
Two-machine ¯owshop scheduling with bicriteria problem

Fuh-Der Choua, Ching-En Leeb,*
aDepartment of Industrial Engineering and Management, Van Nun Institute of Technology, Taoyuan, Taiwan

bDepartment of Industrial Engineering and Management, National Chiao Tung University, Hsin Chu, 1001 Ta Hsueh
Road, Hsinchu 30050, Taiwan

Abstract

This paper attempts to solve a two-machine ¯owshop bicriteria scheduling problem with release dates
for the jobs, in which the objective function is to minimize a weighed sum of total ¯ow time and
makespan. To tackle this scheduling problem, an integer programming model with N 2+3N variables
and 5N constraints where N is the number of jobs, is formulated. Because of the lengthy computing
time and high computing complexity of the integer programming model, a heuristic scheduling
algorithm is presented. Experimental results show that the proposed heuristic algorithm can solve this
problem rapidly and accurately. The average solution quality of the heuristic algorithm is above 99%
and is much better than that of the SPT rule as a benchmark. A 15-job case requires only 0.018 s, on
average, to obtain an ultimate or even optimal solution. The heuristic scheduling algorithm is a more
practical approach to real world applications than the integer programming model. # 1999 Published
by Elsevier Science Ltd. All rights reserved.

Keywords: Two-machine ¯owshop; Bicriteria scheduling; Flow time; Makespan

1. Introduction

Johnson's rule [8] of minimizing makespan (Cmax) in the two-machine ¯owshop scheduling
environment within a polynomial time, presented in 1954, has received considerable interest in
related ®elds [3,6,9±12,16]. Minimization of total ¯ow time (F ) or mean ¯ow time (F

-
) in the

two-machine ¯owshop scheduling environment have received increasing attention and have
been proved to be a NP-complete problem [5]. Ignall and Schrage [7] ®rst proposed a branch-

Computers & Industrial Engineering 36 (1999) 549±564

0360-8352/99/$ - see front matter # 1999 Published by Elsevier Science Ltd. All rights reserved.
PII: S0360-8352(99)00149-7

www.elsevier.com/locate/dsw

* Corresponding author. Tel.: +86-3-5712121-57311; fax: +86-3-5722392.
E-mail address: cclee@cc.nctu.edu.tw (C.E. Lee).



and-bound procedure to obtain an optimal solution for this problem. Van De Velde [16] and
Hoogeveen and Van De Velde [6] developed di�erent lower bound determination formulae to
facilitate the e�ciency of the branch-and-bound procedure. Kohler and Steiglitz [9] and Croce
et al. [3] suggested di�erent heuristic algorithms to obtain the approximate solution. Only one
criterion (Cmax, F, or F

-
) was considered in these studies. However, a decision maker usually

needs to consider two or more criteria at the same time. An optimal schedule under a speci®c
criterion may be poor under another criterion. Therefore, a multi-criteria two-machine
¯owshop scheduling problem is important. Selen and Hott [14] and Wilson [17] developed
integer programming models to minimize the weighted sum of total ¯ow time and makespan.
Rajendran [12] formulated the problem to minimize the total ¯ow time where makespan was
optimal. He proposed not only a branch-and-bound algorithm to obtain the optimal schedule
but also two heuristics for improving the solution e�ciency. Nagar et al. [10] presented a
branch-and-bound algorithm to solve the two-machine ¯owshop scheduling problem, for which
the objective function was to minimize a weighted sum of total ¯ow time and makespan, and
proposed a heuristic approach to ®nd the upper bound for the branch-and-bound algorithm.
In addition, Nagar et al. [11] developed a heuristic algorithm by integrating a branch-and-
bound procedure and a genetic algorithm to ®nd the approximate solution, under the objective
function of the weighted sum of mean ¯ow time and makespan.
The above mentioned studies assume that the job available times and machine ready times

are all at time 0. In literature, dynamic scheduling has also been widely studied [1,4]. Church
and Uzsoy [2] focused on the dynamic scheduling problem to minimize the maximal lateness
(Lmax) of a single machine or parallel identical machines and proposed an event-driven periodic
rescheduling policy to decompose the dynamic scheduling problem into a series of static ones.
Sun and Lin [15] presented a dynamic scheduling framework which is carried out by solving a
series of static backward scheduling problems. A rolling time window approach was adopted to
decompose the job shop dynamic scheduling problem, whose objective function was to
minimize the total weighted ¯ow time and to satisfy all due-date constraints, into a series of
static backward scheduling problems. Roy and Zhang [13] developed a fuzzy logic based
dynamic scheduling algorithm for the job shop scheduling problem.
To increase system performance of a two-machine ¯owshop, the lowering of both

throughput time and work in process (WIP) as much as possible is important. The scheduling
criterion of makespan minimization can e�ectively reduce the throughput time while the
scheduling criterion of total ¯ow time minimization can e�ectively reduce work in process. This
paper attempts to minimize the weighted sum of these two scheduling criteria in a static
¯owshop environment with release dates for the jobs. Assumptions made in this paper are:

1. setup time is known and is included in the processing time;
2. machine preemption is disallowed, each operation, once started, must be completed before

another operation may be started on the same machine;
3. machines are stable and remain available throughout the scheduling period;
4. no job may be processed on more than one machine simultaneously;
5. a machine may only process one job at a time.

An integer programming model with N 2+3N variable and 5N constraints for the static
scheduling problem is formulated in this work. Although the integer programming model can

F.-D. Chou, C.-E. Lee / Computers & Industrial Engineering 36 (1999) 549±564550



generate the optimal schedule, it is slow and does not always obtain a good schedule within an
allowable time (a very large pivoting number, 900,000) for a large problem. Therefore, a
heuristic scheduling algorithm is designed so that the two-machine ¯owshop scheduling with a
bicriteria problem can be solved quickly and accurately.
In the following section, notations are de®ned. The following two sections describe the

integer programming model and the heuristic scheduling algorithm. The next section
exempli®es the heuristic works. Randomly generated experimental cases are tested and the
results are analyzed. The e�ectiveness of the proposed heuristic algorithm is then
demonstrated and presented in the following section. The last section describes Discussion
and Conclusions.

2. Notation and de®nitions

2.1. Known variables

N number of jobs
a weight for the total ¯ow time
b weight for the makespan
Pi processing time of job i on the ®rst machine, i= 1, 2, . . . , N
Qi processing time of job i on the second machine, i = 1, 2, . . . , N
Ti job i's start available time in the ¯owshop, i = 1, 2, . . . , N
R1 the ready available time of the ®rst machine
R2 the ready available time of the second machine.

2.2. Decision variable

Zik if job i is scheduled at the kth rank to be processed, i= 1, 2, . . . , N; k= 1, 2, . . . , N,
Zik=1, job i is scheduled at the kth rank to be processed

Xik the ideal time on the second machine between the starting of the kth ranked job and the
completion of the k ÿ 1th ranked job, k = 1, 2, . . . , N

Yk for the kth ranked job, the time between its completion at the ®rst machine and its begin
processing at the second machine, k = 1, 2, . . . , N

Sk the starting time for the kth ranked job at the ®rst machine, k = 1, 2, . . . , N.

2.3. Auxiliary variables

Ak the kth ranked jobs processing time at the ®rst machine

Ak �
XN
i�1

ZikPi; k � 1, 2, . . . , N

F.-D. Chou, C.-E. Lee / Computers & Industrial Engineering 36 (1999) 549±564 551



Bk the kth ranked jobs processing time at the second machine

Bk �
XN
i�1

ZikQi; k � 1, 2, . . . , N

Ck the completion time for the kth ranked job at the second machine

Ck � R2 �
Xk
j�1

Xj �
Xk
j�1

Bj; k � 1, 2, . . . , N

or

C1 � R2 � X1 � B1

and

Ck � Ckÿ1 � Xk � Bk; k � 2, 3, . . . , N

Dk the kth ranked jobs start available time in the shop

Dk �
XN
i�1

ZikTi; k � 1, 2, . . . , N

Cmax the completion time of all jobs in the shop; i.e. makespan

Cmax � CN � R2 �
XN
j�1

Xj �
XN
j�1

Bj

Fk the kth ranked jobs ¯ow time in the shop

Fk � Ck ÿDk; k � 1, 2, . . . , N

F the summation of all jobs ¯ow times in the shop

F �
XN
k�1
�Ck ÿDk�

AS the set of scheduled jobs
NS the set of unscheduled jobs
y the number of the scheduled jobs in AS
OV the objective function which is (aF+bCmax)
OV� the best solution obtained until now
NR1 the ®rst machines ready time to process the next job
NR2 the second machines ready time to process the next job

F.-D. Chou, C.-E. Lee / Computers & Industrial Engineering 36 (1999) 549±564552



RT1a the completion time at the ®rst machine if the next job to be processed on the ®rst
machine is job a

RT1a � max�NR1, Ta� � Pa; a 2 NS

RT2a the completion time at the second machine if the next job to be processed on the
second machine is job a

RT2a � max�NR2, RT1a� �Qa; a 2 NS

Indexa the decision index if job a is the next schedule job

Indexa � �a�Nÿ y� � b��Xy�1 �Qa� � �a�Nÿ 1ÿ y� � b� minf�Xy�2 �Qb�g

a 2 NS, b 2 fNSÿ fagg
a� the job with the smallest Indexa

3. Integer programming model

As discussed in Section 1, this study solves the two-machine ¯owshop bicriteria scheduling
problem with release dates for the jobs. At ®rst, an integer programming model is formulated
as follows. The objective function is to minimize the weighted sum of the total ¯ow time and
makespan.
Objective function:

min Z � a
XN
k�1
�Ck ÿDk� � bCN �1�

Constraints:XN
i�1

Zik � 1; k � 1, 2, . . . , N �2�

XN
k�1

Zik � 1; i � 1, 2, . . . , N �3�

SkrDk; k � 1, 2, . . . , N �4�

S1rR1; Skr�Skÿ1 � Akÿ1�; k � 2, 3, . . . , N �5�

X1 � S1 � A1 � Y1 ÿ R2; Xk � Sk � Ak � Yk ÿ Ckÿ1; k � 2, 3, . . . , N �6�

F.-D. Chou, C.-E. Lee / Computers & Industrial Engineering 36 (1999) 549±564 553



Constraint (2) speci®es that only one job be scheduled at the kth job priority. Constraint (3)
de®nes that each job be scheduled only once. Constraint (4) stipulates that the begin processing
time of the kth ranked job be greater than or equal to its arrival time. Constraint (5) represents
that the begin processing time of the kth ranked job be greater than or equal to the previous
jobs completion time at the ®rst machine. Constraints (6) can be explained using Fig. 1 in
which the idle time on the second machine to process the kth ranked job (Xk) equals the
starting time for the kth ranked job on the ®rst machine (Sk) plus its processing time on the
®rst machine (Ak), plus the time between its completion on the ®rst machine and begin
processing time on the second machine (Yk), minus the completion time for the (k ÿ 1)th
ranked job at the second machine (Ck ÿ 1). All variables should be greater than or equal to
zero and Zik is a binary integer.

4. Heuristic scheduling algorithm

Although the integer programming model provides the optimal solution, variables and
constraints increase drastically when the number of jobs increases. Therefore, the optimal
solution is not always attainable within the allowable time. A heuristic scheduling algorithm is
therefore considered and employed. Fig. 2 shows the ¯ow chart of the heuristic algorithm. The
following is a step by step explanation of the algorithm.

1. Initialize. Let AS={;}; NS={1, 2, 3, . . . , N }; y=0; NR1=R1; NR2=R2; OV�= a very
large number=1031.

2. Calculate Indexa for each job in NS. Take the job with the smallest Indexa as job a� and go
to (3). If there is more than one job having the smallest Indexa, then arbitrarily select one as
a job a� and push the rest of the jobs as well as the corresponding information (current
values of AS, NS, y, NR1 and NR2) into a stack. These jobs and the corresponding
information in the stack are control points for further backtracking processes.

3. Append job a� to AS, delete job a� from NS, and let y=y+1. Recalculate NR1=max(NR1,
Ta�)+Pa� and NR2=max(NR2, NR1)+Qa�.

4. If y < (N ÿ 1), then repeat (2) to (4); otherwise go to (5).

Fig. 1. The Gantt chart to illustrate constraints (6).

F.-D. Chou, C.-E. Lee / Computers & Industrial Engineering 36 (1999) 549±564554



Fig. 2. The ¯owchart of the heuristic scheduling algorithm.

F.-D. Chou, C.-E. Lee / Computers & Industrial Engineering 36 (1999) 549±564 555



5. Assign the only remaining unscheduled job in NS to the last position of AS and delete it
from NS. Recalculate NR1 and NR2 and calculate OV. If OV < OV�, then OV�=OV.

6. Check if there is any job in the stack. When there are jobs in the stack, they must be the
jobs with the same smallest Indexa pushing into the stack at (2). These jobs need to be
backtracked to see whether a better schedule, OV�, can be obtained. Therefore, if there are
jobs in the stack, then pop up the top one in the stack as job a� to start the backtracking
process and continue from (3).

7. The ®nal result, OV�, of the heuristic scheduling algorithm is obtained and stop.

The `look-ahead' priority number, Indexa, plays the most important role in the above
mentioned procedure. It determines the job sequence to be scheduled. Incorrect calculation of
the value of Indexa yields a poor schedule. If the value of Indexa is not sensitive su�ciently,
excessive, unnecessary backtrackings occur. Thus, an appropriate formula to calculate Indexa is
essential to the heuristic scheduling algorithm. The objective function is rearranged as follows

a
XN
k�1
�Ck ÿDk� � bCN �

(XN
k�1
�a�N� 1ÿ k� � b��Xk � Bk�

)
� �aN� b�R2 ÿ a

XN
k�1

Dk

�
(XN

k�1
�a�N� 1ÿ k� � b��Xk � Bk�

)
� fconstantg

For minimization, the constant part is neglected. Therefore, the objective function can be
represented as SN

k�1�a�N� 1ÿ k� � b��Xk � Bk�. To make the value of Indexa accurate and
approach the global minima, Indexa considers the minimization of both the assignment of the
current stage (if job a is scheduled) and that of one stage further.

Indexa � �a�Nÿ y� � b��Xy�1 �Qa� � �a�Nÿ 1ÿ y� � b� minf�Xy�2 �Qb�g

Xy�1 � max� max�NR1, Ta� � Pa ÿNR2, 0�

Xy�2 � max� max�RT1a, Tb� � Pb ÿ RT2a, 0�; a 2 NS, b 2 fNSÿ fagg
The heuristic scheduling algorithm applies the greedy approach. In the kth stage

Table 1
Pertinent information for the example case

Job no. Pi Qi Ti

1 (J1) 11 22 3

2 (J2) 9 17 6
3 (J3) 3 2 4
4 (J4) 13 9 0

R1=4; R2=7

F.-D. Chou, C.-E. Lee / Computers & Industrial Engineering 36 (1999) 549±564556



(Nÿk + 1)(Nÿk ) calculations and comparisons are required. Since the Indexa is very e�ective
in this study, the number of backtrackings is few and can be negligible. Therefore, the heuristic
requires fN�Nÿ 1� � �Nÿ 1��Nÿ 2� � � � � � 3� 2� 2� 1 � 1

3N�Nÿ 1��N� 1�g calculations and
comparisons in total without counting the backtrackings.

5. Example illustration

A four-job, two-machine ¯owshop example is used to illustrate the decision process of the
proposed heuristic algorithm. The objective function is assumed to be 0.5F+ 0.5Cmax. Table 1
shows the pertinent information.
First of all, system status must be initialized: AS={;}, NS={1, 2, 3, 4}, y=0, NR1=R1=4,

NR2=R2=7, and OV�=1031. The Indexa for each job in NS is calculated. Since job 3 has the
smallest Indexa which is 45.0, a� is 3.

Stage 1

AS � f�g; NS � f1, 2, 3, 4g; y � 0; NR1 � R1 � 4; NR2 � R2 � 7; OV � � 1031

Index1 � �2:5�f max� max�4, 3� � 11ÿ 7, 0� � 22g � �2:0�f min��0� 17�, �0� 2�, �0� 9��g

� 2:5� 30� 2:0� 2 � 71:0

Index2 � �2:5�f max� max�4, 6� � 9ÿ 7, 0� � 17g � �2:0�f min��0� 22�, �0� 2�, �0� 9��g

� 2:5� 25� 2:0� 2 � 66:5

Index3 � �2:5�f max� max�4, 4� � 3ÿ 7, 0� � 2g � �2:0�f min��9� 22�, �7� 17�, �11� 9��g

� 2:5� 2� 2:0� 20 � 45:0

Index4 � �2:5�f max� max�4, 0� � 13ÿ 7, 0� � 9g � �2:0�f min��2� 22�, �0� 17�, �0� 2��g

� 2:5� 19� 2:0� 2 � 51:5

After completion of Stage 1, AS, NS, y, NR1, and NR2 need to be updated. The Indexa for
each unscheduled job in NS is then recalculated. a� is 2 because job 2 has the smallest value
of Indexa.
Stage 2

AS � f3g; NS � f1, 2, 4g; y � 1; NR1 � 7; NR2 � 9; OV � � 1031

F.-D. Chou, C.-E. Lee / Computers & Industrial Engineering 36 (1999) 549±564 557



Index1 � �2:0�f max� max�7, 3� � 11ÿ 9, 0� � 22g � �1:5�f min��0� 17�, �0� 9��g

� 2:0� 31� 1:5� 9 � 75:5

Index2 � �2:0�f max� max�7, 6� � 9ÿ 9, 0� � 17g � �1:5�f min��0� 22�, �0� 9��g

� 2:0� 24� 1:5� 9 � 61:5

Index4 � �2:0�f max� max�7, 0� � 13ÿ 9, 0� � 9g � �1:5�f min��2� 22�, �0� 17��g

� 2:0� 20� 1:5� 17 � 65:5

The process continues and it is shown in the following two stages, Stage 3 and 4.
Stage 3

AS � f3, 2g; NS � f1, 4g; y � 2; NR1 � 16; NR2 � 33; OV � � 1031

Index1 � �1:5�f max� max�16, 3� � 11ÿ 33, 0� � 22g � �1:0�f�0� 9�g � 1:5� 22� 1:0� 9

� 42:0

Index4 � �1:5�f max� max�16, 0� � 13ÿ 33, 0� � 9g � �1:0�f�0� 22�g � 1:5� 9� 1:0� 22

� 35:5

Stage 4

AS � f3, 2, 4g; NS � f1g; y � 3; NR1 � 29; NR2 � 42; OV � � 1031

Cmax � 64; F � 135; OV � 99:5; OV � � OV � 99:5

In Stage 4, the values of Cmax, F, and OV are calculated. Since no backtracking is necessary,
the heuristic algorithm stops here. The ®nal schedule is J3ÿJ2ÿJ4ÿJ1, while Cmax=64,
F= 135, and OV�=99.5. The solution is the same as the optimal solution obtained from the
integer programming model.

6. Experimental results

Experimental results are divided into three parts. The ®rst part gives the optimal solution or
the lower bound value, if the allowable pivoting limit is reached, as the basis to prove the
e�ectiveness of the heuristic scheduling algorithm. Another part provides the solution obtained
using the heuristic scheduling algorithm. The third part shows the result of the SPT rule as a
benchmark. All experimental tests have been run on a personal computer with Pentium

F.-D. Chou, C.-E. Lee / Computers & Industrial Engineering 36 (1999) 549±564558



Table 2
Execution time comparison and solution quality of the heuristic scheduling algorithm

Number
of jobs

Number of
optimal

solutions

Average execution
CPU time

(s)

Experiments when
optimal solutions

are obtained

Experiments when optimal
solution cannot be

obtained with pivot
number=900,000

The overall
average solution

quality

Integer
programming
model

Heuristic
scheduling
algorithm

Average
solution
quality

The worst case
solution quality

Average
solution
quality

The worst case
solution quality

Heuristic
scheduling
algorithm

SPT
rule

a=1.0, b=0.0
3 30 0.059 0.00033 100.00000 100.00000 ± ± 100.00000 97.70168
6 30 0.621 0.00133 99.41877 94.75138 ± ± 99.41877 91.10435

9 30 6.426 0.00200 99.25884 93.65854 ± ± 99.25884 90.97655
12 30 240.714 0.00533 98.34627 93.96985 ± ± 98.34627 88.46551
15 17 1522.998 0.00933 99.08953 97.18085 96.62405 94.65704 98.02116 85.17721

a=0.7, b=0.3
3 30 0.051 0.00067 100.00000 100.00000 ± ± 100.00000 98.26873

6 30 6.761 0.00633 99.06406 94.30866 ± ± 99.06406 94.19573
9 30 6.761 0.00633 99.19763 94.15297 ± ± 99.19763 90.80471
12 30 178.531 0.01167 98.39312 94.16156 ± ± 98.39312 89.24156
15 17 1543.937 0.01600 98.96973 96.75560 96.55758 94.53589 97.92447 86.02620

a=0.5, b=0.5
3 30 0.057 0.00100 100.00000 100.00000 ± ± 100.00000 98.18479

6 30 0.766 0.00200 99.33925 95.00000 ± ± 99.33925 94.14605
9 30 7.525 0.00400 99.17590 94.68504 ± ± 99.17590 91.26523
12 29 233.664 0.00700 98.54180 95.86288 90.84507 90.84507 98.28525 89.90443

15 16 1636.844 0.01467 99.33404 97.66573 96.35359 94.22955 97.94317 86.91586

a=0.3, b=0.7
3 30 0.053 0.00167 100.00000 100.00000 ± ± 100.00000 97.46342

6 30 0.956 0.00233 99.68452 98.14077 ± ± 99.68452 94.52946
9 30 8.699 0.00567 99.06549 90.59917 ± ± 99.06549 92.88967
12 28 304.222 0.01167 98.68871 95.95469 95.49057 94.84694 98.47550 91.01287

15 15 1502.332 0.01967 98.98651 97.39848 96.80478 94.45757 97.89565 85.49032

(continued on next page)

F
.-D

.
C
h
o
u
,
C
.-E

.
L
ee

/
C
o
m
p
u
ters

&
In
d
u
stria

l
E
n
g
in
eerin

g
3
6
(
1
9
9
9
)
5
4
9
±
5
6
4

5
5
9



Table 2 (continued )

Number

of jobs

Number of

optimal
solutions

Average execution

CPU time
(s)

Experiments when

optimal solutions
are obtained

Experiments when optimal

solution cannot be
obtained with pivot
number=900,000

The overall

average solution
quality

Integer
programming

model

Heuristic
scheduling

algorithm

Average
solution

quality

The worst case
solution quality

Average
solution

quality

The worst case
solution quality

Heuristic
scheduling

algorithm

SPT
rule

a=1.0, b=0.0

a=0.0, b=1.0
3 30 0.068 0.00167 100.00000 100.00000 ± ± 100.00000 96.26376
6 30 0.470 0.00333 99.44362 94.68085 ± ± 99.44362 94.95523
9 30 14.050 0.00967 99.28043 94.24460 ± ± 99.28043 91.58406

12 28 169.641 0.01567 99.71183 97.15909 97.83128 96.24060 99.58646 89.73439
15 16 743.747 0.02933 99.82535 99.00498 99.52324 98.61111 99.78507 86.57606

F
.-D

.
C
h
o
u
,
C
.-E

.
L
ee

/
C
o
m
p
u
ters

&
In
d
u
stria

l
E
n
g
in
eerin

g
3
6
(
1
9
9
9
)
5
4
9
±
5
6
4

5
6
0



133 MHz CPU and 24 Mb RAM. The machine ready available time and the job start available
time are both uniformly distributed between 0 and 10 [U(0, 10)]. The job processing time is
uniformly distributed between 1 and 25 [U(1, 25)]. The number of jobs ranges from 2 to 15.
Thirty sets of testing examples are experimented for each job number. Five sets of (a, b ) values
(1.0, 00), (0.7, 0.3) (0.5, 0.5), (0.3, 0.7), and (0.0, 1.0) for the objective function of each testing
example are calculated. The following formula is applied to determine the solution quality of
the heuristic scheduling algorithm.

solution quality �
�
1ÿ heuristic OVÿ optimal OV or lower bound

optimal OV or lower bound

�
� 100%

The integer programming model does not provide optimal solutions for some testing examples
within the allowable pivoting limit, so the solutions are substituted with lower bound values.
Therefore, the actual values of solution quality of the proposed heuristic algorithm are slightly
higher than those shown in Table 2 with the problem size of N= 3, 6, 9, 12 and 15.
The integer programming model solves the problem using LINDO V5.01 software package.

Since the allowable pivoting limit is set to 900,000, the computing time falls within about 2400
CPU (s). The lower bound value instead of the optimal solution will be used when the pivoting
limit is reached. The heuristic scheduling algorithm is programmed in a C++ language. Initial
data is stored in a ®le. The IO processing times produce some discrepancies. To estimate the
execution time accurately, each testing example is processed continuously 20 times and the
average CPU time is calculated.
According to Table 2, the average computing time of the integer programming model will

drastically increase as the number of jobs increases. When the number of jobs is greater than
12, some of the testing examples cannot get the optimal solutions within the allowable pivoting

Fig. 3. Average execution times at a=0.5 and b=0.5.

F.-D. Chou, C.-E. Lee / Computers & Industrial Engineering 36 (1999) 549±564 561



limit. Therefore, the average execution time of the integer programming model is somewhat
underestimated and the actual execution time is higher than the numbers shown in Table 2.
The average execution time of the heuristic scheduling algorithm also increases when the
number of jobs increase. Fig. 3 shows the curves of execution times of the proposed heuristic
and the IP-solver, respectively, at a=0.5 and b=0.5. When the number of jobs increases to 15,
the integer programming model requires at least 1389.977 s to produce a solution. However,
for 59 out of 150 sets of the experimental examples, lower bound solutions are used within the
allowable pivoting limit. The average execution time of the heuristic scheduling algorithm,
however, is only 0.018 s when N= 15. The corresponding solution quality of the heuristic
algorithm is fairly good which can be seen from Table 2. It can also be found that the solution
quality of the heuristic algorithm for any number of jobs (when N R 15) is much better than
that of the SPT rule in Table 2. However, the heuristic algorithm takes a little bit longer (no
more than 0.03 s) to yield a solution than the SPT rule does. The complexity of the heuristic
scheduling algorithm is fairly low, but it can quickly obtain an ultimate or optimal schedule.
Table 2 summaries the solution quality of the heuristic scheduling algorithm. When optimal

solution is obtained using the integer programming model, the average solution quality for
each job number is above 98.1565%. When the lower bound value is used because the pivoting
limit is reached, the average solution quality for each job number is slightly lower, but above
90.84507% where it is underestimated in this situation. In summary, the average solution
quality decreases as the number of jobs increases, because some testing examples cannot yield
optimal solutions under the allowable pivoting limit. Although the underestimation of the
solution quality dilutes the overall solution quality and lowers the average solution quality for
the heuristic algorithm, the overall average solution quality for each job number is above
97.73083% (Table 2). The overall average solution quality for 2100 (5�30�(15ÿ2+1)) sets of
testing examples is above 99%. Therefore, we can assure that the result of the heuristic
scheduling algorithm is fairly e�ective and pragmatic in this bicriteria scheduling environment.

Fig. 4. The solution quality for 15 jobs.

F.-D. Chou, C.-E. Lee / Computers & Industrial Engineering 36 (1999) 549±564562



Fig. 4 shows the solution quality for a 15-job case. In these 150 sets of testing examples, 91
sets can obtain optimal solutions within the allowable pivoting limit, while the remaining 59
sets cannot generate the optimal schedules through the integer programming model. Although
29 out of 150 optimal schedules are generated using the heuristic algorithm, the overall average
solution quality is above 98.31% for th 15-job case. In contrast to the slow integer
programming model, the heuristic scheduling algorithm is successful at producing ultimate
schedules and is quick.

7. Conclusion

To schedule a two-machine ¯owshop environment, most studies developed optimization
procedures for single criterion static scheduling problems. This paper attempts to solve a two-
machine ¯owshop bicriteria scheduling problem with release dates of jobs, in which the
objective function is to minimize a weighted sum of total ¯ow time and makespan. An integer
programming model and a heuristic scheduling algorithm are presented. Experimental results
show that the proposed heuristic algorithm solves this problem quickly and accurately. In
comparison to the SPT rule, the proposed heuristic algorithm yields much better solution
quality. The overall average solution quality of the heuristic algorithm is above 99%.
Processing of the 15-job case requires only 0.018 s on average to obtain an ultimate or even
optimal solution. The heuristic scheduling algorithm is more practical to solve real world
applications than the integer programming model.

References

[1] Baker KR. Introduction to sequencing and scheduling. New York: Wiley, 1974.

[2] Church LK, Uzsoy R. Analysis of periodic and event-driven rescheduling policies in dynamic shops.
International Journal of Computer Integrated Manufacturing 1992;5(3):153±63.

[3] Croce FD, Narayan V, Tadei R. The two-machine total completion time ¯ow shop problem. European Journal
of Operational Research 1996;90:227±37.

[4] French S. Sequencing and scheduling: an introduction to the mathematics of the job-shop. Chichester: Ellis
Horwood, 1982.

[5] Gonzalez T, Sahni S. Flowshop and jobshop schedules: complexity and approximation. Operations Research

1978;26(1):36±52.
[6] Hoogeveen JA, Van De Velde SL. Stronger Lagrangian bounds by use of slack variables: application to ma-

chine scheduling problem. In: Proceedings of the Third IPCO Conference, Erice, Italy, 1993. p. 195±208.

[7] Ignall E, Schrage LE. Application of the branch and bound technique to some ¯owshop scheduling problems.
Operations Research 1965;13:400±12.

[8] Johnson SM. Optimal two- and three-stage production schedules with setup times included. Naval Research
Logistics Quarterly 1954;1:61±8.

[9] Kohler WH, Steiglitz K. Exact, approximate and guaranteed accuracy algorithms for the ¯owshop problem
n ÿ 2ÿFÿF-. Journal of the Association for Computing Machinery 1975;22:106±14.

[10] Nagar A, Heragu SS, Haddock J. A branch and bound approach for a two-machine ¯owshop scheduling

problem. Journal of the Operational Research Society 1995;46:721±34.
[11] Nagar A, Heragu SS, Haddock J. A combined branch and bound and genetic algorithm based approach for a

¯owshop scheduling problem. Annals of Operations Research 1996;63:397±414.

F.-D. Chou, C.-E. Lee / Computers & Industrial Engineering 36 (1999) 549±564 563



[12] Rajendran C. Two-stage ¯owshop scheduling problem with bicriteria. Journal of the Operational Research
Society 1992;43:871±84.

[13] Roy U, Zhang X. A heuristic approach to n/m job shop scheduling: fuzzy dynamic scheduling algorithms.
Production Planning and Control 1996;7(3):299±311.

[14] Selen WJ, Hott D. A mixed integer goal programming formulation of the standard ¯owshop scheduling

problem. Journal of the Operational Research Society 1986;37:1121±8.
[15] Sun D, Lin L. A dynamic job shop scheduling framework: a backward approach. International Journal of

Production Research 1994;32(4):967±85.

[16] Van De Velde SL. Minimizing the sum of job completion times in the two-machine ¯ow shop by Lagrangian
relaxation. Annals of Operations Research 1990;26:257±68.

[17] Wilson JM. Alternative formulations of a ¯owshop scheduling problem. Journal of the Operational Research

Society 1989;40:395±9.

F.-D. Chou, C.-E. Lee / Computers & Industrial Engineering 36 (1999) 549±564564


