Characterizing Bit Permutation Networks

Gerard J. Chang, Frank K. Hwang, Li-Da Tong

Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30050, Taiwan

Received August 1997; accepted October 1997

Abstract: In recent years, many multistage interconnection networks using 2×2 switching elements have been proposed for parallel architectures. Typical examples are baseline networks, banyan networks, shuffle-exchange networks, and their inverses. As these networks are blocking, such networks with extra stages have also been studied extensively. These include Benes networks and $\Delta \oplus \Delta'$ networks. Recently, Hwang et al. studied *k*-extra-stage networks, which are a generalization of the above networks. They also investigated the equivalence issue among some of these networks. In this paper, we studied a more general class of networks, which we call $(m + 1)$ -stage d -nary bit permutation networks. We characterize the equivalence of such networks by sequence of positive integers. © 1999 John Wiley & Sons, Inc. Networks 33: 261–267, 1999

Keywords: multistage interconnection network; switching network; permutation routing; Sterling number; rearrangeably nonblocking

Consider a multistage interconnection network \bar{v} with N

Note that $(n + 1)$ -stage binary bit permutation net-
 a^{n+1} inputs and outputs and which has $m + 1$ stages

of N/d crossbars of size $d \times d$. Let the *j*th

Contract grant sponsor: National Science Council; contract grant number: NSC86-2115-M0009-002 extra stages to a binary inverse banyan network while the

1. INTRODUCTION For a detailed description and notation of bit permutation networks, see Section 2.

extra-stage network is a cascade of a $(n + 1)$ -stage network with *k* extra stages also satisfying the bit permuta- *Correspondence to:* G. J. Chang

k extra stages are added by pattern F^{-1} (see below).

Hwang et al. [5] generalized the study of equivalence by adding extra stages to a binary Omega-equivalent network from $(x_3, x_2, x_1)_1$ to $(x_3, x_0, x_2)_2$, and with the following patterns for extra stages: from $(x_3, x_2, x_1)_2$ to $(x_3, x_2, x_0)_3$,

-
- (ii) F^{-1} : Identical to the mirror image of the first k
-
- (iv) L^{-1} : Identical to the mirror image of the last *k* permutation f_1 on $\{0, 1, 2, 3\}$ with stages.

In this paper, we determined the equivalence classes
among all $(m + 1)$ -stage d-nary bit permutation net-
works. We characterize such a network by an *m*-sequence
over $\{1, 2, ..., n\}$, namely, every $(m + 1)$ -stage d-nary
bit bit permutation network is reduced to an *m*-sequence over $f_1^{-1}(j)$ a coordinate x_j at the *j*th position of *x* moves to the $f_1^{-1}(j)$ th position of *y*, where the coordinate x_0 's moving {1, 2, ..., n} and equivalence is determined by some $f_1^{-1}(j)$ th position of y, where the coordinate x_0 's moving easily computable sequence statistics. Note that the sequence is independent of d. For $m = n$, this chara ous way. With the power and convenience of the sequence characterization, we easily give an explicit solution of the size of the *s*-stage bit permutation class. Recently, Hu et al. [4] gave an $O(N^4 \log N)$ -time algorithm to check the equivalence of combined $(2n - 1)$ -stage networks, which Throughout this paper, we shall use the *cycle* notation for are obtained by cascading two Omega-equivalent networks. We give an (*mn*)-time algorithm for checking the equivalence of two $(m + 1)$ -stage bit permutation networks. In particular, the running time is $O(\log^2 N)$ when the network has $2n - 1$ stages.

2. NETWORKS

We start the discussion of bit permutation networks by examining the following classical example: A typical Omega-equivalent network consists of *N* input terminals, *N* output terminals, and log_2N columns (stages) of 2 \times 2 switching elements in which each column has $N/2$ switching elements. Figure 1 shows a 2×2 switching **Fig. 2.** A baseline network with $N = 16$.

element, and Figure 2 shows a baseline network with *N* $= 16$, in which a terminal *i* is represented by its binary number representation (x_3, x_2, x_1, x_0) and is adjacent to a switching element named by (x_3, x_2, x_1) .

One can view the baseline network in Figure 2 as a **Fig. 1.** A 2 \times 2 switching element.
Fig. 1. A 2 \times 2 switching element.
named by (*x*₃, *x*₁)*i*, where $0 \le i \le 3$ and *x*₁, *x*₂, *x*₃ $\in \{0, 1\}$, and there are links

(i) *F*: They are identical to the first *k* stages of the where $x_0 \in \{0, 1\}$, meaning there are two links, one with network;
network;
network;
network;
network;
network;
network;
 $x_0 = 0$ and the other with $x_0 = 1$. F^{-1} : Identical to the mirror image of the first $k + 1$ exists if the bits of *y* can be obtained from the bits stages; of x by a permutation depending only on i . For instance, (iii) *L*: Identical to the last *k* stages; we can represent the links from stage 0 to stage 1 by a

$$
f_1(0) = 1
$$
, $f_1(1) = 2$, $f_1(2) = 3$, $f_1(3) = 0$.

$$
f_2(0) = 1
$$
, $f_2(1) = 2$, $f_2(2) = 0$, $f_2(3) = 3$;
 $f_3(0) = 1$, $f_3(1) = 0$, $f_3(2) = 2$, $f_3(3) = 3$.

$$
f(i_1) = i_2
$$
, $f(i_2) = i_3$, ..., $f(i_{n-1}) = i_n$,
\n $f(i_n) = i_1$, and $f(j) = j$ for all other j.

Then, f_1 can be represented by $(0, 1, 2, 3)$, f_2 by $(0, 1, 1)$ 2), and f_3 by $(0, 1)$.

Not only can the baseline network in Figure 2 be represented by the permutations f_i , but also all bit permutation networks can be represented in this way. We can also use general $d \times d$ switching elements instead of 2×2 switching elements. A general setting is as follows:

Definition. Suppose that *n* is a positive integer and f_1 , f_2, \ldots, f_m are $m \geq 0$ permutations on $\{0, 1, \ldots, n\}$ such that $f_i(0) \neq 0$ for $1 \leq i \leq m$. The $(m + 1)$ -stage d-
nary bit permutation network $N_d(n, f_1, f_2, ..., f_m)$ is the network whose vertices are those $(x_n, x_{n-1}, \ldots, x_1)$ *i* with $0 \le i \le m$ and $x_j \in \{0, 1, \ldots, d-1\}$ for $1 \le j \le n$, and each $(x_n, x_{n-1}, \ldots, x_1)_{i-1}$ is adjacent to $(x_{f_i(n)}, x_{n-1}, \ldots, x_1)$ $x_{f_i(n-1)}, \ldots, x_{f_i(1)}$ *i*, where $x_0 \in \{0, 1, \ldots, d-1\}$. In *f i* other words, there is an edge from $(x_n, x_{n-1}, \ldots, x_1)_{i-1}$

The following examples show $(m + 1)$ -stage binary
bit permutation networks with $N = 2^{n+1}$ input and output
terminals. Examples 1–3 have been worked out by Wu
and Feng [11]. We give the presentation in our format for easier use later. $f_1 = (0, 1, 2, 3), f_2 = (0, 2, 1), \text{ and } f_3 = (0, 2)$

Example 1. The *baseline network BL* is precisely $N_2(n,$ (see Fig. 3). Note that if one interchanges the switching elements $(x_3, 0, 1)_i$ with $(x_3, 1, 0)_i$ for $i = 2, 3$ the

$$
f_i = (0, 1, ..., n - i + 1)
$$
 for $1 \le i \le n$.

The *inverse baseline network* BL^{-1} is $N_2(n, f_1, f_2, \ldots,$
 f_n , with $\sum_{n=1}^{\infty}$ and $N_2(n, f'_1, f'_2, \ldots,$
 f_n , with f_n), with f'_n), with f'_n

$$
f_i = f_{n-i+1}^{-1} = (i, i-1, \ldots, 1, 0) \text{ for } 1 \leq i \leq n. \qquad \bigoplus \Delta' \text{ is } N_2(n, f_1, f_2, \ldots, f_n, f'_1, f'_2, \ldots, f'_n).
$$

nary *n*-cube network is $N_2(n, f_1, f_2, \ldots, f_n)$, with

$$
f_i = (0, i) \quad \text{for } 1 \le i \le n.
$$

 f_n), with

$$
f_i = f_{n-i+1}^{-1} = (0, n-i+1) \text{ for } 1 \le i \le n
$$

and, hence, is the inverse banyan network BY^{-1} .

Example 3. The *Omega* (or *shuffle-exchange*) *network SE* is $N_2(n, f_1, f_2, ..., f_n)$, with

Fig. 3. The network in Example 4.

$$
f_i = (n, n-1, ..., 1, 0)
$$
 for $1 \le i \le n$.

UUU f_1, f_2, \ldots, f_n

$$
f_i = f_i^{-1} = (0, 1, ..., n)
$$
 for $1 \le i \le n$.

to $(y_n, y_{n-1}, \ldots, y_1)_i$ whenever $y_j = x_{f_i(j)}$ for $1 \le j \le n$.
The following examples show $(m + 1)$ -stage binary and *x* of (x, y_1, y_1) in stages 2 and 2 of the baseline

$$
f_1 = (0, 1, 2, 3),
$$
 $f_2 = (0, 2, 1),$ and $f_3 = (0, 2)$

resulting network is the baseline network.

The *inverse baseline network* BL^{-1} is $N_2(n, f_1, f_2, \ldots,$ **Example 5.** Suppose that $N_2(n, f_1, f_2, \ldots, f_n)$ is an f'_n) is another Omega-equivalent network Δ' . Then, Δ

Example 2. The *banyan network BY* or the *indirect bi*-
 Example 6. Suppose that $N_2(n, f_1, f_2, \ldots, f_n)$ is an Theory *n* cube naturally is $N(n, f_1, f_2, \ldots, f_n)$ is an Theory *n* cube naturally is $N(n, f_1, f_2, \ldots, f_n)$ al. [5] defined four *k*-extra-stage networks as follows: $\Delta_F(k)$ [respectively, $\Delta_L(k)$] is Δ together with *k* extra stages identical to the (respectively, last) first *k* stages of The *modified data manipulator* is $N_2(n, f_1, f_2, \ldots, \Delta$, and $\Delta_F^{-1}(k)$ [respectively, $\Delta_L^{-1}(k)$] is Δ together Δ , and $\Delta_{F^{-1}}(k)$ [respectively, $\Delta_{L^{-1}}(k)$] is Δ together with *k* extra stages identical to the mirror image of the first (respectively, last) *k* stages of Δ . Then,

> $\Delta_F(k)$ is $N_2(n, f_1, f_2, \ldots, f_n, f_1, f_2, \ldots, f_k);$ $\Delta_{F^{-1}}(k)$ is $N_2(n, f_1, f_2, \ldots, f_n, f_{k}^{-1}, f_{k-1}^{-1}, \ldots, f_{1}^{-1});$

$$
\Delta_i(k)
$$
 is $N_2(n, f_1, f_2, \ldots, f_n, f_{n-k+1}, f_{n-k+2}, \ldots, f_n)$;

 $\Delta_{L^{-1}}(k)$ is $N_2(n, f_1, f_2, \ldots, f_n, f_{n}^{-1}, f_{n-1}^{-1}, \ldots, f_{n-k+1}^{-1})$. in Figure 2 as $N_2(3, f_1, f_2, f_3)$, with $f_1 = (0, 1, 2, 3), f_2$

3. TOPOLOGICAL EQUIVALENCE *f* *

The main effort of this paper was to establish methods isomorphic. for determining if two bit permutation networks $N_d(n, f_1, f_2)$ f_2, \ldots, f_m) and $N_d(n, f'_1, f'_2, \ldots, f'_m)$ are topologically **Theorem 2.** Every bit permutation network $N_d(n, f_1, f_2,$ rem is the foundation of our theory:

Theorem 1. If there exist permutations g_0, g_1, \ldots, g_m

on $\{0, 1, \ldots, n\}$ such that $g_i(0) = 0$ for $0 \le i \le m$

claim which implies the theorem: *and* $f'_i = g_{i-1}^{-1} \circ f_i \circ g_i$ *for* $1 \le i \le m$ *, then* $N_d(n, f_1, f_2, f_3)$ \dots, f_m) *is isomorphic to* $N_d(n, f'_1, f'_2, \dots, f'_m)$

 $N_d(n, f_1, f_2, \ldots, f_m)$ to the vertex set of $N_d(n, f'_1, f'_2, \ldots, f'_m)$ defined by
 \ldots , f'_m) defined by

$$
(x_n, x_{n-1},..., x_1)_i \xrightarrow{g} (x_{g_i(n)}, x_{g_i(n-1)},..., x_{g_i(1)})_i
$$

for $0 \le i \le m$

In other words, $g((x_n, x_{n-1}, \ldots, x_1)_i) = (x'_n, x'_n)$ x_1'), whenever $x_j' = x_{g_i(j)}$ for $1 \le j \le n$.

To see that these two networks are isomorphic, we only need to check that *g* is edge-preserving. Suppose $\text{Claim}(i)$. that *e* is an edge from $(x_n, x_{n-1}, \ldots, x_1)_{i-1}$ to $(y_n, y_{n-1}, \ldots, y_n)$ \ldots , y_1)_i in $N_d(n, f_1, f_2, \ldots, f_m)$, that is, $y_j = x_{f_i(j)}$ for 1

So, basically, we only need to consider the networks
 $\le j \le n$. Let

with $f_i = (0, k_i)$. For convenience, we shall use $N_d(n, t)$

$$
g((x_n, x_{n-1}, \dots, x_1)_{i-1}) = (x'_n, x'_{n-1}, \dots, x'_1)_{i-1},
$$

i.e., $x'_j = x_{g_{i-1}(j)}$ for $1 \le j \le n$,

and

$$
g((y_n, y_{n-1}, \dots, y_1)_i) = (y'_n, y'_{n-1}, \dots, y'_1)_i,
$$

i.e., $y'_i = y_{n(i)}$ for $1 \le i \le i$

$$
y'_j = y_{g_i(j)} = x_{f_i \circ g_i(j)} = x_{g_{i-1} \circ f'_i(j)}
$$

= $x'_{f'_i(j)}$ for $1 \le j \le$

 $f_n, x'_{n-1}, \ldots, x'_{1}$ _{*i*-1} to $(y'_n, y'_{n-1}, \ldots, y'_1)_i$. Conversely, an edge in $N_d(n, f'_1, 2, \ldots, n)$ with the property that $g(k_{i_r}) = r$ for $1 \leq r$ f_2, \ldots, f_m also corresponds to an edge in $N_d(n, f_1, f_2)$ f_2, \ldots, f_m). $g(k_m)$ is a sequence with the property that $\{k_1^*, k_2^*,$

 $(0, 1, 2)$, and $f_3 = (0, 1)$ and the network in Example 4 as $N_2(3, f'_1, f'_2, f'_3)$, with $f'_1 = (0, 1, 2, 3)$, $S_2 = (0, 2, 1)$, and $f'_3 = (0, 2)$. Then, $g_0 = (2, 3)$ and $g_1 = g_2 = g_3 = (1, 2)$ show that these two networks are

equivalent or graphically isomorphic. The following theo- \ldots , f_m) *is isomorphic to some bit permutation network* f'_1, f'_2, \ldots, f'_m , where $f'_i = (0, k_i)$ with k_i ${≤}$ {1, 2, ..., *n*} *for* 1 ≤ *i* ≤ *m*.

Claim (j) *.* $N_d(n, f_1, f_2, \ldots, f_m)$ is isomorphic to some *Proof.* Consider the bijection *g* from the vertex set of $N_d(n, f'_1, f'_2, \ldots, f'_m)$, where $f'_i = (0, k_i)$ with k_i

 f'_m defined by holds. Consider a general $j \ge 1$. Let $k_i = f'_i(0)$. Then, $k_j \in \{1, 2, ..., n\}$. Let $g_j = (f'_j)^{-1} \circ (0, k_j)$ and all other g_i are identity permutations. It is easy to check that for $0 \le i \le m$. $g_i(0) = 0$ for $0 \le i \le m$. According to Theorem 1,
 $N_d(n, f'_1, f'_2, \ldots, f'_m)$, and, therefore, $N_d(n, f_1, f_2, \ldots, f'_m)$..., f_m), is isomorphic to $N_d(n, f_1'', f_2'', \ldots, f_m'')$, f''_{n-1}, \ldots , where $f''_i = g_{i-1}^{-1} \circ f'_{i} \circ g_i$ for $1 \le i \le m$. In particular, $f''_i = f'_i = (0, k_i)$ for $1 \le i \le j - 1$, and f''_i $= f'_i \circ g_i = f'_i \circ (f'_i)^{-1} \circ (0, k_i) = (0, k_i)$. This gives

> k_1, k_2, \ldots, k_m) as a short notation for the network $N_d(n, k)$ f_1, f_2, \ldots, f_m , with $f_i = (0, k_i)$ and $k_i \in \{1, 2, \ldots, n\}$ for $1 \leq i \leq m$.
Our next step is to determine when two networks are

> isomorphic.

Theorem 3. *If g is a permutation on* $\{0, 1, 2, ..., m\}$ *with* $g(0) = 0$ *, then the network* $N_d(n, k_1, k_2, \ldots, k_m)$ *is isomorphic to N_d*(*n*, *g*(*k*₁), *g*(*k*₂), ..., *g*(*k_m*)). *ii j* $\leq n$.

Proof. The theorem following from Theorem 1 and Then, the fact that $g \circ (0, k_i) \circ g^{-1} = (0, g(k_i))$. Note that we apply Theorem 1 by choosing all g_i as g .

For any sequence $(k_1, k_2, ..., k_m)$ over $\{1, 2, ..., n\}$ *n*. with $a = |\{k_1, k_2, \ldots, k_m\}|$, let $1 = i_1 < i_2 < \cdots$ $\langle i_a \rangle$ be those indices such that $k_{i_r} \notin \{k_1, k_2, \ldots, k_r\}$ $k_{i_{r}-1}$ } for $1 \leq r \leq a$. Choose any permutation *g* on {1, 2, ..., *n*} with the property that $g(k_i) = r$ for $1 \leq r$ $\leq a$. Then, $(k_1^*, k_2^*, \ldots, k_m^*) = (g(k_1), g(k_2), \ldots,$ \cdots k_m^* } = {1, 2, ..., *a*} and for any 1 $\le r \le a$, As a quick application of Theorem 1, consider BL $\{k_1^*, k_2^*, \ldots, k_{i_r}^*\} = \{1, 2, \ldots, r\}$ when i_r is the mini*canonical sequence* over $\{1, 2, \ldots, n\}.$

 $N_d(n, k_1, k_2, \ldots, k_m)$ *for some canonical sequence over*

Theorem 5. *If* $a = |\{k_1, k_2, ..., k_m\}|$, then $N_d(n, k_1, ..., n)$. k_2, \ldots, k_m) has d^{n-a} *connected components. Proof.* By satisfying the $P(i, i + 1)$ property, the net-

 $f(x_n, x_{n-1}, \ldots, x_1)$ and $y = (y_n, y_{n-1}, y_{n-1}, \ldots, y_1)$ *J*) property, the number of components is increasing in *j*, such that $x_i = y_i$ for all $k \in \{k, k\}$ there which implies that $k_i \neq k_i$ for all $i < j$. It follows that

For the case in which $i = 0$ and $j = m$, $x = x^{(0)}$ canonical sequence. $x^{(1)} \rightarrow \cdots \rightarrow x^{(m)} = y$ is a desired path where $x^{(i)}$ is 6 immediately. $\rightarrow x^{(1)} \rightarrow \cdots \rightarrow x^{(m)} = y$ is a desired path, where $x^{(i)}$ is 6 immediately. a vertex in stage *i* that is obtained from $\overline{x}^{(i-1)}$ by replacing its k_i -th coordinate with y_{k_i} . For the general case, consider **Theorem 8.** The number of equivalent classes among (*m* the vertices $x^* = (x_n, x_{n-1}, \ldots, x_1)_0$ and $y^* = (y_n, y_{n-1}, \ldots, y_n)_0$, $x_1 \neq 1$)-stage d-nary bit permutation networks is \ldots , y_1 _{*m*}. By the above construction, there exists an x^* – *y*^{*} path. It is clear that $(x_n, x_{n-1}, \ldots, x_1)_i$ → $(x_n, x_{n-1},$ $(x_n, x_{n-1}, \ldots, x_1)_{i-1} \rightarrow \cdots \rightarrow (x_n, x_{n-1}, \ldots, x_1)_0 = x^*$ is an *x*– x^* path. Similarly, there exists a y^* – *y* path. Thus, *x* and

 $\frac{1}{2}, k_2', \ldots, k_n'$ m, k_m and $(k'_1, k'_2, \ldots, k'_m)$ over $\{1, 2, \ldots, n\}$, the Then, $h(k) = \{C_1, C_2, \ldots, C_t\}$. So, *h* is onto. Therefore, *network* $N_d(n, k_1, k_2, \ldots, k_m)$ is isomorphic to $N_d(n, k_m)$ $|C(m, t)| = |P(m, t)|$, which by definition is the S k'_1, k'_2, \ldots, k'_m) *if and only if* $(k_1, k_2, \ldots, k_m) = (k'_1, k'_2, \ldots, k'_m)$ k'_2, \ldots, k'_n

Proof. The two networks are clearly isomorphic if the two sequences are equal.

 \ldots , k'_m). Let *i* be the minimum index such that k_i $\neq k'_i$, say $k_i < k'_i$ and $k_r = k'_r$ the two sequences are canonical, $i \ge 2$. By the definition, there exists some $1 \le r \le i - 1$ such that k_r $k'_{r} \in \{k_{i}, k'_{i}\}$. Choose a maximum such *r*. Then, **4. ALGORITHM AND APPLICATIONS** $|\{k_r, k_{r+1}, \ldots, k_i\}| = a \neq a' = \{k'_r, k'_{r+1}, \ldots, k'_i\}.$ Note that $N_d(n, k_r, k_{r+1}, \ldots, k_i)$ has d^{m-a} connected By the theorems in Section 3, a bit permutation network components while $N_d(n, k'_r, k'_r)$

cal representation of $N_d(n, f_1, f_2, \ldots, f_m)$. tioned in the examples of Section 2.

mum index with $k_i^* = r$. Such a sequence is called a A condition slightly weaker than the $P(i, j)$ character-
canonical sequence over $\{1, 2, ..., n\}$

Corollary 4. *Any* $N_d(n, f_1, f_2, \ldots, f_m)$ *is isomorphic to* **Corollary 7.** *An* $(n + 1)$ *-stage network with the unique* $N_d(n, k_1, k_2, \ldots, k_m)$ *for some canonical sequence over path property and satisfying the P(i, i +* ${i = 0, 1, ..., n}$, *i* is in the *Omega-equivalent class if and only if it also satisfies the P(0, j) property for* $j = 1, 2,$

Proof. First, we claim that for any two vertices *x* work is a bit permutation network. By satisfying the *P*(0, $\frac{p}{p}$ *Proof.* Proof. *Proof.* Proof. *Proof.* Proof. *Proof.* Proof. *Proof. Proof. Proof. Proo* such that $x_k = y_k$ for all $k \in \{k_1, k_2, ..., k_m\}$ there
exists a path joining them.
For the case in which $i = 0$ and $i = m$, $x = x^{(0)}$ canonical sequence. Corollary 7 follows from Theorem

$$
\sum_{t=1}^n \sum_{i=0}^t \frac{1}{t!} (-1)^{t-i} {t \choose i} i^m.
$$

y are joined by a path. Proof. By Corollary 4 and Theorem 6, we only need
On the other hand, a move from any vertex to its
neighbor never changes its k-th coordinate for $k \notin \{k_1,$
 $k_2, ..., k_m\}$. Thus, two vertices with di work. Interefore, the network has a^{n} connected com-
ponents.
 \blacksquare i. It is easy to see that h is one-to-one. On the other hand, for any partition {*C*₁, *C*₂, ..., *C*_t} in *P*(*m*, *t*), we may assume that min $C_1 \leq \min C_2 \leq \cdots \leq \min$ **Theorem 6.** For any two canonical sequences (k_1, k_2, \ldots, k_n) , (k_1, k_2, \ldots, k_m) , where $k_i = j$ for $i \in C_i$. $|C(m, t)| = |P(m, t)|$, which by definition is the Sterling number of the second kind $S(m, t)$ (see [10]). It is *^m*)*.* well known that

Proof. The two networks are clearly isomorphic in the
of sequences are equal.
$$
S(m, t) = \frac{1}{t!} \sum_{i=0}^{t} (-1)^{t-i} {t \choose i} i^{m}.
$$
Conversely, suppose that $(k_1, k_2, ..., k_m) \neq (k'_1, k'_2,$

Summing over t, we obtain Theorem 8.

components while $N_d(n, k'_r, k'_{r+1}, \ldots, k'_i)$ has d^{m-a} $N_d(n, f_1, f_2, \ldots, f_m)$ is topologically equivalent to its connected components. Hence, the two networks are not canonical representation $N_d(n, k_1, k_2, \ldots, k_m)$, whose canonical representation $N_d(n, k_1, k_2, \ldots, k_m)$, whose isomorphic. \Box topology is determined by the canonical sequence (k_1, k_2, \ldots, k_n) k_2, \ldots, k_m). We shall summarize an efficient algorithm **Remark.** By Theorem 6, the $N_d(n, k_1, k_2, \ldots, k_m)$ in from the proofs of Theorems 2 and 3. We then apply it Corollary 4 is unique. Such a network is called the *canoni-* to determine the equivalence among the networks menpermutation network. \ldots , 1).

Input. A bit permutation network $N_d(n, f_1, f_2, \ldots, f_m)$. **Output.** The canonical sequence $(k_1^*, k_2^*, \ldots, k_m^*)$ for $-1, \ldots, m-k+1$.
 $N_d(n, f_1, f_2, \ldots, f_m)$. (e) For $\Delta = RY$ the sequence Method.

 $f_0 = (0); f_{m+1} = (0)$ **for** $j = 1$ **to** *m* **do** $f_j = f_j$;
 for $j = 1$ **to** *m* **do**
 for $j = 1, ..., 1$. $k_{\bar{i}} = f$ for $j = \pm$ to m do $f_{j+1} = (0, k_j) \circ f_j \circ f_{j+1};$
 end for;
 end for $a = a + 1;$

The time complexity of this algorithm is $O(mn)$. $-1, \ldots, m-k+1$.

sequences of k -extra-stage Omega-equivalent networks. $-1, \ldots, 1$.

Example 7. The following are the canonical sequences $+ 1, m - k + 2, ..., m$. of $\Delta_F(k)$ for the six different Omega-equivalent net-
works Δ :

- (a) For $\Delta = SE$, the sequence is (1, 2, ..., *m*, 1, 2, In the type $\Delta_L(k)$, there are four nonequivalent classes. ..., *k*).
- (b) For $\Delta = SE^{-1}$, the sequence is $(1, 2, ..., m, 1, 2, ...)$
- (c) For $\Delta = BL$, the sequence is $(1, 2, \ldots, m, m, m$ works Δ : $-1, \ldots, m - k + 1$.
- (d) For $\Delta = BL^{-1}$, the sequence is $(1, 2, \ldots, m, m, m)$ $-1, \ldots, m-k+1$. $-1, \ldots, m-k+1$.
- (e) For $\Delta = BY$, the sequence is $(1, 2, \ldots, m, 1, 2, \ldots)$..., *k*). $-1, \ldots, m - k + 1$.
- (f) For $\Delta = BY^{-1}$, the sequence is $(1, 2, ..., m, 1, 2, ...)$..., *k*). $-1, \ldots, m - k + 1$.

Example 8. The following are the canonical sequences $-1, \ldots, m-k+1$. of $\Delta_F^{-1}(k)$ for the six different Omega-equivalent net-
works Δ .

- (a) For $\Delta = SE$, the sequence is $(1, 2, ..., m, m, m)$ In the type $\Delta_{L^{-1}}(k)$, there is one equivalent class.
- 1, ..., $m k + 1$). If $k = m$, then the k-extra-stage networks have only
- (b) For $\Delta = SE^{-1}$, the sequence is $(1, 2, \ldots, m, m, m)$
- **Algorithm.** Find the canonical representation of a bit (c) For $\Delta = BL$, the sequence is $(1, 2, \ldots, m, k, k 1, k)$
	- (d) For $\Delta = BL^{-1}$, the sequence is $(1, 2, \ldots, m, m, m)$
	- *(e)* For $\Delta = BY$, the sequence is $(1, 2, ..., m, k, k 1, ..., 1)$.
	- $f_0 = (0); f_{m+1} = (0);$
 for $j = 1$ **to** *m* **do** $f_j = f_j;$
 for $j = 1$ **to** *m* **do** $f_j = f_j;$

In the type $\Delta_F^{-1}(k)$, there are two nonequivalent *classes*.

for $j = 1$ **to** *n* **do** mark $[j] = 0$;
 $a = 0$;
 for $j = 1$ **to** *m* **do**
 for $j = 1$ **to** *m* **do**
 for $j = 0$ **then**
 if mark $[k_i] = 0$ **then**
 if mark $[k_i] = 0$ **then**

- mark[k_j] = *a*; (a) For $\Delta = SE$, the sequence is (1, 2, ..., *m*, 1, 2, k_j^* = mark[k_j]; ..., *k*).
- (b) For $\Delta = SE^{-1}$, the sequence is $(1, 2, ..., m, 1, 2,$
 end for; ..., *k*).
	- (c) For $\Delta = BL$, the sequence is (1, 2, ..., *m*, *m*, *m*
- Now, we use the above algorithm to get the canonical (d) For $\Delta = BL^{-1}$, the sequence is $(1, 2, \ldots, m, k, k)$
	- (e) For $\Delta = BY$, the sequence is $(1, 2, \ldots, m, m k)$
	- (f) For $\Delta = BY^{-1}$, the sequence is $(1, 2, \ldots, m, m k)$ $+ 1, m - k + 2, \ldots, m$.

Example 10. The following are the canonical sequences \dots, k). of $\Delta_{L^{-1}}(k)$ for the six different Omega-equivalent net-

- (a) For $\Delta = SE$, the sequence is $(1, 2, \ldots, m, m, m)$
- (b) For $\Delta = SE^{-1}$, the sequence is $(1, 2, \ldots, m, m, m)$
- (c) For $\Delta = BL$, the sequence is (1, 2, ..., *m*, *m*, *m*
- (d) For $\Delta = BL^{-1}$, the canonical sequence is (1, 2, ...,
- (e) For $\Delta = BY$, the sequence is (1, 2, ..., m, m, m
- (f) For $\Delta = BY^{-1}$, the sequence is $(1, 2, \ldots, m, m, m)$ $-1, \ldots, m - k + 1$.

two nonequivalent classes among $\Delta_F(k)$, $\Delta_F^{-1}(k)$, $-1, \ldots, m-k+1$. $\Delta_L(k)$, and $\Delta_L^{-1}(k)$, namely, one characterized by se-

In the type $\Delta_F(k)$, there are two nonequivalent classes. *m*, *m*, *m* – 1, ..., *m* – *k* + 1).

 T_{trans} Comput C-46 (1997), 118–124.
 $BL^{-1}(n)$ is in the second class, networks in the second [5] F.K. Hwang, S.C. Liaw, and H.G. Yeh, Equivalence $BL_L⁻¹(n)$ is in the second class, networks in the second [5] F.K. Hwang, S.C. Liaw, and H.G. Yeh, Equivalence *Class* are rearrangable. Benes [2] conjectured that $SF₋₁(n)$ classes for extra-stage networks, Man class are rearrangable. Benes [2] conjectured that $SE_F(n)$ classes for extra-stage networks, Manuscript (1997).
is rearrangeable. If the conjecture is true, then the net. [6] C.P. Kruskal and M. Snir, A unified theory of i is rearrangeable. If the conjecture is true, then the net-

- [1] D.P. Agrawal, Graph theoretical analysis and design of networks, IEEE Trans Comput C-29 (1980), 213–222.
multistage interconnection networks, IEEE Trans Computer of the U.S. New and C. T. Lee, Lee, Lee, O. (N. m. n.) s
- [2] V.E. Benes, On rearrangeable three-stage connecting (1991), $1502-1510$.
networks, Bell Syst Tech J 41 (1962), 1481–1492. [10] R P Stanley Funne
- [3] J.-C. Bermond, J.M. Fourneau, and A. Jean-Marie, Belmont, CA I (1986).
Equivalence of multistage interconnection networks, Inf [11] C.-L. Wu and T.Y. Fene
- [4] Q. Hu, X. Shen, and J. Yang, Topologies of combined 694–702.

quence $(1, 2, \ldots, m, 1, 2, \ldots, m)$, and the other, by $(2 \log N - 1)$ -stage interconnection networks, IEEE $(1, 2, \ldots, m, m-1)$ Since the Benes network Trans Comput C-46 (1997), 118–124.

-
- works in the first class are also rearrangeable. nection network structure, Theor Comput Sci 48 (1986), 75–94.
- [7] C.-T. Lea and D.-J. Shyy, Tradeoff of horizontal decomposition versus vertical stacking in rearrangeable non-**REFERENCES** blocking networks, IEEE Trans Commun COM-37 (1991), 879–904.
	- [8] D.S. Parker, Notes on shuffle exchange-type switching
	- multistage interconnection networks, IEEE Trans Com-
put C-32 (1983), 637–648. blocking networks, IEEE Trans Commun COM-39
		- [10] R.P. Stanley, Enumerative Combinatorics Wadsworth,
	- Equivalence of multistage interconnection networks, Inf [11] C.-L. Wu and T.Y. Feng, On a class of multistage inter-

	Froc Lett 26 (1987), 45–50. connection networks, IEEE Trans Comput C-29 (1980),