
Automatic classi®cation of block-shaped parts based on
their 2D projections

J.-H. Chuanga,*, P.-H. Wangb, M.-C. Wub

aDepartment of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, Taiwan
bDepartment of Industrial Engineering and Management, National Chiao Tung University, Hsinchu, Taiwan

Abstract

This paper presents a classi®cation scheme for 3D block-shaped parts. A part is block-shaped if the
contours of its orthographic projections are all rectangles. A block-shaped part is classi®ed based on its
partitioned view-contours, which are the result of partitioning the contours of its orthographic
projections by visible or invisible projected line segments. The regions and their adjacency in a
partitioned view-contour are ®rst converted to a graph, then to a reference tree, and ®nally to a vector
form, with which a back-propagation neural network classi®er can be trained and applied. The proposed
back-propagation neural network classi®er is in a cascaded structure and has advantages that each
network can be limited to a small size and trained independently. Based on the classi®cation results on
their partitioned view-contours, parts are grouped into families that can be in one of the three levels of
similarity. Extensive empirical tests have been performed; the pros and cons of the approach are also
investigated. # 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Part classi®cation; Block-shaped parts; Neural networks

1. Introduction

Group technology (GT) is a philosophy which advocates that workpieces with similar
characteristics should be grouped into a family in order to facilitate design and manufacturing
processes. Traditional implementation of GT requires establishing a workpiece coding scheme
with which workpieces can be coded and then grouped. Numerous GT coding schemes have

Computers & Industrial Engineering 36 (1999) 697±718

0360-8352/99/$ - see front matter # 1999 Elsevier Science Ltd. All rights reserved.
PII: S0360-8352(99)00160-6

www.elsevier.com/locate/dsw

* Corresponding author. Tel: +886-3-5731829; fax: +886-3-5724176.



been developed and applied in practical applications. Workpieces are normally coded manually
from their engineering drawings. Hence the process is time-consuming and error-prone.
Most recent research therefore aimed at automating the task of workpiece coding and

classi®cation. Conceptually, most proposed approaches intended to recognize form features
from a CAD ®le of workpieces, and then code or classify the workpieces based on the
recognized features [1±7,9]. Form features are generally prede®ned shapes, such as holes, steps,
and slots, which are essentially local by nature and describe only the local shape characteristics
of a workpiece.
The global shape or general appearance of a workpiece, however, is important information

for classi®cation, but is rarely addressed in most previous studies. To this end, an appropriate
global shape descriptor for characterizing workpieces is needed. Such direction had been
pursued and proven useful in parts design retrieval [10,11]. In their recent studies [11], a 3D
workpiece is ®rst modeled by the contours of its three orthographic projections; each contour
is then characterized by a simpli®ed linear skeleton, and ®nally classi®ed and coded by a neural
network classi®er. With the coding results from three projections, a 3D workpiece can be
classi®ed into a part family. A massive experimental testing has been performed and revealed a
satisfactory result. The major limitation of the approach is that only the contour information is
considered in the classi®cation. Parts which are di�erent in shape but are identical in their
projection contours might be classi®ed as in a same family. For example, both block-shaped
parts shown in Fig. 1 are distinct in their general appearance, but are in the same family since
their three projected contours are all rectangles. It is apparent that such an approach is
de®cient in handling block-shaped parts and, other than contour itself, we need more
information within the contour.
The shape descriptor proposed in this paper considers not only the projected view contours

but also geometric and topological information within them. Such interior information is built
based on the visible and invisible line segments from three orthographic views. These visible
and invisible line segments subdivide each corresponding view contour into regions. Regions
within a view contour are modeled by a graph with the nodes representing the regions and the
arcs for adjacency relations among regions. Such a graph is ®rst converted into a tree and then
into a vector representation that can be fed as an input to the proposed neural network
classi®er. The proposed back-propagation neural network classi®er is in a cascaded structure
and has advantages that each network can be limited to a small size and trained independently.
Parts are ®nally classi®ed into families based on their classi®cation results from three projected
views. Part families are assigned to be in one of the three levels of similarity. Such a
hierarchical grouping of parts would be very valuable for the activity of design-by-retrieval.

Fig. 1. Parts with identical projected contours.

J.-H. Chuang et al. / Computers & Industrial Engineering 36 (1999) 697±718698



Subsequent sections of this paper are organized as follows. Section 2 reviews the relevant
literature. Section 3 gives an overview of the proposed classi®cation scheme. Section 4 discusses
the partitioned view-contours and their graph representation. Section 5 describes the
conversion process from a graph to a reference tree. Section 6 explains how a reference tree is
converted to a vector form. Section 7 addresses a cascaded BP neural network and how it is
trained and used to classify parts. Section 7 explains how workpieces are grouped into families.
Section 8 depicts the experiment result on a set of 24 parts. Concluding remarks are given in
the last section.

2. Relevant literature

Numerous previous studies had applied neural network techniques to solve the workpiece
classi®cation problem. Kaparthi and Suresh [6] ®rst applied a neural network model to
automatically determine the Opitz code for rotational parts. Each part is modeled as a bitmap
Ð a matrix of binary pixels. A back-propagation (BP) neural network model [8] is adopted, in
which each node of the network denotes a pixel of the bitmap and the output node represents
a numerical value for a particular digit of the Opitz code. Although this work was a milestone
in the automatic coding of workpieces, it may result in an inappropriate GT code whenever the
part is positionally translated, rotated, or scaled.
Kao and Moon in their early work [5] also applied the BP neural network to the workpiece

classi®cation problem. A customized coding system based on part features is adopted to code
the workpieces. In this feature-based coding system, the code of a workpiece involves only
binary digits, that is, each digit denotes the existence or absence of a particular feature. The
input node of the BP network represents the workpiece code, and the output node models the
intended groups of workpieces. Such a network can automatically classify similar workpieces
into groups once they have been coded. This work lately had been modi®ed by using another
neural network model-ART (Adaptive Resonance Theory), with which the number of part
families can be increased, that is, new part family can be formed whenever needed. Similar
approaches that based on a feature-based CAD system are proposed in [7].
Chakraborty and Roy [2] applied Kohonent's self-organizing feature maps to cluster parts into

families which are then used as the training templates to construct a workpiece classi®er based
on the BP neural network model. As a consequence, each part family needs to build up a
neural network classi®er that determines if the input workpiece is a member of the family. The
classi®cation capability of this approach is in general satisfactory although in real applications
it may be de®cient since a large number of classi®ers need to be constructed.
In summary, most previous studies are either implicitly or explicitly based on a feature-based

coding system. Such a coding system is designed to encode a workpiece by characterizing its
form features, which are generally prede®ned as steps, grooves, or holes, and describes
essentially only the local shape information of a workpiece. Approaches that take global shape
information into account are proposed in [10,11]. Simpli®ed linear skeletons for three
orthographic projections serve to represent the global shape information of a workpiece. Such
skeletons are converted into vector forms as inputs to a BP neural network for the
classi®cation.

J.-H. Chuang et al. / Computers & Industrial Engineering 36 (1999) 697±718 699



3. The proposed part classi®cation scheme

We assume that the input 3D workpiece is of block-shaped, which means that a local
coordinate system can be de®ned such that the projected contour or silhouette of the
workpiece's boundary along each axis is a rectangle. The projected contour or silhouette of the
workpiece's boundary along each axis is denoted as view contour. In the proposed scheme,
parts are classi®ed based on the geometric and topological information obtained by
subdividing each view contour using visible as well as invisible line segments from three
orthographic views. We denoted such a subdivided view contour as partitioned view-contour.
This stage proceeds in the following ®ve steps:

1. All edge segments of the workpiece are projected along front/back, left/right, and top/
bottom views. Such projection results in nine ®gures, six of which are from the projected
contour lines and visible edge segments while the rest three consist of contour lines as well
as invisible line segments. The projected visible or invisible edge segments partition each
contour into regions.

2. Each partitioned view-contour is represented by a graph with the nodes representing the
regions and the arcs for adjacency relations among regions. Each graph node is associated
with a representative ring code.

3. Each graph is ®rst converted into a reference tree and then a vector form, which will be the
input to the BP neural network classi®er.

4. Construct a cascaded BP neural networks, each of which will be trained by a set of
manually selected representative partitioned view-contours. All partitioned view-contours of
each part will be classi®ed by the trained neural network: When a partitioned view-contour
cannot be successfully classi®ed, it will be put into a X-set. When the size of the X-set
exceeds a prespeci®ed number, some templates in the X-set are used to train another neural
network. Repeating such a training process, a cascaded neural network classi®er will be
constructed.

5. After all partitioned view-contours are successfully classi®ed, each input part is grouped into
a part family, which can be in one of three levels of similarity.

Major computational components are detailed in the following sections.

4. A graph representation for partitioned view-contours

4.1. Nine partitioned view-contours

Other than view contours, to extract more shape information we take into account the
projection of all other edges segments on the workpiece's boundary. Since these edge segments
can be either visible or invisible, we have two categories of projected views: one for visible edge
segments and the other for invisible ones. It is apparent that the ®rst category contains six
views from +x, ÿx, +y, ÿy, +z, and ÿz while the second category has only three views from
x, y, and z. In the ®gures, visible edge segments are denoted as solid line segments while
invisible edge segments as dashed lines. These visible and invisible line segments partition a

J.-H. Chuang et al. / Computers & Industrial Engineering 36 (1999) 697±718700



view contour into regions with solid and dashed line segments, respectively. See Fig. 2 for an
example.

4.2. Graph representation

The partitioned view-contour can be naturally represented as a graph, in which the nodes
representing the regions and the arcs for the adjacency relations among regions. Since regions
can be di�erent in geometric shape, a representative ring code is derived and associated with
each region. Such an coding information will later be taken into account in the classi®cation.
The graph arc can be directed or undirected, depending on the adjacency relation between two
corresponding regions. A neighboring adjacency is represented by an undirected arc while a

Fig. 2. Nine projected partitioned contours for a workpiece.

J.-H. Chuang et al. / Computers & Industrial Engineering 36 (1999) 697±718 701



full-containment relation is denoted by a directed arc; see Fig. 3a and b. Moreover, each arc is
associated with a weight representing the number of adjacent edges between two neighboring
regions. For two regions with full-containment relation, their arc will be assigned weight 0
since no adjacent edge exists. Hence the graph here is a weighted graph and can be directed,
undirected, or mix of the two; as shown in Fig. 3.

4.2.1. Ring code for a region
A ring code is a cyclic string of digits, each of which representing an oriented edge segment

of the region boundary. To appropriately derive the ring code for a polygonal region, we
proposed a two-layer octal coding system as shown in Fig. 4. Eight oriented vectors
representing eight possible edge orientations. Each oriented vector is associated with two layers
of digits, with the ®rst layer for edges that have no adjacent region and the second for edges
adjacent to some regions. The ®rst layer of digits begins from 1 to 8 while the second from 9
to 16.
To derive a ring code for a region, we simply traverse the region's boundary clockwisely

starting from a randomly selected edge. In determining the code for a particular edge, we
always consider its preceding edge as oriented in the +y-axis and then obtain the code for this
edge according to the traversing direction. Since we have chosen the octal coding system,

Fig. 3. Graphs for partitioned view contours.

J.-H. Chuang et al. / Computers & Industrial Engineering 36 (1999) 697±718702



edge's code will be determined by the vector whose direction is most close to the edge
orientation. Take region A shown in Fig. 3a as an example. Suppose edge a in Fig. 5a is
chosen as the starting edge, we ®rst take it as oriented in +y-axis and determine the code for
its proceeding edge b, which is 15. By taking b as oriented in +y-axis again, we obtain code 3
for edge c. Repeating such traversing and coding process, we ®nally derive a ring code (15-3-
11-15-3-11-9-9-3-11) for region A. Similarly, ring codes for regions B and C are (3-11-11-3) and
(3-3-11-11), respectively.
Such a coding system is orientation and uniform-scaling independent. That is, a region will

have a same ring code no matter how it is rotated and uniformly scaled. This fact will facilitate
the capability of the proposed classi®er.

4.2.2. Representative ring code
The ring code derived in the previous section basically is cyclic in nature and not unique as a

string for each region, that is, it varies depending on which is the starting edge. To facilitate
the classi®cation, a representative ring code that is unique as a string for each region is

Fig. 4. The two-layer octal coding system.

Fig. 5. Derivation of a ring code.

J.-H. Chuang et al. / Computers & Industrial Engineering 36 (1999) 697±718 703



necessary. Since a region has only one cyclic ring code, we need a way to identify which code
is the leading one. Three heuristic rues that should be applied in sequence are given here to
obtain such a leading code for forming the representative ring code:

1. The code that leads the longest string of identical codes in the derived ring code. For
example, the representative ring code of (1-1-2-2-2-3-3-3-3) starts from the leading 3 in the
longest string of codes 3-3-3-3. So the representative ring code is (3-3-3-3-1-1-2-2-2).

2. If there are more than one longest string of codes, among those strings the leading code of
the string with the highest digit value. For example, the representative ring code of (1-1-4-4-
4-4-3-3-3-3) starts from the leading 4 in the string of codes 4-4-4-4. So the representative
ring code is (4-4-4-4-3-3-3-3-1-1).

3. If rules 1 and 2 fail to give the representative ring code, more than one longest string of
codes have the same digit value. For such a case, the longest string of codes which has the
largest digit immediately left to itself wins. Such a competition might be repeated until one
string of codes wins. For example, the two longest strings of (1-2-4-3-3-3-4-3-3-3) are both
3-3-3 and the digits immediately left to them are the same. By repeated application of rule 3,
we obtain the representative ring code (3-3-3-1-2-4-3-3-3-4).

For region A shown in Fig. 3a, its complete graph representation with a representative ring
code associated with each node is shown in Fig. 6.

5. Converting graphs into reference trees

As stated in Section 3, the graph representation for a partitioned view-contour should be
converted into a vector before a BP neural network can be applied. In such a conversion the
graph is ®rst converted into a reference tree and then into a vector. This section addresses the
®rst part.

5.1. Structure of reference trees

Suppose each region in the partitioned view-contour has at most m+ 1 adjacent regions, the
second level of the reference tree will have m+ 1 child nodes. Each node on level two or
higher will have m child nodes since its parent already counts one. So the total number of
nodes for a tree of level n is

Fig. 6. The graph representation with representative ring code.

J.-H. Chuang et al. / Computers & Industrial Engineering 36 (1999) 697±718704



1� �m� 1� � �m� 1�m1 � �m� 1�m2 � � � � � �m� 1�mnÿ2 � 1� �m� 1��1�m1 �m2

� � � � �mnÿ2� � 1� �m� 1��mnÿ1 ÿ 1�=�mÿ 1�

To preserve the adjacency relation on a graph, in addition to the parent±child links, tree nodes
that are adjacent in the graph but not linked in the tree will be connected by auxiliary links. In
®gures, parent±child links will be denoted as solid links while the auxiliary links are dashed.
Fig. 7 depicts the tree structure.

5.2. Converting undirected graphs into reference trees

To convert an undirected graph into a reference tree, we ®rst associated each graph node
with a weighting value and select the one with the highest weight as the tree root, and then
assign graph nodes to tree nodes according to their associated weighting values.
The weighting values for graph nodes are determined in two stages. Each graph node is ®rst

assigned a priority order and from which the weighting value is then computed. The priority
order for graph nodes is determined in sequence of the following three rules:

1. Suppose the representative ring code for the region denoted by a node is
(cnÿcnÿ1ÿ . . .ÿc2ÿc1). We compute

c �
Xn
i�1

ici

The node with higher value of c gets higher priority order.
2. For nodes with the identical value of c, the one with longer representative ring code gets

higher priority order.
3. For those nodes that are still even, the one with more adjacent nodes get higher priority

order.

With the derived priority order, the weighting values are computed for nodes in the order of
the derived priority. Let w(i ) denote the weighting value of the ith node in the decreasing
priority order. The value of w(i ) is computed as

Fig. 7. Structure of the reference tree.

J.-H. Chuang et al. / Computers & Industrial Engineering 36 (1999) 697±718 705



w�i� � �nÿ y� � �nÿ yÿ 1� � � � � � �nÿ yÿ �x� 1��
x

� nxÿ �y� � y� 1� � � � � � � y� xÿ 1��
x

� nÿ yÿ xÿ 1

2

where n is the number of all nodes in the graph, y is the number of nodes whose weighting
values have been computed, and x is the number of nodes that have the same priority order as
node i.
After weighting values for all graph nodes are derived, the one with the highest weighting

value is chosen as the tree root. Graph nodes that are immediately adjacent to the parent node
are then assigned in the decreasing order of their weighting values to tree nodes from the left
to the right on the next level. Nodes with the equal weighting value are broken even by the
following two rules:

1. Among nodes with the equal weighting value, a node will be granted a higher privilege if it
wins the competition on the highest weighting values of their immediately adjacent nodes. In
this competition, any pair of nodes having been even will be broken based on their
immediately adjacent nodes with the second highest weighting values. Such an even-broken
process might be repeated.

2. For the remaining nodes that fail to apply rule 1, their next immediately adjacent nodes that
are not yet considered will be compared as in rule 1. Rule 2 might be repeated until all
nodes have been considered.

Remaining nodes that fail in applying rules 1 and 2 will have their order arbitrarily assigned.
The nodes in Fig. 8a are put in the decreasing priority order as A> E> D=F> B=C.

The weighting value of A, w(1), is 6ÿ0ÿ(1ÿ1)/2=6, and the weighting values of E, D, F, B,

Fig. 8. Converting an undirected graph to the reference tree.

J.-H. Chuang et al. / Computers & Industrial Engineering 36 (1999) 697±718706



and C are 5, 3.5, 3.5, 1.5, and 1.5, respectively. So node A is chosen as the tree node. Nodes
immediately adjacent to A are ordered as E> D=F> B=C in their weighting values. These
nodes are assigned to level 2 from the left to the right, in which the order for nodes in pairs
(D, F ) and (B, C ) are arbitrarily assigned. Since nodes E and D are adjacent in the graph, they
are connected by a dashed link. So are nodes E and F.

5.3. Converting directed graphs into reference trees

In converting a directed graph into tree, we ®rst derive weighting value for each graph node
as we do for the undirected graph. Since the directed graph used to present the partitioned
contour is a tree-like graph, its root is naturally the root of the reference tree. The nodes
adjacent to the root node are then put into the second level in the decreasing order of their
weighting values. For each node k on the level l, its adjacent nodes that are not assigned yet
are put to the level l+ 1 in the decreasing order of their weighting values, but all are under
node k. Nodes having the same weighting value are assigned to the tree nodes according to
rules 1 and 2 described in the last subsection.
The nodes in Fig. 9a have the priority order C> A=B=D. The weighting values for C, A,

B, and D are 4, 2, 2, and 2, respectively. Since node A is the toppest parent node in the graph,
it is chosen as the tree root. Among those nodes immediately adjacent to A, node C has higher
weight than B and hence nodes C and B are assigned to the second level from the left to the
right. Node D is ®nally assigned to the left most child node of B on the third level.

Fig. 9. Converting a directed graph to the reference tree.

J.-H. Chuang et al. / Computers & Industrial Engineering 36 (1999) 697±718 707



5.4. Converting mixed graphs into reference trees

Converting a mixed graph to its reference tree basically combines methods in previous two
subsections. Weighting value is derived ®rst for each graph node. The node with the highest
weighting value will be the tree node unless it has ancestor nodes. If it has ancestor nodes, its
highest ancestor node will be the root of the reference tree. Once the root is obtained, the
other part of the graph is converted to the reference tree as what is done for the undirected
graph.
The nodes in Fig. 10a have the priority order B> C> A=D. The weighting values for B,

C, A, and D are 4, 3, 1.5, and 1.5, respectively. Node B has the highest weighting value and its
highest ancestor is node A. So node A is chosen as the tree root. Among those nodes
immediately adjacent to A, node B has higher weight than C and hence nodes B and C are
assigned to the second level from the left to the right. Node D is ®nally assigned to the left
most child node of B on the third level. Nodes B and C are connected by a dashed link since
they are connected to each other in the graph by an undirected arc.

6. Converting reference trees to vector forms

Nodes of the derived reference tree are indexed by integers starting from 1. The indexing
starts from the root on the toppest level down to the bottom and within each level from the
left to the right. When each graph node has at most m+ 1 adjacent nodes, the total number
of the tree nodes is 1+(m+ 1)(mn ÿ 1ÿ1)/(m ÿ 1). To convert the reference tree to a vector
form, we ®rst associate each tree node with 6+m values in sequence and then form the vector

Fig. 10. Converting a mixed graph to the reference tree.

J.-H. Chuang et al. / Computers & Industrial Engineering 36 (1999) 697±718708



with the ®rst 6+m elements for the tree root and the next 6+m elements for the tree node
with index 2, and so on. Hence the resulting vector has (6+m )[1+(m+ 1)(mn ÿ 1ÿ1)/(m ÿ 1)]
elements. The 6+m values associated with each tree node are obtained based on heuristics that
are come up after several experiments. The ®rst four values derived from the representative
ring code associated with the node. The ®fth and sixth values are about the region associated
with the node, while the rest values derived from the index values of relevant tree nodes.
For a tree node ti, its 6+m values are as follows:

1. The length of the representative ring code associated with the node. For example, for the
representative ring code RRC=(9-9-3-11-15-3-11-15-3-11) associated with the node A in Fig.
8, this value is 10.

2. The number of strings with consecutive identical codes in the representative ring code
associated with the node. For RRC, this number is 9.

3. The number of di�erent codes appearing in the representative ring code associated with the
node. For RRC, this number is 4.

4. The average of codes appearing in the representative ring code associated with the node.
For RRC, the average is 9.

5. The number of boundary edges of the region that are adjacent to other regions. For region
A, this value is 7.

6. Values 6 up to 6+m are index values of those tree nodes that are connected to ti by either
solid links or dashed links. The values derived from dashed links are negated. After the
values that derived from connected nodes are assigned, the rest values are assigned 0.

Fig. 11. The back-propagation neural network model.

J.-H. Chuang et al. / Computers & Industrial Engineering 36 (1999) 697±718 709



7. Classi®cation using a BP neural network

7.1. Back-propagation neural network

The back-propagation (BP) neural network model [8] is used to build up a classi®er. As
shown in Fig. 11, a typical BP neural network model is composed of three layers: an input
layer, a hidden layer, and an output layer. In each layer, a node (or known as a neuron ) stores
a scalar as a signal value. Each neuron on a layer, if applicable, has an input link from each
neuron on the previous layer. Each input link is weighted by a scalar indicating the strength of
the relationship between two neurons.
On the hidden or the output layer, the lth neuron would receive a set of input signals,

U=(u1, u2, . . . , un ), from its previous layers and deliver an output signal vl. The weighted sum
of input signal values from the previous layer, Nl �

Pn
k�1ukwkl, is derived for the lth neuron

on the current layer and used to determine the output signal vl by a transfer function F, which
is a sigmoid function that constraints the value of each output signal between 0 and 1 [8]. That
is,

vl � F�Nl� � 1

1� eÿNl

The value of each output signal vl ranges from 0 to 1. Note that for neurons on the output
layer, each output signal value is mapped to 0 or 1 by an appropriate thresholding scheme.
A BP neural network needs to be trained in order to build up its classi®cation mechanism.

That is, the weights on the input links should be obtained by an appropriate training process
for a particular classi®cation application. The ®rst step in training a BP network is to select
some representative input vectors and characterize their desired output vectors. Then, a
training algorithm [8] is performed in order to obtain a set of weight values that are able to
e�ectively map the selected input vectors in to their desired output vectors. With all the
weights available, a trained network can be seen as a mapping function between the input and
the output vector spaces, by which an input vector can be uniquely mapped to an output
vector. The output vector will indicate the group to which a partitioned view-contour belongs.
Such a vector mapping function therefore can serve as a classi®cation mechanism.

7.2. Training of a cascaded BP network and part classi®cation

The proposed part classi®er is a cascaded BP networks, which are formed and trained in the
process of part classi®cation. It is detailed as follows:

1. Set k = 1 and X=;.
2. Select a set of representative parts from the input parts for the training of the ®rst BP

network, BP1. Vectors are derived from part's partitioned view-contours and serve as the
training templates for the network. The network BP1 is trained as described previously.

3. For the next input part, vectors for nine partitioned view-contours are derived and fed in
sequence to the cascade neural networks (BP1, BP2, . . . , BPk ). If a partitioned view-contour
can be classi®ed by a BPi in the cascaded neural network, it is ®nished; otherwise it is fed to

J.-H. Chuang et al. / Computers & Industrial Engineering 36 (1999) 697±718710



the next network BPi + 1. If the partitioned view-contour fails to be classi®ed by all
cascaded networks, it is appended to the set X.

4. When the size of X exceeds a prede®ned number, do the following:
4.1. Some representative partitioned view-contours are chosen and removed from X to serve

as the training templates for the new network BPk + 1 in the cascaded structure.
k=k + 1.

4.2. Set X '=;.
4.3. Other elements are removed from set X and classi®ed by BPk. Those fail to be classi®ed

are appended to X '.
4.4. X=X '.
4.5. If X$; then go to Step 4.

5. Go to Step 3.

Fig. 12 depicts the structure of the cascaded BP neural networks. The cascaded structure of
networks is advantageous since each network can be trained independently and can be limited
to a small size. If the cascaded structure is not used, a single neural network must be trained
for all existing parts. Since such a single huge network should be periodically updated in order
to classify new contours into appropriate classes and the training involved in each update
should start from the scratch, the training and classi®cation process is computationally
expensive.

7.3. Formation of part families

The BP network classi®er produces only one 1 for a particular neuron and 0 for all other
neurons on the output layer. So there will be ni distinct classes associated with network BPi if
it has ni neurons on the output layer. All the distinct classes result from the cascaded network
classi®er can be coded by a 2D code. Hence each partitioned view contour of a part is
classi®ed by the BP network and assigned a 2D code. For a part, we concatenate three 2D

Fig. 12. The cascaded structure of BP neural networks.

J.-H. Chuang et al. / Computers & Industrial Engineering 36 (1999) 697±718 711



codes that correspond to x, y, or z view to form the directed code for this particular view. The
similarity level between two parts are determined by how many of their directed codes are
matched. Two directed codes are matched if all their 2D codes are identical, regardless the
order. For example, directed codes [1,2,5], [2,1,5], and [5,1,2] are matched. If all three directed
codes are matched, the two parts have the highest level of similarity. On the other hand, two
parts are completely irrelevant if all their directed codes are not matched. The more directed
codes are matched, the more similar two parts are. Therefore, parts can be group hierarchically
by setting the following three levels of grouping criteria:
Level 1: Low degree similarity grouping
Two parts that have one directed code matched are assigned to a particular part family at

this level. If there are totally M output signals for the cascaded BP networks, there will be M
part families at this level. Since each part has three directed codes, a part can be assigned to
three distinct families.
Level 2: Medium degree similarity grouping
Two parts that have two directed codes matched are assigned to a particular part family at

this level. There will be C(M, 2)+C(M, 1) part families at this level. Note that a part family at
this level is a subset of a family at level 1. Suppose a part family of this level is associated with
two directed codes DC1 and DC2, this part family is a subset of the part families of level 1 that
are associated with DC1 and DC2, respectively.
Level 3: High degree similarity grouping
At this level, all parts in a part family should have their tree directed codes matched. There

will be C(M, 3)+C(M, 2)+C(M, 1) part families at this level. At this level, a part can be
associated with only one part family. A part family at this level is a subset of a part family at
level 2.
The proposed criteria result in a hierarchical grouping of part families as shown in Fig. 13.

Such a hierarchical grouping would greatly facilitate the activity of design-by-retrieval. That is,
at the very beginning of a new part design, a designer can ®rst retrieve and review similar part
families at level 1 that are inspired by the designer's vague idea. With more information
perceived from the review, the designer can go down to retrieve and examine the part families
at level 2 and level 3 that are closer to his or her design intention.

Fig. 13. Hierarchical grouping of part families.

J.-H. Chuang et al. / Computers & Industrial Engineering 36 (1999) 697±718712



8. Experiment results

To illustrate the proposed method, we consider 24 block-shaped parts. The 3D drawing of
these parts are shown in Fig. 14.

8.1. Building the cascaded BP neural networks

All partitioned view-contours for all parts are derived and transformed to corresponding
graphs, reference trees, and vectors. Each reference tree will have 17 nodes and each of which
is associated with 9 values. As a result, the vector will have 153 elements. Among these
partitioned view-contours, three with solid visible line segments, R1-T, R1-L, and R3-T, and
three with dashed invisible line segments, U1-T, U3-S, and U11-F, are chosen as the training
templates for the ®rst network BP1; see Fig. 15a. Each of the templates will correspond to a
group. So the input layer of BP1 has 153 neurons and the output layer has 6 neurons. The
hidden layer here is assigned to have 10 neurons. Hence BP1 will be trained to classify inputs
to six groups G1, G2, G3, G4, G5, and G6.

Fig. 14. The 24 tested parts.

J.-H. Chuang et al. / Computers & Industrial Engineering 36 (1999) 697±718 713



After BP1 is trained using the six templates, all vectors of other partitioned contours are fed
to BP1 for classi®cation. The second column of Table 1 depicts the classi®cation result of nine
partitioned view-contours for each part, in which � mans the corresponding vector cannot be
classi®ed by BP1. All these partitioned view-contours that have been marked � form X-set,
from which the second cascaded network BP2 will be built. From the X-set, six contours R1-F,
R4-T, R5-F, R6-T, R8-T, and U7-F are chosen as training template for BP2; see Fig. 15b. BP2

will be trained to classify inputs to six groups G7, G8, G9, G10, G11, and G12. All elements in X-
set are then classi®ed by BP2. The result is shown in the third column of Table 1 and indicates
that BP2 fails to classify some partitioned view-contours, which again are put in X-set. Repeat
the same process, the third network BP3 is trained by the training templates shown in Fig. 15c

Fig. 15. Training templates for cascaded neural networks.

J.-H. Chuang et al. / Computers & Industrial Engineering 36 (1999) 697±718714



and classi®es all the elements in X-set. The classi®ed result of BP3 will have groups G13, G14,
and G15. The ®nal classi®cation result is shown in the column four of Table 1. The directed
codes for all parts are also shown in the last column of Table 1.

8.2. Formation of part families

Based on the directed codes formed by the classi®cation result for each part, we now form
part families for each level of similarity as follows:

1. Level 1 has 18 families as shown in Table 2.
2. Level 2 has 22 families as shown in Table 3.
3. Level 3 has 12 families as shown in Table 4.

To see the hierarchical structure, we take part family F1,1={P1, P2, P4, P9, P13, P15, P19} at
level 1 as an example. Parts in F1ÿ1 are further classi®ed to part families F2,1={P1, P2, P9, P13,
P19} and F2,5=F2,6=F2,7={P4, P15} at level 2. Parts in F2ÿ1 are further classi®ed to part
families F3,1={P1, P13, P19} and F3,2={P2, P9} at level 3.

Table 1
Classi®cation results

Part ID Result of BP1 Result of BP1 and BP2 Result of BP1, BP2 and BP3 Directed codes

P1 {1,2,4,�,2,4,2,1,4} {1,2,4,7,2,4,2,1,4} {1,2,4,7,2,4,2,1,4} [1,2,4], [7,2,4], [2,1,4]
P2 {1,2,4,1,2,4,2,1,4} {1,2,4,1,2,4,2,1,4} {1,2,4,1,2,4,2,1,4} [1,2,4], [1,2,4], [2,1,4]
P3 {3,2,4,3,2,4,2,2,5} {3,2,4,3,2,4,2,2,5} {3,2,4,3,2,4,2,2,5} [3,2,4], [3,2,4], [2,2,5]

P4 {�,2,4,�,2,4,2,1,4} {8,2,4,�,2,4,2,1,4} {8,2,4,13,2,4,2,1,4} [8,2,4], [13,2,4], [2,1,4]
P5 {�,2,4,�,2,4,2,�,4} {8,2,4,9,2,4,2,8,4} {8,2,4,9,2,4,2,8,4} [8,2,4], [9,2,4], [2,8,4]
P6 {�,2,4,�,2,4,1,1,4} {10,2,4,�,2,4,1,1,4} {10,2,4,14,2,4,1,1,4} [10,2,4], [14,2,4], [1,1,4]

P7 {�,2,4,2,2,�,2,2,�} {�,2,4,2,2,12,2,2,12} {15,2,4,2,2,12,2,2,12} [15,2,4], [2,2,12], [2,2,12]
P8 {�,2,4,�,2,�,2,1,�} {11,2,4,7,2,12,2,1,12} {11,2,4,7,2,12,2,1,12} [11,2,4], [7,2,12], [2,1,12]
P9 {1,2,4,1,2,4,1,2,4} {1,2,4,1,2,4,1,2,4} {1,2,4,1,2,4,1,2,4} [1,2,4], [1,2,4], [1,2,4]
P10 {�,2,4,�,2,4,�,�,4} {10,2,4,10,2,4,7,7,4} {10,2,4,10,2,4,7,7,4} [10,2,4], [10,2,4], [7,7,4]

P11 {�,�,4,2,2,6,2,2,6} {�,�,4,2,2,6,2,2,6} {15,15,4,2,2,6,2,2,6} [15,15,4], [2,2,6], [2,2,6]
P12 {�,2,4,�,2,4,1,1,4} {10,2,4,�,2,4,1,1,4} {10,2,4,14,2,4,1,1,4} [10,2,4], [14,2,4], [1,1,4]
P13 {1,2,4,2,�,4,2,1,4} {1,2,4,2,7,4,2,1,4} {1,2,4,2,7,4,2,1,4} [1,2,4], [2,7,4], [2,1,4]

P14 {�,2,4,2,2,�,2,2,�} {�,2,4,2,2,12,2,2,12} {15,2,4,2,2,12,2,2,12} [15,2,4], [2,2,12], [2,2,12]
P15 {�,2,4,1,2,4,�,2,4} {8,2,4,1,2,4,�,2,4} {8,2,4,1,2,4,13,2,4} [8,2,4], [1,2,4], [13,2,4]
P16 {�,2,4,�,2,4,�,2,4} {8,2,4,9,2,4,8,2,4} {8,2,4,9,2,4,8,2,4} [8,2,4], [9,2,4], [8,2,4]

P17 {2,2,5,3,2,4,2,3,4} {2,2,5,3,2,4,2,3,4} {2,2,5,3,2,4,2,3,4} [2,2,5], [3,2,4], [2,3,4]
P18 {�,2,4,�,2,4,�,2,4} {8,2,4,8,2,4,9,2,4} {8,2,4,8,2,4,9,2,4} [8,2,4], [8,2,4], [9,2,4]
P19 {1,2,4,�,2,4,2,1,4} {1,2,4,7,2,4,2,1,4} {1,2,4,7,2,4,2,1,4} [1,2,4], [7,2,4], [2,1,4]

P20 {�,2,4,1,2,�,2,1,�} {11,2,4,1,2,12,2,1,12} {11,2,4,1,2,12,2,1,12} [11,2,4], [1,2,12], [2,1,12]
P21 {3,2,4,3,2,4,2,2,5} {3,2,4,3,2,4,2,2,5} {3,2,4,3,2,4,2,2,5} [3,2,4], [3,2,4], [2,2,5]
P22 {�,2,4,�,2,4,1,1,4} {10,2,4,�,2,4,1,1,4} {10,2,4,14,2,4,1,1,4} [10,2,4], [14,2,4], [1,1,4]
P23 {�,2,4,�,2,4,�,�,4} {10,2,4,10,2,4,7,7,4} {10,2,4,10,2,4,7,7,4} [10,2,4], [10,2,4], [7,7,4]

P24 {�,2,4,�,2,4,1,1,4} {10,2,4,10,2,4,1,1,4} {10,2,4,10,2,4,1,1,4} [10,2,4], [10,2,4], [1,1,4]

J.-H. Chuang et al. / Computers & Industrial Engineering 36 (1999) 697±718 715



Table 2
Part families at level 1

Family ID Directed code Family set

F1,1 {[1,2,4]} {P1, P2, P4, P9, P13,, P15, P19}
F1,2 {[7,2,4]} {P1, P13, P19}
F1,3 {[3,2,4]} {P3, P17, P21}

F1,4 {[2,2,5]} {P3, P17, P21}
F1,5 {[8,2,4]} {P4, P5, P15, P16, P18}
F1,6 {[13,2,4]} {P4, P15}

F1,7 {[9,2,4]} {P5, P16, P18}
F1,8 {[10,2,4]} {P6, P10, P12, P22, P23, P24}
F1,9 {[14,2,4]} {P6, P12, P22}
F1,10 {[1,1,4]} {P6, P12, P22, P24}

F1,11 {[15,2,4]} {P7, P14}
F1,12 {[2,2,12]} {P7, P14}
F1,13 {[11,2,4]} {P8, P20}

F1,14 {[7,2,12]} {P8}
F1,15 {[2,1,12]} {P8, P20}
F1,16 {[7,7,4]} {P10, P23}

F1,17 {[15,15,4]} {P11}
F1,18 {[2,2,6]} {P11}

Table 3
Part families at level 2

Family ID Directed codes Family set

F2,1 {[1,2,4], [1,2,4]} {P1,, P2, P9, P13, P19}

F2,2 {[7,2,4], [1,2,4]} {P1, P13, P19}
F2,3 {[3,2,4], [3,2,4]} {P3, P17, P21}
F2,4 {[3,2,4], [2,2,5]} {P3, P17, P21}

F2,5 {[8,2,4], [13,2,4]} {P4, P15}
F2,6 {[8,2,4], [2,1,4]} {P4, P15}
F2,7 {[13,2,4], [2,1,4]} {P4, P15}
F2,8 {[8,2,4], [9,2,4]} {P5, P16, P18}

F2,9 {[8,2,4], [2,8,4]} {P5, P16, P18}
F2,10 {[10,2,4], [14,2,4]} {P6, P12, P22}
F2,11 {[10,2,4], [1,1,4]} {P6, P12, P22, P24}

F2,12 {[14,2,4], [1,1,4]} {P6, P12, P22}
F2,13 {[15,2,4], [2,2,12]} {P7, P14}
F2,14 {[2,2,12], [2,2,12]} {P7, P14}

F2,15 {[11,2,4], [7,2,12]} {P8}
F2,16 {[11,2,4], [2,1,12]} {P8, P20}
F2,17 {[7,2,12], [2,1,12]} {P8}

F2,18 {[10,2,4], [10,2,4]} {P10, P23, P24}
F2,19 {[10,2,4], [7,7,4]} {P10, P23}
F2,20 {[15,15,4], [2,2,6]} {P11}
F2,21 {[2,2,6], [2,2,6]} {P11}

F2,22 {[1,2,12], [2,1,12]} {P20}

J.-H. Chuang et al. / Computers & Industrial Engineering 36 (1999) 697±718716



9. Concluding remarks

We have proposed a classi®cation scheme for block-shape parts based on their 2D
projections. The parts are classi®ed based on the interior information within the view contours.
Such an interior information is apparently a valuable addition to the contour information. To
extract the interior information, we partition a view contour by its projected visible or invisible
line segments and, in consequence, obtain nine partitioned contours. Since the proposed neural
network receives only a set of scalars, the regions and their adjacency in a partitioned contour
are ®rst converted to a graph, then to a reference tree, and ®nally to a vector form. The part
classi®er is a cascaded back-propagation neural network system that is trained by selective sets
of partitioned view-contours. Such a cascaded structure has advantages that each network can
be limited to a small size and trained independently. The input parts are classi®ed into families
that can be in one of the three levels of similarity. Such a hierarchical grouping of parts would
be very valuable for the activity of design-by-retrieval, in which part families at the levels from
lower to higher similarity are retrieved such that the design's intention can be gradually
clari®ed.

References

[1] Bhadra A, Fischer GW. A new GT classi®cation approach: a data base with graphical dimensions.
Manufacturing Rev 1988;11:44±9.

[2] Chakaraborty K, Roy U. Connectionist models for part-family classi®cations. Comput Industr Engng

1992;9:189±98.
[3] Chen CS. A form feature oriented coding scheme. Comput Industr Engng 1989;17:227±33.
[4] Henderson MR, Musti S. Automated group technology part coding from a three-dimensional CAD database.

Trans ASME J Engng Industr 1988;110:278±87.
[5] Kao Y, Moon YB. A uni®ed group technology implementation using the backpropagation learning rule of

neural network. Comput Industr Engng 1991;20(4):425±37.

Table 4
Part families at level 3

Family ID Directed codes Family set

F3,1 {[1,2,4], [7,2,4], [2,1,4]} {P1, P13, P19}
F3,2 {[1,2,4], [1,2,4], [2,1,4]} {P2, P9}
F3,3 {[3,2,4], [3,2,4], [2,2,5]} {P3, P17, P21}

F3,4 {[8,2,4], [13,2,4], [2,1,4]} {P4, P15}
F3,5 {[8,2,4], [9,2,4], [2,8,4]} {P5, P16, P18}
F3,6 {[10,2,4], [14,2,4], [1,1,4]} {P6, P12, P22}

F3,7 {[15,2,4], [2,2,12], [2,2,12]} {P7, P14}
F3,8 {[11,2,4], [7,2,12], [2,1,12]} {P8}
F3,9 {[10,2,4], [10,2,4], [7,7,4]} {P10, P23}
F3,10 {[15,15,4], [2,2,6], [2,2,6]} {P11}

F3,11 {[11,2,4], [1,2,12], [2,1,12]} {P20}
F3,12 {[10,2,4], [10,2,4], [1,1,4]} {P24}

J.-H. Chuang et al. / Computers & Industrial Engineering 36 (1999) 697±718 717



[6] Kaparthi S, Suresh NC. A neural network system for shape based classi®cation and coding of rotational parts.
Int J Production Res 1991;29(9):1771±84.

[7] Liao TW, Lee KS. Integration of a feature-based CAD system and an ARTI neural network model for GT
coding and part family forming. Comput Industr Engng 1994;26(1):93±104.

[8] Lippmann RP. An introduction to computing with neural nets. IEEE ASSP Magazine 1987;April:4±22.

[9] Moon YB, Kao Y. Automatic generation of group technology families during the part classi®cation process.
Int J Adv Manufact Technol 1993;6:160±6.

[10] Wu MC, Chen JR. A skeleton approach to modellin 2D workpieces. J Design Manufact 1994;3:229±43.

[11] Wu MC, Jen SR. A neural network approach to the classi®cation of 3D prismatic parts. Int J Adv Manufact
Technol 1996;9:123±8.

J.-H. Chuang et al. / Computers & Industrial Engineering 36 (1999) 697±718718


