Characterizing Bit Permutation Networks

Gerard J. Chang, Frank K. Hwang, Li-Da Tong

Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30050, Taiwan

Received August 1997; accepted October 1997

Abstract: In recent years, many multistage interconnection networks using 2×2 switching elements have been proposed for parallel architectures. Typical examples are baseline networks, banyan networks, shuffle-exchange networks, and their inverses. As these networks are blocking, such networks with extra stages have also been studied extensively. These include Benes networks and $\Delta \oplus \Delta'$ networks. Recently, Hwang et al. studied *k*-extra-stage networks, which are a generalization of the above networks. They also investigated the equivalence issue among some of these networks. In this paper, we studied a more general class of networks, which we call (m + 1)-stage *d*-nary bit permutation networks. We characterize the equivalence of such networks by sequence of positive integers. © 1999 John Wiley & Sons, Inc. Networks 33: 261–267, 1999

Keywords: multistage interconnection network; switching network; permutation routing; Sterling number; rearrangeably nonblocking

1. INTRODUCTION

Consider a multistage interconnection network \mathcal{V} with $N = d^{n+1}$ inputs and outputs and which has m + 1 stages of N/d crossbars of size $d \times d$. Let the *j*th crossbar in a stage be labeled by *j* in the *d*-nary number (with *n* bits). A *bit-i group* consists of those crossbars whose labels are identical except the *i*th bit. Such a group will be labeled by a *d*-nary number *x* with *n* bits which is identical to any member in the group except that bit *i* is replaced by the symbol x_0 , which stands for the set $\{0, 1, \ldots, d-1\}$. \mathcal{V} will be called a (m + 1)-stage *d*-nary bit permutation network if the linking between stage *k* to stage k + 1 is always from a bit- i_k group *G* to a bit- j_k group *G'*, where *G'* is a permutation of *G*, for $k = 0, 1, \ldots, m - 1$.

Contract grant sponsor: National Science Council; contract grant number: NSC86-2115-M0009-002

For a detailed description and notation of bit permutation networks, see Section 2.

Note that (n + 1)-stage binary bit permutation networks include all self-routing networks like Omega, banyan, baseline, and their inverse networks. Binary bit permutation networks have been widely studied in the literature [1, 3, 6, 8, 11] for their topological equivalence. Bermond et al. [3] characterized the Omega-equivalent class by the P(i, j) property. An (n + 1)-stage network satisfies the P(i, j) property if the subnetwork from stage *i* to stage *j* has exactly 2^{n-j+i} components. Then, an (n + 1)-stage network with the unique path property is in the Omega-equivalent class if and only if it satisfies the P(i, j) property for all $0 \le i \le j \le n$.

Another special class of bit permutation networks consists of (n + 1)-stage networks with extra stages. A *k*extra-stage network is a cascade of a (n + 1)-stage network with *k* extra stages also satisfying the bit permutation linking pattern. Lea and Shyy [7, 9] proposed adding extra stages to a binary inverse banyan network while the

© 1999 John Wiley & Sons, Inc.

Correspondence to: G. J. Chang

Fig. 1. A 2 \times 2 switching element.

k extra stages are added by pattern F^{-1} (see below). Hwang et al. [5] generalized the study of equivalence by adding extra stages to a binary Omega-equivalent network with the following patterns for extra stages:

- (i) F: They are identical to the first k stages of the network;
- (ii) F^{-1} : Identical to the mirror image of the first k stages;
- (iii) L: Identical to the last k stages;
- (iv) L^{-1} : Identical to the mirror image of the last k stages.

In this paper, we determined the equivalence classes among all (m + 1)-stage *d*-nary bit permutation networks. We characterize such a network by an *m*-sequence over $\{1, 2, \ldots, n\}$, namely, every (m + 1)-stage d-nary bit permutation network is reduced to an *m*-sequence over $\{1, 2, \ldots, n\}$ and equivalence is determined by some easily computable sequence statistics. Note that the sequence is independent of d. For m = n, this characterization, of course, corresponds to the P(i, j) characterization. But the sequence-graph correspondence is not in an obvious way. With the power and convenience of the sequence characterization, we easily give an explicit solution of the size of the s-stage bit permutation class. Recently, Hu et al. [4] gave an $O(N^4 \log N)$ -time algorithm to check the equivalence of combined (2n - 1)-stage networks, which are obtained by cascading two Omega-equivalent networks. We give an (mn)-time algorithm for checking the equivalence of two (m + 1)-stage bit permutation networks. In particular, the running time is $O(\log^2 N)$ when the network has 2n - 1 stages.

2. NETWORKS

We start the discussion of bit permutation networks by examining the following classical example: A typical Omega-equivalent network consists of *N* input terminals, *N* output terminals, and $\log_2 N$ columns (stages) of 2 × 2 switching elements in which each column has N/2 switching elements. Figure 1 shows a 2 × 2 switching element, and Figure 2 shows a baseline network with N = 16, in which a terminal *i* is represented by its binary number representation (x_3, x_2, x_1, x_0) and is adjacent to a switching element named by (x_3, x_2, x_1) .

One can view the baseline network in Figure 2 as a graph whose vertices are those 32 switching elements named by $(x_3, x_2, x_1)_i$, where $0 \le i \le 3$ and $x_1, x_2, x_3 \in \{0, 1\}$, and there are links

from $(x_3, x_2, x_1)_0$ to $(x_0, x_3, x_2)_1$, from $(x_3, x_2, x_1)_1$ to $(x_3, x_0, x_2)_2$, and from $(x_3, x_2, x_1)_2$ to $(x_3, x_2, x_0)_3$,

where $x_0 \in \{0, 1\}$, meaning there are two links, one with $x_0 = 0$ and the other with $x_0 = 1$. A link from a switching element *x* at stage *i* to a switching element *y* at stage *i* + 1 exists if the bits of *y* can be obtained from the bits of *x* by a permutation depending only on *i*. For instance, we can represent the links from stage 0 to stage 1 by a permutation f_1 on $\{0, 1, 2, 3\}$ with

$$f_1(0) = 1$$
, $f_1(1) = 2$, $f_1(2) = 3$, $f_1(3) = 0$.

In this way, the links from stage 0 to stage 1 are those from $(x_3, x_2, x_1)_0$ to $(x_{f_1(3)}, x_{f_1(2)}, x_{f_1(1)})_1$. We can also say that for a link from $x = (x_3, x_2, x_1)_0$ to $y = (x_0, x_3, x_1)_1$ a coordinate x_j at the *j*th position of *x* moves to the $f_1^{-1}(j)$ th position of *y*, where the coordinate x_0 's moving from "outside" into *y* means there are two such links. Similarly, the following permutations f_2 and f_3 represent links from stage 1 to stage 2 and stage 2 to stage 3, respectively:

$$f_2(0) = 1$$
, $f_2(1) = 2$, $f_2(2) = 0$, $f_2(3) = 3$;
 $f_3(0) = 1$, $f_3(1) = 0$, $f_3(2) = 2$, $f_3(3) = 3$.

Throughout this paper, we shall use the cycle notation for

Fig. 2. A baseline network with N = 16.

$$f(i_1) = i_2, \quad f(i_2) = i_3, \dots, \quad f(i_{n-1}) = i_n,$$

 $f(i_n) = i_1, \text{ and } f(j) = j \text{ for all other } j.$

Then, f_1 can be represented by (0, 1, 2, 3), f_2 by (0, 1, 2), and f_3 by (0, 1).

Not only can the baseline network in Figure 2 be represented by the permutations f_i , but also all bit permutation networks can be represented in this way. We can also use general $d \times d$ switching elements instead of 2×2 switching elements. A general setting is as follows:

Definition. Suppose that *n* is a positive integer and f_1 , f_2, \ldots, f_m are $m \ge 0$ permutations on $\{0, 1, \ldots, n\}$ such that $f_i(0) \ne 0$ for $1 \le i \le m$. The (m + 1)-stage *d nary bit permutation network* $N_d(n, f_1, f_2, \ldots, f_m)$ is the network whose vertices are those $(x_n, x_{n-1}, \ldots, x_1)_i$ with $0 \le i \le m$ and $x_j \in \{0, 1, \ldots, d-1\}$ for $1 \le j \le n$, and each $(x_n, x_{n-1}, \ldots, x_1)_{i-1}$ is adjacent to $(x_{f_i(n)}, x_{f_i(n-1)}, \ldots, x_{f_i(1)})_i$, where $x_0 \in \{0, 1, \ldots, d-1\}$. In other words, there is an edge from $(x_n, x_{n-1}, \ldots, x_1)_{i-1}$ to $(y_n, y_{n-1}, \ldots, y_1)_i$ whenever $y_j = x_{f_i(j)}$ for $1 \le j \le n$.

The following examples show (m + 1)-stage binary bit permutation networks with $N = 2^{n+1}$ input and output terminals. Examples 1–3 have been worked out by Wu and Feng [11]. We give the presentation in our format for easier use later.

Example 1. The *baseline network BL* is precisely $N_2(n, f_1, f_2, \ldots, f_n)$, with

$$f_i = (0, 1, \dots, n - i + 1)$$
 for $1 \le i \le n$.

The inverse baseline network BL^{-1} is $N_2(n, f_1, f_2, ..., f_n)$, with

$$f_i = f_{n-i+1}^{-1} = (i, i - 1, ..., 1, 0) \text{ for } 1 \le i \le n.$$

Example 2. The banyan network BY or the indirect binary *n*-cube network is $N_2(n, f_1, f_2, \ldots, f_n)$, with

$$f_i = (0, i) \text{ for } 1 \le i \le n.$$

The modified data manipulator is $N_2(n, f_1, f_2, \ldots, f_n)$, with

$$f_i = f_{n-i+1}^{-1} = (0, n - i + 1) \text{ for } 1 \le i \le n$$

and, hence, is the inverse banyan network BY^{-1} .

Example 3. The Omega (or shuffle-exchange) network SE is $N_2(n, f_1, f_2, ..., f_n)$, with

Fig. 3. The network in Example 4.

$$f_i = (n, n - 1, \dots, 1, 0)$$
 for $1 \le i \le n$.

The flip (or inverse-shuffle-exchange) network SE^{-1} is $N_2(n, f_1, f_2, \ldots, f_n)$, with

$$f_i = f_i^{-1} = (0, 1, \dots, n) \text{ for } 1 \le i \le n.$$

Example 4. Interchange the role of the coordinates x_1 and x_2 of (x_3, x_2, x_1) in stages 2 and 3 of the baseline network in Figure 2. The resulting network, which is topologically equivalent to *BL*, is $N_2(3, f_1, f_2, f_3)$ with

$$f_1 = (0, 1, 2, 3), \quad f_2 = (0, 2, 1), \text{ and } f_3 = (0, 2)$$

(see Fig. 3). Note that if one interchanges the switching elements $(x_3, 0, 1)_i$ with $(x_3, 1, 0)_i$ for i = 2, 3 the resulting network is the baseline network.

Example 5. Suppose that $N_2(n, f_1, f_2, \ldots, f_n)$ is an Omega-equivalent network Δ and $N_2(n, f'_1, f'_2, \ldots, f'_n)$ is another Omega-equivalent network Δ' . Then, $\Delta \oplus \Delta'$ is $N_2(n, f_1, f_2, \ldots, f_n, f'_1, f'_2, \ldots, f'_n)$.

Example 6. Suppose that $N_2(n, f_1, f_2, \ldots, f_n)$ is an Omega-equivalent network Δ and $1 \le k \le n$. Hwang et al. [5] defined four *k*-extra-stage networks as follows: $\Delta_F(k)$ [respectively, $\Delta_L(k)$] is Δ together with *k* extra stages identical to the (respectively, last) first *k* stages of Δ , and $\Delta_{F^{-1}}(k)$ [respectively, $\Delta_{L^{-1}}(k)$] is Δ together with *k* extra stages identical to the mirror image of the first (respectively, last) *k* stages of Δ . Then,

 $\Delta_F(k)$ is $N_2(n, f_1, f_2, \ldots, f_n, f_1, f_2, \ldots, f_k);$

$$\Delta_{F^{-1}}(k)$$
 is $N_2(n, f_1, f_2, \ldots, f_n, f_k^{-1}, f_{k-1}^{-1}, \ldots, f_1^{-1});$

$$\Delta_L(k)$$
 is $N_2(n, f_1, f_2, \ldots, f_n, f_{n-k+1}, f_{n-k+2}, \ldots, f_n);$

 $\Delta_{L^{-1}}(k)$ is $N_2(n, f_1, f_2, \ldots, f_n, f_n^{-1}, f_{n-1}^{-1}, \ldots, f_{n-k+1}^{-1})$.

3. TOPOLOGICAL EQUIVALENCE

The main effort of this paper was to establish methods for determining if two bit permutation networks $N_d(n, f_1, f_2, \ldots, f_m)$ and $N_d(n, f'_1, f'_2, \ldots, f'_m)$ are topologically equivalent or graphically isomorphic. The following theorem is the foundation of our theory:

Theorem 1. If there exist permutations g_0, g_1, \ldots, g_m on $\{0, 1, \ldots, n\}$ such that $g_i(0) = 0$ for $0 \le i \le m$ and $f'_i = g_{i-1}^{-1} \circ f_i \circ g_i$ for $1 \le i \le m$, then $N_d(n, f_1, f_2, \ldots, f_m)$ is isomorphic to $N_d(n, f'_1, f'_2, \ldots, f'_m)$.

Proof. Consider the bijection g from the vertex set of $N_d(n, f_1, f_2, \ldots, f_m)$ to the vertex set of $N_d(n, f_1', f_2', \ldots, f_m')$ defined by

$$(x_n, x_{n-1}, \dots, x_1)_i \xrightarrow{g} (x_{g_i(n)}, x_{g_i(n-1)}, \dots, x_{g_i(1)})_i$$

for $0 \le i \le m$

In other words, $g((x_n, x_{n-1}, ..., x_1)_i) = (x'_n, x'_{n-1}, ..., x'_1)_i$ whenever $x'_j = x_{g_i(j)}$ for $1 \le j \le n$.

To see that these two networks are isomorphic, we only need to check that g is edge-preserving. Suppose that e is an edge from $(x_n, x_{n-1}, \ldots, x_1)_{i-1}$ to $(y_n, y_{n-1}, \ldots, y_1)_i$ in $N_d(n, f_1, f_2, \ldots, f_m)$, that is, $y_j = x_{f_i(j)}$ for $1 \le j \le n$. Let

$$g((x_n, x_{n-1}, \dots, x_1)_{i-1}) = (x'_n, x'_{n-1}, \dots, x'_1)_{i-1},$$

i.e., $x'_j = x_{g_{i-1}(j)}$ for $1 \le j \le n$

and

$$g((y_n, y_{n-1}, \dots, y_1)_i) = (y'_n, y'_{n-1}, \dots, y'_1)_i,$$

i.e., $y'_j = y_{g_i(j)}$ for $1 \le j \le n$.

Then,

$$y'_{j} = y_{g_{i}(j)} = x_{f_{i} \circ g_{i}(j)} = x_{g_{i-1} \circ f'_{i}(j)}$$
$$= x'_{f'_{i}(j)} \text{ for } 1 \le j \le n.$$

Thus, there exists an edge from $(x'_n, x'_{n-1}, \ldots, x'_1)_{i-1}$ to $(y'_n, y'_{n-1}, \ldots, y'_1)_i$. Conversely, an edge in $N_d(n, f'_1, f'_2, \ldots, f'_m)$ also corresponds to an edge in $N_d(n, f_1, f_2, \ldots, f_m)$.

As a quick application of Theorem 1, consider BL

in Figure 2 as $N_2(3, f_1, f_2, f_3)$, with $f_1 = (0, 1, 2, 3)$, $f_2 = (0, 1, 2)$, and $f_3 = (0, 1)$ and the network in Example 4 as $N_2(3, f_1', f_2', f_3')$, with $f_1' = (0, 1, 2, 3)$, $f_2' = (0, 2, 1)$, and $f_3' = (0, 2)$. Then, $g_0 = (2, 3)$ and $g_1 = g_2 = g_3 = (1, 2)$ show that these two networks are isomorphic.

Theorem 2. Every bit permutation network $N_d(n, f_1, f_2, \ldots, f_m)$ is isomorphic to some bit permutation network $N_d(n, f'_1, f'_2, \ldots, f'_m)$, where $f'_i = (0, k_i)$ with $k_i \in \{1, 2, \ldots, n\}$ for $1 \le i \le m$.

Proof. We shall prove by induction on *j* the following claim which implies the theorem:

Claim(*j*). $N_d(n, f_1, f_2, ..., f_m)$ is isomorphic to some $N_d(n, f'_1, f'_2, ..., f'_m)$, where $f'_i = (0, k_i)$ with $k_i \in \{1, 2, ..., n\}$ for $1 \le i \le j$.

Claim(0) is clearly true. Suppose that Claim(j-1)holds. Consider a general $j \ge 1$. Let $k_j = f'_j(0)$. Then, $k_j \in \{1, 2, ..., n\}$. Let $g_j = (f'_j)^{-1}\circ(0, k_j)$ and all other g_i are identity permutations. It is easy to check that $g_i(0) = 0$ for $0 \le i \le m$. According to Theorem 1, $N_d(n, f'_1, f'_2, ..., f'_m)$, and, therefore, $N_d(n, f_1, f_2,$ $\dots, f_m)$, is isomorphic to $N_d(n, f''_1, f''_2, ..., f''_m)$, where $f''_i = g_{i-1}^{-1}\circ f'_i\circ g_i$ for $1 \le i \le m$. In particular, $f''_i = f'_i = (0, k_i)$ for $1 \le i \le j - 1$, and f''_j $= f'_j\circ g_j = f'_j\circ (f'_j)^{-1}\circ (0, k_j) = (0, k_j)$. This gives Claim(j).

So, basically, we only need to consider the networks with $f_i = (0, k_i)$. For convenience, we shall use $N_d(n, k_1, k_2, \ldots, k_m)$ as a short notation for the network $N_d(n, f_1, f_2, \ldots, f_m)$, with $f_i = (0, k_i)$ and $k_i \in \{1, 2, \ldots, n\}$ for $1 \le i \le m$.

Our next step is to determine when two networks are isomorphic.

Theorem 3. If g is a permutation on $\{0, 1, 2, ..., m\}$ with g(0) = 0, then the network $N_d(n, k_1, k_2, ..., k_m)$ is isomorphic to $N_d(n, g(k_1), g(k_2), ..., g(k_m))$.

Proof. The theorem following from Theorem 1 and the fact that $g \circ (0, k_i) \circ g^{-1} = (0, g(k_i))$. Note that we apply Theorem 1 by choosing all g_i as g.

For any sequence (k_1, k_2, \ldots, k_m) over $\{1, 2, \ldots, n\}$ with $a = |\{k_1, k_2, \ldots, k_m\}|$, let $1 = i_1 < i_2 < \cdots$ $< i_a$ be those indices such that $k_{i_r} \notin \{k_1, k_2, \ldots, k_{i_{r-1}}\}$ for $1 \le r \le a$. Choose any permutation g on $\{1, 2, \ldots, n\}$ with the property that $g(k_{i_r}) = r$ for $1 \le r$ $\le a$. Then, $(k_1^*, k_2^*, \ldots, k_m^*) = (g(k_1), g(k_2), \ldots, g(k_m))$ is a sequence with the property that $\{k_1^*, k_2^*, \cdots, k_m^*\} = \{1, 2, \ldots, a\}$ and for any $1 \le r \le a$, $\{k_1^*, k_2^*, \ldots, k_{i_r}^*\} = \{1, 2, \ldots, r\}$ when i_r is the minimum index with $k_{i_r}^* = r$. Such a sequence is called a *canonical sequence* over $\{1, 2, ..., n\}$.

Corollary 4. Any $N_d(n, f_1, f_2, \ldots, f_m)$ is isomorphic to $N_d(n, k_1, k_2, \ldots, k_m)$ for some canonical sequence over $\{1, 2, \ldots, n\}$.

Theorem 5. If $a = |\{k_1, k_2, \ldots, k_m\}|$, then $N_d(n, k_1, k_2, \ldots, k_m)$ has d^{n-a} connected components.

Proof. First, we claim that for any two vertices $x = (x_n, x_{n-1}, \ldots, x_1)_i$ and $y = (y_n, y_{n-1}, y_{n-1}, \ldots, y_1)_j$ such that $x_k = y_k$ for all $k \in \{k_1, k_2, \ldots, k_m\}$ there exists a path joining them.

For the case in which i = 0 and j = m, $x = x^{(0)} \rightarrow x^{(1)} \rightarrow \cdots \rightarrow x^{(m)} = y$ is a desired path, where $x^{(i)}$ is a vertex in stage *i* that is obtained from $x^{(i-1)}$ by replacing its k_i -th coordinate with y_{k_i} . For the general case, consider the vertices $x^* = (x_n, x_{n-1}, \ldots, x_1)_0$ and $y^* = (y_n, y_{n-1}, \ldots, y_1)_m$. By the above construction, there exists an $x^* - y^*$ path. It is clear that $(x_n, x_{n-1}, \ldots, x_1)_i \rightarrow (x_n, x_{n-1}, \ldots, x_1)_{i-1} \rightarrow \cdots \rightarrow (x_n, x_{n-1}, \ldots, x_1)_0 = x^*$ is an $x - x^*$ path. Similarly, there exists a $y^* - y$ path. Thus, *x* and *y* are joined by a path.

On the other hand, a move from any vertex to its neighbor never changes its *k*-th coordinate for $k \notin \{k_1, k_2, \ldots, k_m\}$. Thus, two vertices with different values at the *k*-th coordinate for some $k \notin \{k_1, k_2, \cdots, k_m\}$ are not in the same connected component of the network. Therefore, the network has d^{n-a} connected components.

Theorem 6. For any two canonical sequences $(k_1, k_2, ..., k_m)$ and $(k'_1, k'_2, ..., k'_m)$ over $\{1, 2, ..., n\}$, the network $N_d(n, k_1, k_2, ..., k_m)$ is isomorphic to $N_d(n, k'_1, k'_2, ..., k'_m)$ if and only if $(k_1, k_2, ..., k_m) = (k'_1, k'_2, ..., k'_m)$.

Proof. The two networks are clearly isomorphic if the two sequences are equal.

Conversely, suppose that $(k_1, k_2, ..., k_m) \neq (k'_1, k'_2, ..., k'_m)$. Let *i* be the minimum index such that $k_i \neq k'_i$, say $k_i < k'_i$ and $k_r = k'_r$ for $1 \le r \le i - 1$. Since the two sequences are canonical, $i \ge 2$. By the definition, there exists some $1 \le r \le i - 1$ such that $k_r = k'_r \in \{k_i, k'_i\}$. Choose a maximum such *r*. Then, $|\{k_r, k_{r+1}, ..., k_i\}| = a \ne a' = \{k'_r, k'_{r+1}, ..., k'_i\}$. Note that $N_d(n, k_r, k_{r+1}, ..., k_i)$ has d^{m-a} connected components while $N_d(n, k'_r, k'_{r+1}, ..., k'_i)$ has $d^{m-a'}$ connected components. Hence, the two networks are not isomorphic.

Remark. By Theorem 6, the $N_d(n, k_1, k_2, ..., k_m)$ in Corollary 4 is unique. Such a network is called the *canonical representation* of $N_d(n, f_1, f_2, ..., f_m)$.

A condition slightly weaker than the P(i, j) characterization follows from Theorem 6:

Corollary 7. An (n + 1)-stage network with the unique path property and satisfying the P(i, i + 1) property for i = 0, 1, ..., n, is in the Omega-equivalent class if and only if it also satisfies the P(0, j) property for j = 1, 2, ..., n.

Proof. By satisfying the P(i, i + 1) property, the network is a bit permutation network. By satisfying the P(0, j) property, the number of components is increasing in j, which implies that $k_j \neq k_i$ for all i < j. It follows that (k_1, k_2, \ldots, k_n) are all distinct, but there is only one such canonical sequence. Corollary 7 follows from Theorem 6 immediately.

Theorem 8. The number of equivalent classes among (m + 1)-stage d-nary bit permutation networks is

$$\sum_{t=1}^{n} \sum_{i=0}^{t} \frac{1}{t!} (-1)^{t-i} \binom{t}{i} i^{m}.$$

Proof. By Corollary 4 and Theorem 6, we only need to count the set C(m, t) of canonical sequences of length m with t distinct elements for $1 \le t \le n$. Denote by P(m, t) the set of all partitions of $\{1, 2, ..., m\}$ into t nonempty subsets. Define a mapping h from C(m, t) to P(m, t) by $h(k_1, k_2, ..., k_m) = \{C_1, C_2, ..., C_t\}$, where $C_i = \{j : k_j = i\}$. It is easy to see that h is one-to-one. On the other hand, for any partition $\{C_1, C_2, ..., C_t\}$ in P(m, t), we may assume that min $C_1 \le \min C_2 \le \cdots \le \min C_t$. Let $k = (k_1, k_2, ..., k_m)$, where $k_i = j$ for $i \in C_j$. Then, $h(k) = \{C_1, C_2, ..., C_t\}$. So, h is onto. Therefore, |C(m, t)| = |P(m, t)|, which by definition is the Sterling number of the second kind S(m, t) (see [10]). It is well known that

$$S(m, t) = \frac{1}{t!} \sum_{i=0}^{t} (-1)^{t-i} {t \choose i} i^{m}.$$

Summing over *t*, we obtain Theorem 8.

4. ALGORITHM AND APPLICATIONS

By the theorems in Section 3, a bit permutation network $N_d(n, f_1, f_2, \ldots, f_m)$ is topologically equivalent to its canonical representation $N_d(n, k_1, k_2, \ldots, k_m)$, whose topology is determined by the canonical sequence (k_1, k_2, \ldots, k_m) . We shall summarize an efficient algorithm from the proofs of Theorems 2 and 3. We then apply it to determine the equivalence among the networks mentioned in the examples of Section 2.

Algorithm. Find the canonical representation of a bit permutation network.

Input. A bit permutation network $N_d(n, f_1, f_2, \ldots, f_m)$. **Output.** The canonical sequence $(k_1^*, k_2^*, \ldots, k_m^*)$ for $N_d(n, f_1, f_2, \ldots, f_m)$.

Method. $f_0 = (0); f_{m+1} = (0);$ for j = 1 to m do $f_j = f_j$; for j = 1 to m do $k_{\overline{j}} = f_j(0);$ - $f_{j+1} = (0, k_j) \circ f_j \circ f_{j+1};$ end for; for i = 1 to *n* do mark[i] = 0; a = 0;for i = 1 to m do if mark $[k_i] = 0$ then a = a + 1; $\max[k_i] = a;$ $k_i^* = \max[k_i];$ end then; end for;

The time complexity of this algorithm is O(mn).

Now, we use the above algorithm to get the canonical sequences of *k*-extra-stage Omega-equivalent networks.

Example 7. The following are the canonical sequences of $\Delta_F(k)$ for the six different Omega-equivalent networks Δ :

- (a) For $\Delta = SE$, the sequence is $(1, 2, \dots, m, 1, 2, \dots, k)$.
- (b) For $\Delta = SE^{-1}$, the sequence is (1, 2, ..., m, 1, 2, ..., k).
- (c) For $\Delta = BL$, the sequence is (1, 2, ..., m, m, m, m 1, ..., m k + 1).
- (d) For $\Delta = BL^{-1}$, the sequence is (1, 2, ..., m, m, m, m 1, ..., m k + 1).
- (e) For $\Delta = BY$, the sequence is $(1, 2, \dots, m, 1, 2, \dots, k)$.
- (f) For $\Delta = BY^{-1}$, the sequence is (1, 2, ..., m, 1, 2, ..., k).

Example 8. The following are the canonical sequences of $\Delta_{F^{-1}}(k)$ for the six different Omega-equivalent networks Δ .

- (a) For $\Delta = SE$, the sequence is (1, 2, ..., m, m, m, m 1, ..., m k + 1).
- (b) For $\Delta = SE^{-1}$, the sequence is (1, 2, ..., m, m, m, m 1, ..., m k + 1).

- (c) For $\Delta = BL$, the sequence is $(1, 2, \dots, m, k, k-1, \dots, 1)$.
- (d) For $\Delta = BL^{-1}$, the sequence is (1, 2, ..., m, m, m, m 1, ..., m k + 1).
- (e) For $\Delta = BY$, the sequence is $(1, 2, \dots, m, k, k-1, \dots, 1)$.
- (f) For $\Delta = BY^{-1}$, the sequence is (1, 2, ..., m, k, k 1, ..., 1).

In the type $\Delta_{F^{-1}}(k)$, there are two nonequivalent classes.

Example 9. The following are the canonical sequences of $\Delta_L(k)$ for the six different Omega-equivalent networks Δ .

- (a) For $\Delta = SE$, the sequence is (1, 2, ..., *m*, 1, 2, ..., *k*).
- (b) For $\Delta = SE^{-1}$, the sequence is (1, 2, ..., m, 1, 2, ..., k).
- (c) For $\Delta = BL$, the sequence is (1, 2, ..., m, m, m, m 1, ..., m k + 1).
- (d) For $\Delta = BL^{-1}$, the sequence is (1, 2, ..., m, k, k 1, ..., 1).
- (e) For $\Delta = BY$, the sequence is (1, 2, ..., m, m k + 1, m k + 2, ..., m).
- (f) For $\Delta = BY^{-1}$, the sequence is (1, 2, ..., m, m k + 1, m k + 2, ..., m).

In the type $\Delta_L(k)$, there are four nonequivalent classes.

Example 10. The following are the canonical sequences of $\Delta_{L^{-1}}(k)$ for the six different Omega-equivalent networks Δ :

- (a) For $\Delta = SE$, the sequence is (1, 2, ..., m, m, m, m 1, ..., m k + 1).
- (b) For $\Delta = SE^{-1}$, the sequence is (1, 2, ..., m, m, m, m 1, ..., m k + 1).
- (c) For $\Delta = BL$, the sequence is (1, 2, ..., m, m, m, m 1, ..., m k + 1).
- (d) For $\Delta = BL^{-1}$, the canonical sequence is (1, 2, ..., m, m, m 1, ..., m k + 1).
- (e) For $\Delta = BY$, the sequence is (1, 2, ..., m, m, m, m 1, ..., m k + 1).
- (f) For $\Delta = BY^{-1}$, the sequence is (1, 2, ..., m, m, m, m 1, ..., m k + 1).

In the type $\Delta_{L^{-1}}(k)$, there is one equivalent class.

If k = m, then the *k*-extra-stage networks have only two nonequivalent classes among $\Delta_F(k)$, $\Delta_{F^{-1}}(k)$, $\Delta_L(k)$, and $\Delta_{L^{-1}}(k)$, namely, one characterized by se-

In the type $\Delta_F(k)$, there are two nonequivalent classes.

quence (1, 2, ..., m, 1, 2, ..., m), and the other, by (1, 2, ..., m, m, m, m - 1, ..., 1). Since the Benes network $BL_{L^{-1}}(n)$ is in the second class, networks in the second class are rearrangable. Benes [2] conjectured that $SE_F(n)$ is rearrangeable. If the conjecture is true, then the networks in the first class are also rearrangeable.

REFERENCES

- D.P. Agrawal, Graph theoretical analysis and design of multistage interconnection networks, IEEE Trans Comput C-32 (1983), 637–648.
- [2] V.E. Benes, On rearrangeable three-stage connecting networks, Bell Syst Tech J 41 (1962), 1481–1492.
- [3] J.-C. Bermond, J.M. Fourneau, and A. Jean-Marie, Equivalence of multistage interconnection networks, Inf Proc Lett 26 (1987), 45–50.
- [4] Q. Hu, X. Shen, and J. Yang, Topologies of combined

 $(2 \log N - 1)$ -stage interconnection networks, IEEE Trans Comput C-46 (1997), 118–124.

- [5] F.K. Hwang, S.C. Liaw, and H.G. Yeh, Equivalence classes for extra-stage networks, Manuscript (1997).
- [6] C.P. Kruskal and M. Snir, A unified theory of interconnection network structure, Theor Comput Sci 48 (1986), 75–94.
- [7] C.-T. Lea and D.-J. Shyy, Tradeoff of horizontal decomposition versus vertical stacking in rearrangeable nonblocking networks, IEEE Trans Commun COM-37 (1991), 879–904.
- [8] D.S. Parker, Notes on shuffle exchange-type switching networks, IEEE Trans Comput C-29 (1980), 213–222.
- [9] D.-J. Shyy and C.-T. Lea, $Log_2(N, m, p)$ strictly nonblocking networks, IEEE Trans Commun COM-39 (1991), 1502–1510.
- [10] R.P. Stanley, Enumerative Combinatorics Wadsworth, Belmont, CA I (1986).
- [11] C.-L. Wu and T.Y. Feng, On a class of multistage interconnection networks, IEEE Trans Comput C-29 (1980), 694–702.