as state s(2f−i−1)i=2+j+1. In

other words, we regard

• state (0; 0) as state s1, state (0; 1) as state s2; : : : ; state (0; f − 1) as state sf,
• state (1; 1) as state sf+1, state (1; 2) as state sf+2; : : : ; state (1; f − 1) as state s2f−1,
• state (2; 2) as state s2f, state (2; 3) as state s2f+1; : : : ; state (2; f − 1) state s3f−2,

...

• state (k−1; k−1) as state sN−f+k−1, state (k−1; k) as state sN−f+k ; : : : ; state (k−1; f−1) as state sN−1.
We say that {Y (t)} is a Markov chain with transition matrix

�t(n) =




A(1)f×f B(1)f×(f−1) 0 0 C(1)f×1

A(2)(f−1)×f 0 B(2)(f−1)×(f−2) 0 C(2)(f−1)×1
...

...
...

...
...

A(k)(f−k+1)×f 0 0 B(k)(f−k+1)×(f−k) C
(k)
(f−k+1)×1

0 0 0 0 1



N×N

;
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where

A(i)(f−i+1)×f =




i
0 : : : 0 pt

. . .
pt


 for i = 1; 2; : : : ; k;

B(i)(f−i+1)×(f−i) =



pt
. . .
pt
0


 for i = 1; 2; : : : ; k − 1;

B(k)(f−i+1)×(f−k) = 0;

C(i)(f−i+1)×1 = ( 0 : : : 0 qt )
T for i = 1; 2; : : : ; k − 1;

C(k)(f−k+1)×1 = ( qt : : : qt )
T:

It is clear that {Y (t)} is a Markov chain in which self-transitions for the states s1; s2; : : : ; sf form the
sub-matrix A(1)f×f, the transitions sf+1→ s2; sf+2→ s3; : : : ; s2f−1→ sf form the submatrix A(2)(f−1)×f; : : : ; the

transitions sN−f+k−1→ sk ; sN−f+k → sk+1; : : : ; sN−1→ sf form the submatrix A(k)(f−k+1)×f; the transitions

s1→ sf+1; s2→ sf+2; : : : ; sf−1→ s2f−1 form the submatrix B
(1)
f×(f−1), the transitions sf+1→ s2f; sf+2→ s2f+1;

: : : ; s2f−2→ s3f−3 form the submatrix B
(2)
(f−1)×(f−2); : : : ; the transitions sN−2f+2k−3→ sN−f+k−1; sN−2f+2k−2→

sN−f+k ; : : : ; sN−f+k−3→ sN−2 form the submatrix B(k−1)(f−k)×(f−k−1); the transition sf→ sN forms the submatrix

C(1)f×1, the transition s2f−1→ sN forms the submatrix C
(2)
(f−1)×1; : : : ; the transition sN−f+k−2→ sN forms the sub-

matrix C(k−1)(f−k)×1, the transitions sN−f+k−1→ sN ; sN−f+k → sN ; : : : ; sN−1→ sN form the submatrix C(k)(f−k+1)×1;
the transition sN → sN forms the submatrix 1.
We summarize the transition rules as follows.

1. Each i (16i6f) has a self-transition and min{i − 1; k − 1}+ 1 inputs (including the self-transition).
2. Each j (for all j except the down state) has 2 outputs, since every component has two states – “working
state” and “failed state”.

Thus, if we assume that the initial probabilities are �0 = (1; 0; : : : ; 0), then the system reliability is

RL(n; f; k) = �0
n∏
t=1

�t(n)UT
0 ;

where U0 = (1; : : : ; 1; 0)1×N .
It takes N 2 multiplications and (N − 1)2 additions to calculate �0�1(n). If we treat both multiplication and

addition as unit operations, then computing �0�1(n) costs O(N 2) operations. Thus it costs O(nN 2) operations
to compute �0

∏n
t=1 �t(n)U

T
0 .

Next, we consider the circular (n; f; k) system. For the system to work, the necessary condition is that the
line must end with exactly i failed components for some 06i6k − 1. We treat each such case separately.
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For example, consider the case of exactly i failed components, we will break the cycle between components
n − i and n − i − 1, and treat the �rst i + 1 components with �xed states as the initial state of a line with
n − i − 1 components. The initial state is the state (i; i), or sif−i(i−1)=2+1, and the initial probability �i is a
vector with pn−i

∏i−1
m=0 qn−m at position if− i(i−1)=2+1 and 0 elsewhere. Finally, we add up the reliabilities

from various initial states to obtain

RC(n; f; k) =
k−1∑
i=0

pn−i
i−1∏
m=0

qn−m�i
n−i−1∏
t=1

�t(n− i − 1)UT
0 :

The computing of pn−i
∏i−1
m=0 qn−m�i

∏n−i−1
t=1 �t(n − i − 1)UT

0 needs O(nN 2) operations. Hence, it needs
O(knN 2) operations to compute RC(n; f; k;pj).
We conclude this section by noting that for the i.i.d. case, Hwang (1986) obtained

RC(n; f; k) =
f−1∑
j=0

NC( j; n; k)pn−jq j;

where

NC( j; n; k) =
n

n− j
∑
i¿0

(−1)i
(
n− j + 1

i

)(
n− kj
n− j

)

is the number of ways of arranging j failed components and n − j working components into a cycle that
contains no k consecutive failed components.

3. Numerical examples

For a linear (n; f; k) = (20; 6; 4) system, with component reliabilities pi = 0:9 + 0:01i (16i610) and pj =
0:55 + 0:02j (116j620), we have N = 19 and the Markov chain transition graph is as follows:
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The Markov transition matrix is

Using the Mathematica software, we get

RL(20; 6; 4) = �0
20∏
t=1

�t(20)UT
0 = 0:989292:

For a circular (n; f; k)=(20; 6; 4) system with the same component reliabilities as the linear system, we get

RC(20; 6; 4; s1) = 0:940946;

RC(20; 6; 4; s7) = 0:0451895;

RC(20; 6; 4; s12) = 0:00290479;

RC(20; 6; 4; s16) = 0:000205044:

So the system reliability is

RC(20; 6; 4) =
3∑
i=0

RC(20; 6; 4; s6i−i(i−1)=2+1) = 0:989245:
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