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Abstract: In recent years, many multistage interconnection networks using 2 1 2 switching elements
have been proposed for parallel architectures. Typical examples are baseline networks, banyan networks,
shuffle-exchange networks, and their inverses. As these networks are blocking, such networks with extra
stages have also been studied extensively. These include Benes networks and D ! D* networks. Re-
cently, Hwang et al. studied k-extra-stage networks, which are a generalization of the above networks.
They also investigated the equivalence issue among some of these networks. In this paper, we studied
a more general class of networks, which we call (m / 1)-stage d-nary bit permutation networks. We
characterize the equivalence of such networks by sequence of positive integers. q 1999 John Wiley &
Sons, Inc. Networks 33: 261–267, 1999

Keywords: multistage interconnection network; switching network; permutation routing; Sterling num-
ber; rearrangeably nonblocking

1. INTRODUCTION For a detailed description and notation of bit permutation
networks, see Section 2.

Note that (n / 1)-stage binary bit permutation net-
Consider a multistage interconnection network V with N works include all self-routing networks like Omega, ban-
Å dn/1 inputs and outputs and which has m / 1 stages yan, baseline, and their inverse networks. Binary bit per-
of N /d crossbars of size d 1 d . Let the j th crossbar in a mutation networks have been widely studied in the litera-
stage be labeled by j in the d-nary number (with n bits) . ture [1, 3, 6, 8, 11] for their topological equivalence.
A bit-i group consists of those crossbars whose labels are Bermond et al. [3] characterized the Omega-equivalent
identical except the i th bit. Such a group will be labeled class by the P( i , j) property. An (n / 1)-stage network
by a d-nary number x with n bits which is identical to satisfies the P( i , j) property if the subnetwork from stage
any member in the group except that bit i is replaced by i to stage j has exactly 2 n0j/i components. Then, an (n
the symbol x0 , which stands for the set {0, 1, . . . , d 0 1}. / 1)-stage network with the unique path property is inV will be called a (m / 1)-stage d-nary bit permutation

the Omega-equivalent class if and only if it satisfies the
network if the linking between stage k to stage k / 1 is

P( i , j) property for all 0 ° i ° j ° n .
always from a bit-ik group G to a bit- jk group G *, where

Another special class of bit permutation networks con-G * is a permutation of G , for k Å 0, 1, . . . , m 0 1.
sists of (n / 1)-stage networks with extra stages. A k-
extra-stage network is a cascade of a (n / 1)-stage net-
work with k extra stages also satisfying the bit permuta-
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element, and Figure 2 shows a baseline network with N
Å 16, in which a terminal i is represented by its binary
number representation (x3 , x2 , x1 , x0) and is adjacent to
a switching element named by (x3 , x2 , x1) .

One can view the baseline network in Figure 2 as a
graph whose vertices are those 32 switching elements

Fig. 1. A 2 1 2 switching element. named by (x3 , x2 , x1)i , where 0 ° i ° 3 and x1 , x2 , x3

√ {0, 1}, and there are links

k extra stages are added by pattern F01 (see below).
from (x3 , x2 , x1)0 to (x0 , x3 , x2)1 ,

Hwang et al. [5] generalized the study of equivalence by
from (x3 , x2 , x1)1 to (x3 , x0 , x2)2 , andadding extra stages to a binary Omega-equivalent network
from (x3 , x2 , x1)2 to (x3 , x2 , x0)3 ,with the following patterns for extra stages:

where x0 √ {0, 1}, meaning there are two links, one with
(i) F : They are identical to the first k stages of the

x0 Å 0 and the other with x0 Å 1. A link from a switching
network;

element x at stage i to a switching element y at stage i
( ii ) F01 : Identical to the mirror image of the first k / 1 exists if the bits of y can be obtained from the bits

stages; of x by a permutation depending only on i . For instance,
we can represent the links from stage 0 to stage 1 by a(iii ) L : Identical to the last k stages;
permutation f1 on {0, 1, 2, 3} with(iv) L01 : Identical to the mirror image of the last k

stages.
f1(0) Å 1, f1(1) Å 2, f1(2) Å 3, f1(3) Å 0.

In this paper, we determined the equivalence classes
In this way, the links from stage 0 to stage 1 are those

among all (m / 1)-stage d-nary bit permutation net-
from (x3 , x2 , x1)0 to (xf1(3) , xf1(2) , xf1(1) )1 . We can also

works. We characterize such a network by an m-sequence
say that for a link from x Å (x3 , x2 , x1)0 to y Å (x0 , x3 ,over {1, 2, . . . , n}, namely, every (m / 1)-stage d-nary
x1)1 a coordinate xj at the j th position of x moves to thebit permutation network is reduced to an m-sequence over
f 01

1 ( j) th position of y , where the coordinate x0’s moving{1, 2, . . . , n} and equivalence is determined by some
from ‘‘outside’’ into y means there are two such links.easily computable sequence statistics. Note that the se-
Similarly, the following permutations f2 and f3 representquence is independent of d . For m Å n , this characteriza-
links from stage 1 to stage 2 and stage 2 to stage 3,tion, of course, corresponds to the P( i , j) characterization.
respectively:But the sequence-graph correspondence is not in an obvi-

ous way. With the power and convenience of the sequence
f2(0) Å 1, f2(1) Å 2, f2(2) Å 0, f2(3) Å 3;characterization, we easily give an explicit solution of the

size of the s-stage bit permutation class. Recently, Hu et f3(0) Å 1, f3(1) Å 0, f3(2) Å 2, f3(3) Å 3.
al. [4] gave an O(N 4log N)-time algorithm to check the
equivalence of combined (2n0 1)-stage networks, which

Throughout this paper, we shall use the cycle notation for
are obtained by cascading two Omega-equivalent net-
works. We give an (mn)-time algorithm for checking
the equivalence of two (m / 1)-stage bit permutation
networks. In particular, the running time is O( log2N)
when the network has 2n 0 1 stages.

2. NETWORKS

We start the discussion of bit permutation networks by
examining the following classical example: A typical
Omega-equivalent network consists of N input terminals,
N output terminals, and log2N columns (stages) of 2
1 2 switching elements in which each column has

Fig. 2. A baseline network with N Å 16.N /2 switching elements. Figure 1 shows a 21 2 switching
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permutations, that is, the cycle ( i1 , i2 , . . . , in) represents
the permutation f with

f ( i1) Å i2 , f ( i2) Å i3 , . . . , f ( in01) Å in ,
f ( in) Å i1 , and f ( j) Å j for all other j .

Then, f1 can be represented by (0, 1, 2, 3) , f2 by (0, 1,
2) , and f3 by (0, 1) .

Not only can the baseline network in Figure 2 be repre-
sented by the permutations fi , but also all bit permutation
networks can be represented in this way. We can also use
general d 1 d switching elements instead of 2 1 2 switch-
ing elements. A general setting is as follows:

Fig. 3. The network in Example 4.
Definition. Suppose that n is a positive integer and f1 ,
f2 , . . . , fm are m ¢ 0 permutations on {0, 1, . . . , n} such
that fi (0) x 0 for 1 ° i ° m . The (m / 1)-stage d- fi Å (n , n 0 1, . . . , 1, 0) for 1 ° i ° n .
nary bit permutation network Nd(n , f1 , f2 , . . . , fm) is the
network whose vertices are those (xn , xn01 , . . . , x1)i with The flip (or inverse shuffle-exchange) network SE01 is
0 ° i ° m and xj √ {0, 1, . . . , d 0 1} for 1 ° j ° n , N2(n , f

U

1 , f
U

2 , . . . , f
U

n) , with
and each (xn , xn01 , . . . , x1)i01 is adjacent to (xfi (n ) ,
xfi (n01) , . . . , xfi (1) )i , where x0 √ {0, 1, . . . , d 0 1}. In

f
U

i Å f 01
i Å (0, 1, . . . , n) for 1 ° i ° n .

other words, there is an edge from (xn , xn01 , . . . , x1)i01

to (yn , yn01 , . . . , y1)i whenever yj Å xfi (j ) for 1 ° j ° n .
Example 4. Interchange the role of the coordinates x1

The following examples show (m / 1)-stage binary and x2 of (x3 , x2 , x1) in stages 2 and 3 of the baseline
bit permutation networks with N Å 2 n/1 input and output network in Figure 2. The resulting network, which is
terminals. Examples 1–3 have been worked out by Wu topologically equivalent to BL , is N2(3, f1 , f2 , f3) with
and Feng [11]. We give the presentation in our format
for easier use later.

f1 Å (0, 1, 2, 3) , f2 Å (0, 2, 1) , and f3 Å (0, 2)

Example 1. The baseline network BL is precisely N2(n ,
(see Fig. 3) . Note that if one interchanges the switchingf1 , f2 , . . . , fn) , with
elements (x3 , 0, 1)i with (x3 , 1, 0)i for i Å 2, 3 the
resulting network is the baseline network.fi Å (0, 1, . . . , n 0 i / 1) for 1 ° i ° n .

Example 5. Suppose that N2(n , f1 , f2 , . . . , fn) is anThe inverse baseline network BL01 is N2(n , f
U

1 , f
U

2 , . . . ,
Omega-equivalent network D and N2(n , f *1 , f *2 , . . . ,f

U

n) , with
f *n ) is another Omega-equivalent network D*. Then, D
! D* is N2(n , f1 , f2 , . . . , fn , f *1 , f *2 , . . . , f *n ) .f

U

i Å f 01
n0i/1 Å ( i , i 0 1, . . . , 1, 0) for 1 ° i ° n .

Example 6. Suppose that N2(n , f1 , f2 , . . . , fn) is anExample 2. The banyan network BY or the indirect bi-
Omega-equivalent network D and 1 ° k ° n . Hwang etnary n-cube network is N2(n , f1 , f2 , . . . , fn) , with
al. [5] defined four k-extra-stage networks as follows:
DF(k) [respectively, DL(k)] is D together with k extrafi Å (0, i) for 1 ° i ° n .
stages identical to the (respectively, last) first k stages of
D, and DF01 (k) [respectively, DL01 (k)] is D togetherThe modified data manipulator is N2(n , f

U

1 , f
U

2 , . . . ,
with k extra stages identical to the mirror image of thef

U

n) , with
first (respectively, last) k stages of D. Then,

f
U

i Å f 01
n0i/1 Å (0, n 0 i / 1) for 1 ° i ° n

DF(k) is N2(n , f1 , f2 , . . . , fn , f1 , f2 , . . . , fk) ;

and, hence, is the inverse banyan network BY 01 .
DF01 (k) is N2(n , f1 , f2 , . . . , fn , f 01

k , f 01
k01 , . . . , f 01

1 ) ;
Example 3. The Omega (or shuffle-exchange) network
SE is N2(n , f1 , f2 , . . . , fn) , with DL(k) is N2(n , f1 , f2 , . . . , fn , fn0k/1 , fn0k/2 , . . . , fn) ;
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in Figure 2 as N2(3, f1 , f2 , f3) , with f1 Å (0, 1, 2, 3) , f2DL01 (k) is N2(n , f1 , f2 , . . . , fn , f 01
n , f 01

n01 , . . . , f 01
n0k/1) .

Å (0, 1, 2) , and f3 Å (0, 1) and the network in Exam-
ple 4 as N2(3, f *1 , f *2 , f *3 ) , with f *1 Å (0, 1, 2, 3) ,
f *2 Å (0, 2, 1) , and f *3 Å (0, 2) . Then, g0 Å (2, 3) and3. TOPOLOGICAL EQUIVALENCE
g1 Å g2 Å g3 Å (1, 2) show that these two networks are
isomorphic.The main effort of this paper was to establish methods

for determining if two bit permutation networks Nd(n , f1 ,
Theorem 2. Every bit permutation network Nd(n, f1 , f2 ,f2 , . . . , fm) and Nd(n , f *1 , f *2 , . . . , f *m) are topologically
. . . , fm) is isomorphic to some bit permutation networkequivalent or graphically isomorphic. The following theo-
Nd(n, f *1 , f *2 , . . . , f *m) , where f *i Å (0 , ki ) with kirem is the foundation of our theory:
√ {1 , 2 , . . . , n} for 1 ° i ° m.

Theorem 1. If there exist permutations g0 , g1 , . . . , gm Proof. We shall prove by induction on j the following
on {0 , 1 , . . . , n} such that gi (0) Å 0 for 0 ° i ° m

claim which implies the theorem:
and f *i Å g01

i01 + fi + gi for 1 ° i ° m, then Nd(n, f1 , f2 ,
. . . , fm) is isomorphic to Nd(n, f*1 , f *2 , . . . , f *m) . Claim( j) . Nd(n , f1 , f2 , . . . , fm) is isomorphic to some

Nd(n , f *1 , f *2 , . . . , f *m) , where f *i Å (0, ki ) with kiProof. Consider the bijection g from the vertex set of √ {1, 2, . . . , n} for 1 ° i ° j .Nd(n , f1 , f2 , . . . , fm) to the vertex set of Nd(n , f *1 , f *2 ,
Claim(0) is clearly true. Suppose that Claim( j 0 1). . . , f *m) defined by

holds. Consider a general j ¢ 1. Let kj Å f *j (0) . Then,
kj √ {1, 2, . . . , n}. Let gj Å ( f *j )01+(0, kj) and all

(xn , xn01 , . . . , x1)i r
g

(xgi (n ) , xgi (n01) , . . . , xgi (1) )i other gi are identity permutations. It is easy to check that
gi (0) Å 0 for 0 ° i ° m . According to Theorem 1,

for 0 ° i ° m . Nd(n , f *1 , f *2 , . . . , f *m) , and, therefore, Nd(n , f1 , f2 ,
. . . , fm) , is isomorphic to Nd(n , f 91 , f 92 , . . . , f 9m) ,

In other words, g((xn , xn01 , . . . , x1)i ) Å (x *n , x *n01 , . . . , where f 9i Å g01
i01 + f *i +gi for 1 ° i ° m . In particular,

x *1 )i whenever x *j Å xgi (j ) for 1 ° j ° n . f 9i Å f *i Å (0, ki ) for 1 ° i ° j 0 1, and f 9j
To see that these two networks are isomorphic, we Å f *j +gj Å f *j +( f *j )01+(0, kj) Å (0, kj) . This gives

only need to check that g is edge-preserving. Suppose Claim( j) . j
that e is an edge from (xn , xn01 , . . . , x1)i01 to (yn , yn01 ,
. . . , y1)i in Nd(n , f1 , f2 , . . . , fm) , that is, yj Å xfi (j ) for 1 So, basically, we only need to consider the networks
° j ° n . Let with fi Å (0, ki ) . For convenience, we shall use Nd(n ,

k1 , k2 , . . . , km) as a short notation for the network Nd(n ,
g((xn , xn01 , . . . , x1)i01) Å (x *n , x *n01 , . . . , x *1 )i01 , f1 , f2 , . . . , fm) , with fi Å (0, ki ) and ki √ {1, 2, . . . , n}

for 1 ° i ° m .
i.e., x *j Å xgi01( j ) for 1 ° j ° n , Our next step is to determine when two networks are

isomorphic.
and

Theorem 3. If g is a permutation on {0 , 1 , 2 , . . . , m}
g((yn , yn01 , . . . , y1)i ) Å (y *n , y *n01 , . . . , y *1 )i , with g(0) Å 0 , then the network Nd(n, k1 , k2 , . . . , km)

is isomorphic to Nd(n, g(k1) , g(k2) , . . . , g(km)) .
i.e., y *j Å ygi (j ) for 1 ° j ° n .

Proof. The theorem following from Theorem 1 and
the fact that g + (0, ki ) + g01 Å (0, g(ki )) . Note that weThen,
apply Theorem 1 by choosing all gi as g . j

y *j Å ygi ( j ) Å xfi + gi ( j ) Å xgi01 + f =i (j )
For any sequence (k1 , k2 , . . . , km) over {1, 2, . . . , n}

with a Å É{k1 , k2 , . . . , km}É, let 1 Å i1 õ i2 õ rrrÅ x *f =i ( j ) for 1 ° j ° n .
õ ia be those indices such that kir √/ {k1 , k2 , . . . ,
kir01} for 1 ° r ° a . Choose any permutation g on {1,Thus, there exists an edge from (x *n , x *n01 , . . . , x *1 )i01 to
2, . . . , n} with the property that g(kir ) Å r for 1 ° r(y *n , y *n01 , . . . , y*1 )i . Conversely, an edge in Nd(n , f *1 ,
° a . Then, (k*1 , k*2 , . . . , k*m ) Å (g(k1) , g(k2) , . . . ,f *2 , . . . , f *m) also corresponds to an edge in Nd(n , f1 ,
g(km)) is a sequence with the property that {k*1 , k*2 ,f2 , . . . , fm) . j
rrr k*m } Å {1, 2, . . . , a} and for any 1 ° r ° a ,
{k*1 , k*2 , . . . , k*ir } Å {1, 2, . . . , r} when ir is the mini-As a quick application of Theorem 1, consider BL
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A condition slightly weaker than the P( i , j) character-mum index with k*ir Å r . Such a sequence is called a
ization follows from Theorem 6:canonical sequence over {1, 2, . . . , n}.

Corollary 7. An (n / 1)-stage network with the uniqueCorollary 4. Any Nd(n, f1 , f2 , . . . , fm) is isomorphic to
path property and satisfying the P( i, i / 1) property forNd(n, k1 , k2 , . . . , km) for some canonical sequence over
i Å 0 , 1 , . . . , n, is in the Omega-equivalent class if and{1 , 2 , . . . , n}.
only if it also satisfies the P(0 , j) property for j Å 1 , 2 ,
. . . , n.Theorem 5. If a Å É{k1 , k2 , . . . , km}É , then Nd(n, k1 ,

k2 , . . . , km) has dn0a connected components. Proof. By satisfying the P( i , i / 1) property, the net-
work is a bit permutation network. By satisfying the P(0,Proof. First, we claim that for any two vertices x
j) property, the number of components is increasing in j ,Å (xn , xn01 , . . . , x1)i and y Å (yn , yn01 , yn01 , . . . , y1) j
which implies that kj x ki for all i õ j . It follows thatsuch that xk Å yk for all k √/ {k1 , k2 , . . . , km} there
(k1 , k2 , . . . , kn) are all distinct, but there is only one suchexists a path joining them.
canonical sequence. Corollary 7 follows from TheoremFor the case in which i Å 0 and j Å m , x Å x (0)

6 immediately. jr x (1) r rrr r x (m ) Å y is a desired path, where x ( i ) is
a vertex in stage i that is obtained from x ( i01) by replacing

Theorem 8. The number of equivalent classes among (mits ki-th coordinate with yki
. For the general case, consider

/ 1)-stage d-nary bit permutation networks isthe vertices x* Å (xn , xn01 , . . . , x1)0 and y* Å (yn , yn01 ,
. . . , y1)m . By the above construction, there exists an x*–
y* path. It is clear that (xn , xn01 , . . . , x1)i r (xn , xn01 , ∑

n

tÅ1

∑
t

iÅ0

1
t!

(01) t0iS t

iD im .. . . , x1)i01 r rrr r (xn , xn01 , . . . , x1)0 Å x* is an x–
x* path. Similarly, there exists a y*– y path. Thus, x and
y are joined by a path. Proof. By Corollary 4 and Theorem 6, we only need

On the other hand, a move from any vertex to its to count the set C(m , t) of canonical sequences of length
neighbor never changes its k-th coordinate for k √/ {k1 , m with t distinct elements for 1° t° n . Denote by P(m ,
k2 , . . . , km}. Thus, two vertices with different values t) the set of all partitions of {1, 2, . . . , m} into t nonempty
at the k-th coordinate for some k √/ {k1 , k2 , rrr km} are subsets. Define a mapping h from C(m , t) to P(m , t) by
not in the same connected component of the net- h(k1 , k2 , . . . , km) Å {C1 , C2 , . . . , Ct}, where Ci Å { j
work. Therefore, the network has dn0a connected com- : kj Å i}. It is easy to see that h is one-to-one. On the
ponents. j other hand, for any partition {C1 , C2 , . . . , Ct} in P(m ,

t) , we may assume that min C1 ° min C2 ° rrr ° min
Theorem 6. For any two canonical sequences (k1 , k2 , Ct . Let k Å (k1 , k2 , . . . , km) , where ki Å j for i √ Cj .
. . . , km) and (k *1 , k*2 , . . . , k*m) over {1 , 2 , . . . , n} , the Then, h(k) Å {C1 , C2 , . . . , Ct}. So, h is onto. Therefore,
network Nd(n, k1 , k2 , . . . , km) is isomorphic to Nd(n,

ÉC(m , t)É Å ÉP(m , t)É, which by definition is the Ster-
k *1 , k*2 , . . . , k*m) if and only if (k1 , k2 , . . . , km) Å (k *1 , ling number of the second kind S(m , t) (see [10]) . It is
k *2 , . . . , k*m) . well known that

Proof. The two networks are clearly isomorphic if the
two sequences are equal. S(m , t) Å 1

t!
∑

t

iÅ0

(01) t0iS t

iD im .
Conversely, suppose that (k1 , k2 , . . . , km) x (k *1 , k *2 ,

. . . , k *m) . Let i be the minimum index such that ki

Summing over t , we obtain Theorem 8. jx k *i , say ki õ k *i and kr Å k *r for 1 ° r ° i 0 1. Since
the two sequences are canonical, i ¢ 2. By the defini-
tion, there exists some 1 ° r ° i 0 1 such that kr

Å k *r √ {ki , k *i }. Choose a maximum such r . Then, 4. ALGORITHM AND APPLICATIONS
É{kr , kr/1 , . . . , ki }É Å a x a * Å {k *r , k *r/1 , . . . , k *i }.
Note that Nd(n , kr , kr/1 , . . . , ki ) has dm0a connected By the theorems in Section 3, a bit permutation network
components while Nd(n , k *r , k *r/1 , . . . , k *i ) has dm0a = Nd(n , f1 , f2 , . . . , fm) is topologically equivalent to its
connected components. Hence, the two networks are not canonical representation Nd(n , k1 , k2 , . . . , km) , whose
isomorphic. j topology is determined by the canonical sequence (k1 ,

k2 , . . . , km) . We shall summarize an efficient algorithm
from the proofs of Theorems 2 and 3. We then apply itRemark. By Theorem 6, the Nd(n , k1 , k2 , . . . , km) in

Corollary 4 is unique. Such a network is called the canoni- to determine the equivalence among the networks men-
tioned in the examples of Section 2.cal representation of Nd(n , f1 , f2 , . . . , fm) .
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Algorithm. Find the canonical representation of a bit (c) For D Å BL , the sequence is (1, 2, . . . , m , k , k 0 1,
. . . , 1) .permutation network.

Input. A bit permutation network Nd(n , f1 , f2 , . . . , fm) . (d) For D Å BL01 , the sequence is (1, 2, . . . , m , m , m
Output. The canonical sequence (k*1 , k*2 , . . . , k*m ) for 0 1, . . . , m 0 k / 1).
Nd(n , f1 , f2 , . . . , fm) . (e) For D Å BY , the sequence is (1, 2, . . . , m , k , k 0 1,
Method. . . . , 1) .

f
U

0 Å (0); f
U

m/1 Å (0); (f ) For D Å BY 01 , the sequence is (1, 2, . . . , m , k , k
for j Å 1 to m do f

U

j Å fj; 0 1, . . . , 1) .
for j Å 1 to m do

kj Å f
U

j(0);
In the type DF01 (k) , there are two nonequivalent

f
U

j/1 Å (0, kj) + f
U

j+ f
U

j/1; classes.
end for;

for j Å 1 to n do mark[ j] Å 0;
Example 9. The following are the canonical sequences

a Å 0;
of DL(k) for the six different Omega-equivalent net-for j Å 1 to m do
works D.if mark[kj] Å 0 then

a Å a / 1;
(a) For D Å SE , the sequence is (1, 2, . . . , m , 1, 2,mark[kj] Å a;

. . . , k) .k*j Å mark[kj] ;
(b) For D Å SE01 , the sequence is (1, 2, . . . , m , 1, 2,end then;

. . . , k) .end for;
(c) For D Å BL , the sequence is (1, 2, . . . , m , m , m

0 1, . . . , m 0 k / 1).The time complexity of this algorithm is O(mn) .
(d) For D Å BL01 , the sequence is (1, 2, . . . , m , k , kNow, we use the above algorithm to get the canonical

0 1, . . . , 1) .sequences of k-extra-stage Omega-equivalent networks.
(e) For D Å BY , the sequence is (1, 2, . . . , m , m 0 k

Example 7. The following are the canonical sequences / 1, m 0 k / 2, . . . , m) .
of DF(k) for the six different Omega-equivalent net- (f ) For D Å BY 01 , the sequence is (1, 2, . . . , m , m 0 k
works D: / 1, m 0 k / 2, . . . , m) .

(a) For D Å SE , the sequence is (1, 2, . . . , m , 1, 2, In the type DL(k) , there are four nonequivalent classes.
. . . , k) .

(b) For D Å SE01 , the sequence is (1, 2, . . . , m , 1, 2, Example 10. The following are the canonical sequences
. . . , k) . of DL01 (k) for the six different Omega-equivalent net-

works D:(c) For D Å BL , the sequence is (1, 2, . . . , m , m , m
0 1, . . . , m 0 k / 1).

(d) For D Å BL01 , the sequence is (1, 2, . . . , m , m , m (a) For D Å SE , the sequence is (1, 2, . . . , m , m , m
0 1, . . . , m 0 k / 1). 0 1, . . . , m 0 k / 1).

(e) For D Å BY , the sequence is (1, 2, . . . , m , 1, 2, (b) For D Å SE01 , the sequence is (1, 2, . . . , m , m , m
. . . , k) . 0 1, . . . , m 0 k / 1).

(f ) For D Å BY 01 , the sequence is (1, 2, . . . , m , 1, 2, (c) For D Å BL , the sequence is (1, 2, . . . , m , m , m
. . . , k) . 0 1, . . . , m 0 k / 1).

(d) For D Å BL01 , the canonical sequence is (1, 2, . . . ,
In the type DF(k) , there are two nonequivalent classes. m , m , m 0 1, . . . , m 0 k / 1).

(e) For D Å BY , the sequence is (1, 2, . . . , m , m , m
Example 8. The following are the canonical sequences 0 1, . . . , m 0 k / 1).
of DF01 (k) for the six different Omega-equivalent net- (f ) For D Å BY 01 , the sequence is (1, 2, . . . , m , m , m
works D. 0 1, . . . , m 0 k / 1).

(a) For D Å SE , the sequence is (1, 2, . . . , m , m , m In the type DL01 (k) , there is one equivalent class.
0 1, . . . , m 0 k / 1). If k Å m , then the k-extra-stage networks have only

two nonequivalent classes among DF(k) , DF01 (k) ,(b) For D Å SE01 , the sequence is (1, 2, . . . , m , m , m
0 1, . . . , m 0 k / 1). DL(k) , and DL01 (k) , namely, one characterized by se-
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