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Abstract: In recent years, many multistage interconnection networks using 2 X 2 switching elements
have been proposed for parallel architectures. Typical examples are baseline networks, banyan networks,
shuffle-exchange networks, and their inverses. As these networks are blocking, such networks with extra
stages have also been studied extensively. These include Benes networks and A @ A’ networks. Re-
cently, Hwang et al. studied k-extra-stage networks, which are a generalization of the above networks.
They also investigated the equivalence issue among some of these networks. In this paper, we studied
a more general class of networks, which we call (m + 1)-stage d-nary bit permutation networks. We

characterize the equivalence of such networks by sequence of positive integers.
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1. INTRODUCTION

Consider a multistage interconnection network 7 with N
= d""* inputs and outputs and which has m + 1 stages
of N/d crossbars of size d X d. Let the jth crossbar in a
stage be labeled by j in the d-nary number (with n bits).
A bit-i group consists of those crossbars whose labels are
identical except the ith bit. Such a group will be labeled
by a d-nary number x with n bits which is identica to
any member in the group except that bit i is replaced by
the symbol x,, which standsfor theset{0,1,...,d — 1}.
U will be caled a(m + 1)-stage d-nary bit permutation
network if the linking between stage k to stage k + 1 is
always from a bit-i, group G to a hit- j, group G’, where
G’ is a permutation of G, fork = 0,1, ..., m — 1
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For a detailed description and notation of bit permutation
networks, see Section 2.

Note that (n + 1)-stage binary bit permutation net-
works include al self-routing networks like Omega, ban-
yan, baseline, and their inverse networks. Binary bit per-
mutation networks have been widely studied in the litera-
ture [1, 3, 6, 8, 11] for their topological equivalence.
Bermond et al. [3] characterized the Omega-equivalent
class by the P(i, j) property. An (n + 1)-stage network
satisfiesthe P(i, j) property if the subnetwork from stage
i to stage j has exactly 2" "' components. Then, an (n
+ 1)-stage network with the unique path property isin
the Omega-equivalent class if and only if it satisfies the
P(i,j) property foral 0 =i =j = n.

Another specia class of bit permutation networks con-
sists of (n + 1)-stage networks with extra stages. A k-
extra-stage network is a cascade of a (n + 1)-stage net-
work with k extra stages also satisfying the bit permuta-
tion linking pattern. Leaand Shyy [ 7, 9] proposed adding
extra stages to a binary inverse banyan network while the
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Fig. 1. A 2 X 2 switching element.

k extra stages are added by pattern F~* (see below).
Hwang et a. [ 5] generalized the study of equivalence by
adding extra stages to a binary Omega-equivalent network
with the following patterns for extra stages:

(i) F: They are identical to the first k stages of the
network;

(ii) F~': Identical to the mirror image of the first k
stages;

(iii) L: Identical to the last k stages;

(iv) L™*: Identical to the mirror image of the last k
stages.

In this paper, we determined the equivalence classes
among al (m + 1)-stage d-nary bit permutation net-
works. We characterize such a network by an m-sequence
over{1,2,...,n}, namely, every (m + 1)-stage d-nary
bit permutation network is reduced to an m-sequence over
{1, 2, ..., n} and equivalence is determined by some
easily computable sequence statistics. Note that the se-
guence is independent of d. For m = n, this characteriza-
tion, of course, correspondstotheP (i, j) characterization.
But the sequence-graph correspondence is not in an obvi-
ousway. With the power and convenience of the sequence
characterization, we easily give an explicit solution of the
size of the s-stage bit permutation class. Recently, Hu et
al. [4] gave an O(N*log N)-time algorithm to check the
equivalence of combined (2n — 1)-stage networks, which
are obtained by cascading two Omega-equivalent net-
works. We give an (mn)-time agorithm for checking
the equivalence of two (m + 1)-stage bit permutation
networks. In particular, the running time is O(log®N)
when the network has 2n — 1 stages.

2. NETWORKS

We start the discussion of bit permutation networks by
examining the following classical example: A typical
Omega-equivalent network consists of N input terminals,
N output terminals, and log,N columns (stages) of 2
X 2 switching elements in which each column has
N/2 switching elements. Figure 1 showsa2 X 2 switching

element, and Figure 2 shows a baseline network with N
= 16, in which aterminal i is represented by its binary
number representation (Xs, Xz, X1, %) and is adjacent to
a switching element named by (Xz, X2, X1).

One can view the baseline network in Figure 2 as a
graph whose vertices are those 32 switching elements
named by (Xs, X2, X1)i, Wwhere 0 = i = 3 and Xq, Xz, X3
€ {0, 1}, and there are links

from (Xs, X2, X1)o 10 (Xo, X3, X2)1,
from (Xs, Xz, X1)1 10 (Xs, Xo, X2)2, and
from (Xs, Xz, X1)2 t0 (Xs, X2, Xo)3,

where X, € {0, 1} , meaning there are two links, one with
Xo = 0 and the other with X, = 1. A link from a switching
element x at stage i to a switching element y at stage i
+ 1 exists if the bits of y can be obtained from the bits
of x by a permutation depending only on i. For instance,
we can represent the links from stage O to stage 1 by a
permutation f, on {0, 1, 2, 3} with
f1(0) =1, fi(1)=2, f(2)=3, f(3)=0.

In this way, the links from stage 0 to stage 1 are those
from (Xs, X2, X1)o t0 (X (3), Xey(2), Xey(1y)1. We can aso
say that for alink from X = (X3, X, X1)o tOY = (X0, Xa,
X1): a coordinate x; at the jth position of x moves to the
f 11(j)th position of y, where the coordinate X,’ S moving
from ‘‘outside’’ into y means there are two such links.
Similarly, the following permutations f, and f; represent
links from stage 1 to stage 2 and stage 2 to stage 3,
respectively:

f2(0) =1,
f3(0) =1,

fz(l) = 2,
fs(l) =0,

f2(2) =0,
f3(2) =2,

f,(3) = 3;
f3(3) = 3.

Throughout this paper, we shall use the cycle notation for

input output

terminals Stage 0 stage 1 stage 2 stage 3 terminals
0=0000 0=0000
1=0001 1=0001
3=0011 3=0011
4=0100 4=0100
5=0101 5=0101
6=0110 6=0110
7=0111 7=0111
8=1000 8=1000
9=1001 9=1001
10==1010 10=1010
11=1011 11=1011
12=1100 12=1100
13=1101 13=1101
14=1110 14=1110

15=1111 15=1111

Fig. 2. A baseline network with N = 16.



permutations, that is, the cycle (i1, io, . . ., i,) represents
the permutation f with
f(il)=i21 f(i2)=i31"'1 f(infl)zin!

f(in) =iy, andf(j) =] for al otherj.

Then, f; can be represented by (O, 1, 2, 3), f, by (0, 1,
2), and f3 by (O, 1).

Not only can the baseline network in Figure 2 be repre-
sented by the permutations f; , but also all bit permutation
networks can be represented in this way. We can also use
genera d x d switching elementsinstead of 2 X 2 switch-
ing elements. A general setting is as follows:

Definition. Suppose that n is a positive integer and f,,
fo, ..., fnarem= O permutationson {0, 1, ..., n} such
that f,(0) + Ofor 1 =i = m. The (m + 1)-stage d-
nary bit permutation network Nqy(n, fy, f5, ..., f,,) isthe
network whose vertices are those (X, X,_1, . . . , X1); With
O=si=mandx €{0,1...,d-1} forl=j =n,
and each (Xn, Xa-1, ..., X1)i—1 IS adjacent t0 (X (),
X -1y - - -1 Xen))i, wherexo € {0,1,...,d—1}.In
other words, there is an edge from (X,, Xn—1, - - -, X1)i_1
to (Yo, Yn-1, - - ., Y1)i Whenevery, = X, for 1 =j = n.

The following examples show (m + 1)-stage binary
bit permutation networks with N = 2" * input and output
terminals. Examples 1-3 have been worked out by Wu
and Feng [11]. We give the presentation in our format
for easier use later.

Example 1. The baseline network BL is precisely N»(n,
fi, fo, ..., f,), with

f=(0,1...,n—i+1) forl=i=n.

TFhe inverse baseline network BL ™ *isN,(n, f,, fo, ...,
f ), with

fi=fot=(,i-1...,1,0) forl=i=n.

Example 2. The banyan network BY or the indirect bi-
nary n-cube network is Nx(n, f, f,, ..., f,), with

ff=(0,i) forl=i=n.

TFhe modified data manipulator is N,(n, f,, f,, ...,
f.), with

fi=f;2=(0n—-i+1) forl=i=n
and, hence, is the inverse banyan network BY ~*.

Example 3. The Omega (or shuffle-exchange) network
SE isNy(n, fi, 5, ..., f), with
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te‘,‘},‘,’i“,fals stage 0 stage 1 stage 2 stage 3 te(l)'}ﬂ;&l;tls
0==0000 — 00000
1=0001 120001
2=0010 90010
3=0011 30011
4=0100 40100
5=0101 50101
6==0110 60110
7=0111 70111
8=1000 81000
9=1001 91001
10=1010 10=1010
11=1011 11=1011
12=1100 19-1100
13=1101 13-1101
14=1110 14=1110
15=1111 15=1111

Fig. 3. The network in Example 4.

ff=(n,n-1,...,2,0) forl=i=n.
The flip- (or inverse-shuffle-exchange) network SE™* is
No(n, fq, o, ..., ), with

fi=f;1=(0,1,...,n) forl=i=n.

Example 4. Interchange the role of the coordinates x;
and x, of (X3, X, X;) in stages 2 and 3 of the baseline
network in Figure 2. The resulting network, which is
topologically equivalent to BL, is N,(3, fi, 5, f3) with

fl = (01 11 21 3)1 f2 = (01 21 1)! and f3 = (0! 2)
(see Fig. 3). Note that if one interchanges the switching
elements (xs, 0, 1); with (x5, 1, 0); for i = 2, 3 the
resulting network is the baseline network.

Example 5. Suppose that Ny(n, fi, f;, ..., f,) is an
Omega-equivalent network A and No(n, f1, f5, ...,
f 1) is another Omega-equivalent network A’. Then, A
@ A"isNy(n, fy, fo, oo g, T4, F5, 000, F1).
Example 6. Suppose that Ny(n, fi, f5, ..., f,) is an
Omega-equivalent network A and 1 = k = n. Hwang et
al. [5] defined four k-extra-stage networks as follows:
Ar(K) [respectively, A, (k)] is A together with k extra
stages identical to the (respectively, last) first k stages of
A, and Ag-1(k) [respectively, A -1(k)] is A together
with k extra stages identical to the mirror image of the
first (respectively, last) k stages of A. Then,

Ap(K) is No(n, fy, fo, ..

'yfn1f11f21 1fk)1

Ap-1(K) isNa(n, fy, o, ooy fo, £ Fich, o

S E);

A(K) isNy(n, fr, Fo, . .

C] fnl fn7k+ll fn7k+2! sy fn)u
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Ap-1(k)isNy(n, fy, foy oo fo F ot f ot o f ).

3. TOPOLOGICAL EQUIVALENCE

The main effort of this paper was to establish methods
for determining if two bit permutation networks Nqy(n, fi,
fo, ..., fn)and Ng(n, f 1, f5,..., f)aretopologically
equivalent or graphically isomorphic. The following theo-
rem is the foundation of our theory:

Theorem 1. If there exist permutations go, 01, .. ., Om

on{0,1,...,n} suchthat g(0) =0for 0 =i =m

and f/ =giheofieg for 1 =i = m, then Ny(n, f;, f5,
.., fm) isisomorphic to Ng(n, f1, f5, ..., fh).

Proof. Consider the bijection g from the vertex set of
Ng(n, fy, f5, ..., f,) to the vertex set of Ny(n, f 1, f 5,
.., T 1) defined by

- Xg (1)

forO=i=m.

(an anlv vy Xl)i _g) (Xgi(n)’ Xgi(nfl)’ 't

In other words, g((Xa, Xo_1, « -+ X1)i) = (Xhy X1, -« -
X1)i whenever X/ = x5 for 1l =j = n.

To see that these two networks are isomorphic, we
only need to check that g is edge-preserving. Suppose
that e is an edge from (X,, Xo_1, - - - » X1)i—1 t0 (Vn, Yn_1,

oY) iInNg(n, fr, o, L0 f), that s, yp = X for 1
=j=n. Let
g((xm anll LEEREN] Xl)ifl) = (Xl{H XI{171! LEEREN ] X:’L)i*ll

ie, X =X _,5 forl=j=n,
and
9((Yn, Yoz, -5 ¥2)i) = (Yo Yoea, - -0 V)i
ie, ¥y =VYq5 forl=j=n.
Then,

| A —_ —
Yi = Yoy = X5eo0) = Xg1= £{G)

:Xf’i’(j) fOflSj =Nn.

Thus, there exists an edge from (x;, Xf-1, ..., X1)i_1 tO

(Yhy Yho1, - .., Y1)i. Conversely, an edge in Ng(n, f 1,
%, ..., ) aso corresponds to an edge in Ny(n, f;,
for oy T [

As a quick application of Theorem 1, consider BL

in Figure 2 as N,(3, f, f,, f3), withf; = (0, 1, 2, 3), f,
= (0, 1, 2), and f; = (0, 1) and the network in Exam-
ple 4 as N,(3, f1, f5, f1),with f{ = (0, 1, 2, 3),

5=1(0,2,1),and f5=(0,2). Then, gy = (2, 3) and
O, = G = 03 = (1, 2) show that these two networks are
isomorphic.

Theorem 2. Every bit permutation network Ny(n, f;, f,,
.., fm) is isomorphic to some bit permutation network

Na(n, f1, f5, ..., fl), where f/ = (0, k) with k

e{1,2,...,n}forl=i=m

Proof. We shall prove by induction on j the following
claim which implies the theorem:

Claim(j). Ng(n,fy,f,, ..., f,)isisomorphicto some
Ng(n, f1, f5, ..., fh), where f{ = (0, k) with k
e{1,2 ...,n}forl=i=j.

Claim(0) is clearly true. Suppose that Clam(j — 1)
holds. Consider ageneral j = 1. Let k, = f /(0). Then,
k € {1, 2 ...,n}. Let g = (f]) (0, k) and al
other g; are identity permutations. It is easy to check that
g (0) = 0for 0 =i = m. According to Theorem 1,
Ng(n, f1, 5, ..., fh), and, therefore, Ny(n, f;, 5,

.., fm), i1s isomorphic to Ng(n, f4, 5, ..., fm),
where f/ = gi%of /og for 1 = i = m. In particular,

fir =f/ =@ k) fool=i=j—-1 and f/
= flog = feo(f{) (0, k) = (0, k). This gives
Clam(j). [ |

So, basically, we only need to consider the networks
with f; = (O, k). For convenience, we shall use Ny(n,
ki, ko, ..., ky) as ashort notation for the network Ny(n,
fi, B2, oo, f), withf = (0, k) and k € {1,2,...,n}
forl=i=m.

Our next step is to determine when two networks are
isomorphic.

Theorem 3. If gisa permutationon{0,1,2,..., m}
with g(0) = 0, then the network Nyg(n, ki, ko, ..., Kn)
iS ISOI’T\OI‘phIC to Nd(ni g(kl)’ g(k2)1 ey g(km))

Proof. The theorem following from Theorem 1 and
the fact that g» (0, k) o g~* = (0, g(k )). Note that we
apply Theorem 1 by choosing al g asg. |

For any sequence (K, Ko, ..., k) over {1, 2, ..., n}
witha = [{ky, ko, ..., Ko} |, l&t 1 =03 <lip < -
< iy be those indices such that k, & {ki, ks, ...,
ki,—1} for 1 = r = a. Choose any permutation g on {1,
2, ..., n} with the property that g(k,) =rforl =r
= a. Then, (KT, k3, ..., k%) = (9(k), 9(k), ...,
g(kv)) is a sequence with the property that { kY, k3,
e kil ={1,2 ...,a}andforany 1 =r = a,

{ki,k3,...,kf} ={1,2,...,r} wheni, is the mini-



mum index with k¥ = r. Such a sequence is called a
canonical sequence over {1, 2, ..., n}.

Coroallary 4. Any Ny4(n, i, f,, ..., f,) isisomorphic to
Na(n, kq, ko, . . ., ky,) for some canonical sequence over
{1,2,...,n}.

Theorem 5. If a = |{ky, kz, ..., kn} |, then Ng(n, Kk,
Ko, ..., kn) has d"? connected components.

Proof. First, we claim that for any two vertices x
= (X0, Xo-1s + - Xa)i A Y = (Vs Yo-1, Yn-1, -+ -5 Y1)
such that x, = vy, for all k & {ky, ks, ..., kn} there
exists a path joining them.

For the case in whichi = 0andj = m, x = x@
- x™ =y is adesired path, where x is
avertex in stage i that is obtained from x~ % by replacing
its k -th coordinate with vy, . For the general case, consider
the vertices x* = (X,, Xn_1, - - - » X2 )o & Y* = (Y, Yn_1,

., ¥1)m. By the above construction, there exists an x* —
y* path. It is clear that (X,, Xo_1, -« -5 X1)i = (X0, Xo_1,
cey X)ica = 2 (X X1y ek, Xe)o = X¥ IS AN x—
x* path. Similarly, there exists a y* —y path. Thus, x and
y are joined by a path.

On the other hand, a move from any vertex to its
neighbor never changes its k-th coordinate for k & { kg,
Ko, ..., kn}. Thus, two vertices with different values
at the k-th coordinate for some k & { ki, ko, - - - ky,} are
not in the same connected component of the net-
work. Therefore, the network has d"# connected com-
ponents. |

>x® 5 ...

Theorem 6. For any two canonical sequences (K, ks,

..., ky) and (ki, k3, ..., ki) over {1, 2, ..., n}, the
network Ng(n, ki, ko, ..., ky) is isomorphic to Ny(n,
ki, ki, ..., k) if and only if (ky, ks, ..., kn) = (K1,
ks, ..., kh).

Proof. The two networks are clearly isomorphic if the
two sequences are equal.

Conversely, suppose that (ki, ko, . .., kn) # (K1, k5,

., kiv). Let i be the minimum index such that k
= ki,say k <kiandk =k/forl=r=1i—- 1 Since
the two sequences are canonical, i = 2. By the defini-
tion, there exists some 1 = r = i — 1 such that k
= k{ € {k, ki}. Choose a maximum such r. Then,
H{k, ka, oo k} | =a=+a" ={ki, K., ..., ki}.
Note that Ng4(n, k, k11, ..., k) has d™?* connected
components while Ng(n, K/, K/.1, ..., ki) has d™¥
connected components. Hence, the two networks are not
isomorphic. |

Remark. By Theorem 6, the Ny(n, ki, ko, ..., ky) in
Corollary 4 isunigque. Such anetwork is called the canoni-
cal representation of Ngq(n, fy, fo, ..., f).
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A condition slightly weaker than the P(i, j) character-
ization follows from Theorem 6:

Corollary 7. An (n + 1)-stage network with the unique

path property and satisfying the P(i, i + 1) property for

i=0,1,...,n, isin the Omega-equivalent class if and

only if it also satisfies the P(0, j) property for j = 1, 2,
. N

Proof. By satisfyingthe P(i, i + 1) property, the net-
work is abit permutation network. By satisfying the P(0O,
j) property, the number of componentsisincreasinginj,
which implies that k; + k for al i < j. It follows that
(ky, ka, . . ., k) are dl distinct, but there is only one such
canonical sequence. Corollary 7 follows from Theorem
6 immediately. |

Theorem 8. The number of equivalent classes among (m
+ 1)-stage d-nary bit permutation networks is

Proof. By Corollary 4 and Theorem 6, we only need
to count the set C(m, t) of canonical sequences of length
mwith t distinct elementsfor 1 = t < n. Denote by P(m,
t) the set of al partitionsof {1, 2,. .., m} intot nonempty
subsets. Define a mapping h from C(m, t) to P(m, t) by
h(ky, ko, ..., kn) = {C1, Cy, ..., C},whereC; = {]j
ik = i}. It is easy to see that h is one-to-one. On the
other hand, for any partition { C,, C,, ..., C} in P(m,
t), we may assumethaa minC, = minC, < - - - = min
Ci.. Let k = (ki, ko, ..., kn), Wherek = j fori € Cj.
Then, h(k) = {C,,C,,...,C}. So, hisonto. Therefore,
|[C(m, t)| = | P(m, t)|, which by definition is the Ster-
ling number of the second kind S(m, t) (see[10]). It is
well known that

S(m, t) :%_z (—1)”<T>im.

=0

Summing over t, we obtain Theorem 8. |

4. ALGORITHM AND APPLICATIONS

By the theorems in Section 3, a bit permutation network
Ng(n, f, f2, ..., f,) is topologically equivalent to its
canonical representation Ng(n, ki, ks, ..., Kn), whose
topology is determined by the canonical sequence (ki,
Ko, ..., kn). We shall summarize an efficient algorithm
from the proofs of Theorems 2 and 3. We then apply it
to determine the equivalence among the networks men-
tioned in the examples of Section 2.
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Algorithm. Find the canonical representation of a bit
permutation network.

Input. A bit permutation network Ny(n, fi, fo, ..., fn).
Output. The canonical sequence (KT, k3, ..., k¥) for
Ng(n, fr, Fos oo vy F).

M ethod. -

fo=1(0); fm=€0);
for j=1tomdo f; =f;
for j = 2tomdo
k= 1,(0);
fira=(0k)ofjof iy
end for;
for j = 1tondomark[j] = 0;
a=_0,
for j = 1tomdo
if mark[k] = O then
a=a+ 1
mark[k] = &
ki = mark[k];
end then;
end for;

The time complexity of this algorithm is O(mn).
Now, we use the above algorithm to get the canonical
sequences of k-extra-stage Omega-equivalent networks.

Example 7. The following are the canonical sequences
of Ag(k) for the six different Omega-equivalent net-
works A:

(a) For A = SE, the sequenceis (1, 2, ..., m, 1, 2,
..., k).

(b) For A = SE™*, the sequenceis (1,2, ..., m, 1, 2,
..., k).

(c) For A = BL, the sequenceis (1, 2, ..., m, m, m
—-1,...,m—k+1).

(d) For A = BL™, the sequenceis(1,2,...,m, m,m
~1,...,m-k+1).

(e) For A = BY, the sequenceis (1, 2, ..., m, 1, 2,
.o k).

(f) For A = BY ", the sequenceis(1,2,...,m, 1, 2,
..., k).

Inthetype A:(k), there are two nonequivalent classes.

Example 8. The following are the canonical sequences
of Ag-1(k) for the six different Omega-equivalent net-
works A.

(a) For A = SE, the sequenceis (1,2, ..., m, m, m
-1,....,m—k+ 1).

(b) For A = SE™*, the sequenceis (1,2, ..., m, m, m
-1...,m—-k+1).

(c) For A = BL, thesequenceis(1,2,...,m,k, k—1,

1),

(d) For A = BL™*, the sequenceis(1,2,...,m,m,m
-1,....,m—k+ 1).

(e) For A = BY, thesequenceis(1,2,...,m, k, k— 1,
o).

(f) For A = BY !, the sequenceis (1, 2, ..., m, k, k
-1,...,1).

In the type Ar-1(k), there are two nonequivalent
classes.

Example 9. The following are the canonical sequences
of A_(k) for the six different Omega-equivaent net-
works A.

(a) For A = SE, the sequenceis (1, 2, ..., m, 1, 2,
..., k).

(b) For A = SE1, the sequenceis (1, 2,..., m, 1, 2,
..., k).

(c) For A = BL, the sequenceis (1, 2,..., m, m, m
-1 ...,m—-k+1).

(d) For A = BL?, the sequenceis (1, 2, ..., m, k, k
-1,...,1).

(e) For A = BY, thesequenceis (1,2, ..., m, m—k
+1m-k+2...,m).

(f) For A = BY %, the sequenceis(1,2,...,m,m—k
+1lm-—Kk+2...,m).

Inthetype A, (Kk), therearefour nonequivalent classes.

Example 10. The following are the canonica sequences
of A_-1(k) for the six different Omega-equivalent net-
works A:

(a) For A = SE, the sequenceis (1,2, ..., m, m, m
-1,....,m—-k+ 1).

(b) For A = SE*, the sequenceis(1,2,...,m,m, m
-1 ...,m—-k+1).

(c) For A = BL, the sequenceis(1,2,..., m,m, m

-1, ...,m—-k+1).
(d) For A = BL™*, the canonical sequenceis(1,2,...,

mmm-—1...,m—-k+ 1).

(e) For A = BY, the sequenceis (1, 2,..., m, m, m
-1...,m—-k+1).

(f) For A = BY %, thesequenceis(1,2,...,m,m, m
-1,....m—-k+ 1).

In the type A_-1(k), there is one equivalent class.

If k = m, then the k-extra-stage networks have only
two nonequivalent classes among Ag(k), Ag-1(k),
AL(K), and A_-1(k), namely, one characterized by se-



quence (1, 2, ..., m, 1, 2, ..., m), and the other, by
(1,2,...,mm,m—1,...,1). Since the Benes network
BL_-1(n) isin the second class, networks in the second
class are rearrangable. Benes[ 2] conjectured that SE-(n)
is rearrangeable. If the conjecture is true, then the net-
works in the first class are also rearrangeable.
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