Extended Generalized Shuffle Networks:
Sufficient Conditions for Strictly

Nonblocking Operation

G. W. Richards,' F. K. Hwang?

' Lucent Technologies Inc., 2000 N. Naperville Road, Room 4F-127, Naperville, lllinois 60566

2 Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan 30050 ROC

Received August 1997; accepted October 1997

Abstract:

Since Clos gave the first construction of a strictly nonblocking multistage interconnection

network, only a few other constructions have been proposed in almost a half-century. In this paper, we
introduce a constructive class of networks which utilizes crossbars of virtually any size and for which the
sizes can vary from stage to stage. The interconnection between stages is a generalized shuffle pattern.
We derive sufficient conditions for strictly nonblocking operation and suggest the potential for wide

application of these networks by providing several special case results.
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1. INTRODUCTION

This work was initially motivated during the process of
attempting to design efficient photonic nonblocking
switching networks. Various photonic switching con-
straints suggested a need for flexible design capabilities.
It became apparent that it would be useful to be able to
design networks composed of various numbers of stages
of diverse functionality switching modules of (nearly)
arbitrary sizes and shapes.

This led to the development of a broad class of net-
works, which we call extended generalized shuffle (EGS)
networks, whose members demonstrate the diversity just
mentioned while at the same time satisfy a smple in-
terstage interconnection rule. (Formal definitions of these
networks and other terminology used in this introduction
follow in Section 2.) The generality of EGS networks is
such that they include all three-stage Clos networks [ 2]
and all the so-called baseline networks [ 5] (Omega, Ban-
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yan, etc.). Also, athough photonic switching constraints
prompted this work, our results are technology indepen-
dent and, thus, EGS networks should in no way be consid-
ered as being limited to photonic applications.

EGS networks can exhibit numerous interesting attri-
butes including multistage modularity, fault tolerance,
and elegant path hunting and control algorithms. In this
paper, we primarily focus on sufficient conditions for
which EGS networks are strictly nonblocking for point-
to-point connections. As will be presently seen, thisis a
rather large undertaking in itself and will serve to intro-
duce the reader to some fundamental properties of EGS
networks.

The results concerning nonblocking networks are theo-
retically interesting and, in addition, they serve as points
of departure for the design of low probability blocking
networks. This is important because strictly nonblocking
networks are seldom implemented in practice due to cost
and performance considerations. One interesting result to
be presented is that the expressions that give the condi-
tions for nonblocking operation are global as opposed to
being specific to particular switching modules, that is,
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270 RICHARDS AND HWANG

nowhere in these expressions does there exist the ratio of
the number of inlets to the number of outlets of any
switching module in the network. The implication is that
for the most part nonblocking networks can be designed
with arbitrarily sized switching modules.

The nonblocking conditionsto be derived will be given
in general terms of the number of inlets and outlets on
the network, the number of inlets and the number of
outlets on the switching modules in each stage of the
network, and the number of stages in the network. For
academic comparison, we show that a strictly non-
blocking EGS network with N inlets and N outlets can
be constructed with O(N(log N)?) crosspoints. This is
asymptotically as good as any construction we know of
[1], but, perhaps, a more important consideration is
whether practically sized EGS networks can be efficiently
and conveniently constructed for low (but nonzero) prob-
abilities of blocking while meeting the constraints of the
technology being used. We think that the answer to this
guestion is usualy yes. In the next section, we formalize
via definitions much of what has been casually mentioned
in this Introduction.

Some aspects of our approach may look similar to that
of Lea and Shyy [3, 4], but there are a number of im-
portant fundamental differences. First of all, their con-
struction applies only to k-extra-stage, 0 = k = log,N
— 1, networks using 2 X 2 crossbars in which the first N
stages are a Banyan network and the last k stages are a
mirror image of the first k stages (and other networks
isomorphic to these). Our construction imposes no con-
straints on either the size of the crossbars or the number
of stages. In addition, we employ the same general inter-
connection definition for all stages. Consequently, the
channel graphs of their networks have a special structure
and are relatively easy to analyze. Our channel graphs
are very general and thus demand a different and more
comprehensive analysis.

2. TERMINOLOGY AND DEFINITIONS

As noted in the Introduction, this work was motivated by
constraintsimposed by photonic technology on the design
of switching networks. We begin by considering the
switching modules from which a switching network is
constructed, followed by the logical association and inter-
connection of these modules. We then discuss strictly
nonblocking operation, including the concepts of paths
and blocked paths.

2.1. Nonblocking Operation

Weareinterested in networksthat are strictly nonblocking
for point-to-point connections. A point-to-point connec-
tion is one that connects a single inlet and a single outlet.
(Thisis distinguished, e.g., from a multipoint connection
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Fig. 1. Switching module representations.

in which a single inlet may be connected to one or more
outlets simultaneously.) A network which alows only
point-to-point connections is said to be strictly non-
blocking if any idle inlet can be connected to any idle
outlet, regardless of the other point-to-point connections
existing in the network. Unless otherwise indicated, from
this point on, we will refer to such networks simply as
nonblocking networks.

2.2. Switching Modules

A switching module is defined as a device having two
sets of terminals denoted inlets and outlets, plus a set of
operational states such that for every inlet/outlet pair
there exists at least one operational state in which that
inlet/outlet pair are connected and at |east one operational
state in which that inlet/outlet pair are not connected. No
operational states connect inlets to inlets or outlets to
outlets. Furthermore, an operational state does not neces-
sarily isolate connected inlet/outlet pairs, thet is, a given
inlet can be simultaneously connected to more than one
outlet, and at the same time, agiven outlet can be simulta-
neously connected to more than one inlet.

Thus, by our definition, aswitching module is adevice
that has the capability to connect and disconnect all inlet/
outlet pairs but not necessarily independently. In a subse-
guent paper, we will consider various functional types of
switching modules, corresponding to a different connect/
disconnect capability. However, in this paper, we limit
our consideration to that of conventional *‘ crosshar’’ -type
switching modules.

Consider an n X m switching module (n inlets and m
outlets) represented equivalently by either ann X mcross-
bar or a complete bipartite graph having two vertex sets
corresponding to the n inlets and m outlets, respectively,
and the nm edges corresponding to the nm crosspoints
in the n X m crossbar. An existing edge in the bipartite
graph corresponds to a closed crosspoint in the crossbar,
and aremoved edge in the bipartite graph corresponds to
an open crosspoint in the crossbar (see Fig. 1).

In this type of switching module, crosspoints may be
opened or closed individually. Thisisthe normal assump-
tion for a crossbar switch and results in a nonblocking
module since any inlet/outlet pair can be connected and
a the same time isolated from any other inlet or outlet
by requiring that the only closed crosspoint in any row



Fig. 2. EGS network 7.

or column is the one at the intersection of the inlet row
and outlet column of the inlet/outlet pair to be connected.

2.3. Multistage Interconnection
Network (MIN)

A multistage interconnection network (MIN) is an inter-
connection of stages of switching modules. A stage is a
set of identical switching modules. Let §,i =1, ..., s,
denote the i th stage of an s-stage MIN, where § contains
ri modules, each having n; inlets and m outlets. The N
= r;n,; inlets of the switching modules of S, are the N
inlets of the MIN and the M = r¢m outlets of the switching
modules of S, are the M outlets of the MIN. For i = 2,
3, ..., s, theinlets of the switching modules of S are
connected by links only to outlets of the switching mod-
ulesof S_;,andfori =1, 2,...,s — 1, the outlets of
the switching modules of S are connected by links only
to inlets of the switching modules of S, ;. So that al of
these inlets and outlets can be connected, we require that
rm =riqna.forl=i=s-—1

2.4. Extended Generalized Shuffle
(EGS) Network

An EGS network is simply a MIN with a particularly
specified interconnection pattern. Formally, an EGS net-
work is defined as a MIN in which, fori =1,2,...,s,
S =theinteger set {0, 1, ..., r, — 1}, and fori = 1,

2,...,S— 1, the switching module « € S is connected
to switching module g € S, if and only if 8 € {[am
+ Olmoar, - G € {0, 1, ..., m — 1}}. (Our results

will obviously apply to any isomorphic networks.)

Figures 2 and 3 depict two isomorphic EGS networks.
The only difference between the two is that in Figure 2
al switching modules in each stage are positioned in
numerical order and in Figure 3 they are not.

2.5. Paths

DefineL,, k =1, 2, ..., s — 1, to be the set of links
connecting the outlets of S, to the inlets of S.,;. We
denote \ € L, as astage-k link and say that \ is incident
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to both the stage-k and k + 1 switching modules that it
connects. For Ll =i <j=s,leewe Sandze §. A

set of j — i links, one from each Ly, i = k < j, is said
to satisfy the w ~ z chain condition if the stage-i link is
incidenttow; fork =1i,i +1,...,] — 2, the stage-k

and -k + 1 links are incident to the same stage-k + 1
switching module, and the stage-j — 1 link is incident to
z. A path between w and z is defined as a set of | — i
links that satisfies the w ~ z chain condition, plus the
switching modules that these links connect.

Any two nonidentical sets of j — i links (i.e., two sets
differing by at least one link) that satisfy thew ~ z chain
condition comprise two different paths between w and z.
Thus, different paths between a given pair of switching
modules may have some, but not al, links in common
and, of course, they may also have no links in common.
The same is true for different paths between different
pairs of switching modules. The total number P of paths
between w and z is equal to the number of j — i-link sets
satisfying the w ~ z chain condition, where no two of
these sets are identical.

For network inlet x appearing on a stage-1 switching
module w and for network outlet y appearing on the stage-
s switching module z, we say that a set of s — 1 links
satisfying the w ~ z chain condition comprises a path
between x and y as well as a path between w and z. The
channel graph L (X, y) of input x and output y is defined
as the union of al paths between x and y.

2.6. Blocked Paths

A connection from inlet x to outlet y via some path p is
established by operating the appropriate crosspoint in
each of the s switching modules (one for each stage) that
successively connects x, thes — 1links of p, andy. Any
link so involved in a connection is said to be busy. A
blocked path between a given input/output pair is one
that contains at least one link that is busy from some
other connection. A path is idle if it contains no such
busy links.

Fig. 3. EGS network isomorphic to network 7.
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3. THE FUNDAMENTAL PRINCIPLE OF
STRICTLY NONBLOCKING NETWORKS

In Section 2.1, we defined a strictly nonblocking network
asoneinwhich any idleinlet/outlet pair can be connected
regardless of the other existing connections in the net-
work. In terms of paths, this means that there always
exists at least one idle path between any idle input/output
pair. Since the number of idle paths between anidleinput/
output pair is simply the total number of paths between
that pair minus the number of blocked paths between that
pair, we have the following condition which represents
the fundamental principle of strictly nonblocking net-
works:

Strictly Nonblocking Necessary Condition:
The number of paths between any inlet/outlet pair
must exceed the maximum number of paths which
can be blocked between that pair.

If the numbers of paths between all inlet/outlet pairs
differ by only a small amount and if the maximum num-
bers of paths which can be blocked between all inlet/
outlet pairs also differ by only a small amount, then the
following condition proves useful:

Strictly Nonblocking Sufficient Condition:
The minimum number of paths between any inlet/
outlet pair exceeds the maximum number of paths
which can be blocked between any inlet/outlet pair.

For the sake of brevity, we define

PATHS = the minimum number of paths between
any inlet/outlet pair.

BLOCKED PATHS = the maximum number of
paths which can be blocked between any inlet/
outlet pair,

which yields

Strictly Nonblocking Sufficient Condition:
PATHS > BLOCKED PATHS.

Thus, if we can count (determine expressions for) both
PATHS and BLOCKED PATHS for EGS networks, we
will have ascertained generalized sufficient conditions for
these networks to be nonblocking.

Thelogicto determine PATHS isrelatively straightfor-
ward but the logic to determine BLOCKED PATHS is
multileveled and rather intricate. To aid the reader in
following this process, we provide a logic map (Fig. 4).
We will continually be referring to this map throughout
most of the rest of this paper. The various logic modules
on the map are labeled identically with corresponding
results from the text for ease of reference. The arrows

indicate flows of logic progression. Thus, a given logic
module can only be considered after providing results for
the modules which direct arrows to the module in ques-
tion. Our ultimate objective is to provide results for the
row of modules second from the bottom, that is, modules
(4.2a), (9.1a), (9.1b), and (9.1c), because these are the
components of PATHS > BLOCKED PATHS.

The results for module (2.3) and the two modules
(2.4) have aready been provided via the definitions of a
MIN and an EGS network in Section 2. We next consider
modules (4.1i) and (4.2a) to determine a lower bound
on the number of paths between any inlet/outlet pair.

4. A LOWER BOUND ON PATHS

While developing an expression for a lower bound on
PATHS, we will find it useful to provide a more general
result on the number of paths between switching modules
in any two stages of an EGS network.

4.1. Numbers of Paths Between Switching
Modules in Different Stages

We will need the following preliminary results:

Definition 4.1a. [kXOdenotes the largest integer = x and
is called the floor function of x. [kOdenotes the smallest
integer = x and is called the ceiling function of x.

Definition 4.1b. Xn.am denotes the smallest nonnegative
remainder when dividing nonnegative integer x by posi-
tive integer m. The equivalent mathematical formulation
IS Xmoam = X — mX/m0

Lemma4.1c. For nonnegative integersw and x and posi-
tive integersy and z, if z divides wy, then (W(Xmody) )modz
= (\Nx)modz-

Proof. For integersa and b withO = aand 0 =< b
=y — 1 write x = ay + b. Then, (W(Xmogy))mod:
= (Wb)modz- AISO: (va)modz = (Way + Wb)modz = (Wb)m0le
because z divides wy. [ ]

Lemma 4.1d. For any s consecutive integers and some
positive integer m, if each integer d of the s integers is
replaced with m consecutive integers, given by md, md
+ 1, ..., md + m— 1, the resulting ms integers are
consecutive.

Proof. Consider any two consecutive integers, d and
d + 1, in the origina group of s. The smallest integer
replacingd + 1is md + mwhich is consecutive with md
+ m — 1, the largest integer replacing d. |
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Fig. 4. The logic map for strictly nonblocking EGS networks.

Definition 4.1e. Define N;; = Mi-i ne and M
= [Tk M.

Lemma 4.1f. InaMIN, for 1 =i <j =s, M,
= eri+l,j-

Proof. By induction on the stage number. According
to the definition of aMIN, rrm =rnforl=i=-s

— 1 and, thus, the lemmaistrue for j =i + 1. We now
show that if itistrueforj =i + titistrueforj =i
+t+ 1

We assume that r; M; j.¢—1 = i «Niz1i4. Again, by the
definition of a MIN, we have that ri.iM.i = liieeaMair
or Myt = (NistraNivesa)/Tie. Thus, we have ri M im
=T Mi,iﬂ = (ri+tNi+1,i+tri+t+1ni+t+1)/riﬂ = ri+t+1Ni+1,i+t+11
which proves the lemma. |



274 RICHARDS AND HWANG

Definition 4.1g. For positive integer k, | (k) denotes the
integer set {0, 1, ...,k — 1}.

Lemma 4.1h. In an EGS network, for 1 =i < j = s,
switching module w in stage i has paths to a multiset
Fi;j(w) of switching modules in stage j given by

Fivi(w) = {(WMi,j—l + d)modrj rde I(Mi,j_l)} .

Proof. By induction on the stage number. By defini-
tion of an EGS network, switching module w in stagei is
connected (has paths) to amultiset F; ;.1 (w) of switching
modules in stage i + 1 given by F;;1(w) = {(wm
+ O )moar,, - O € 1(M)}. Thus, the lemmais true for |
=i + 1. We now show that if it is true for stage j = i
+ titistruefor stagej =i +t + 1.

We assume that F;; (W) = { (WM 11 + d)moar,,, - d
€ I(M;;_1)}. By definition of an EGS network, each
of the switching modules in this multiset will have paths
to m,, switching modules in stage i + t + 1, resulting
in a multiset in that stage given by

{[mH(WMi,ithfl + d)modriﬂ + Oi+t]modri+t+l
cd € 1(Miji1), 0r € 1(My)}
= {[WM; e + Md + Oelmoar, .,

td € 1(Mijre1), Ot € (M)},

by Definition 4.1e and Lemma 4.1c (which applies be-
cause r;,, 1 divides m ;. according to the definition of
a MIN in Section 2.3). Now, the operation m.d + 0,
is the same as that described in Lemma 4.1d. Thus, that
lemma applies and the smallest integer in the resulting
m M ;-1 = M, consecutive integer set is zero,
occurring when d and o,,, are both zero. Our multiset
thus becomes {[WM; i, + d]moar,(,, - d € 1(Mii)}
= Fii1(wW), which proves the lemma. [ |

Theorem 4.1i. In an EGS network, for 1 =i < j = s,
the number of paths between any stage-i switching mod-
ule (or any stage-i — 1 link) and any stage-j switching
module (or any stage-j link) is either OM;;_,/r;O
= [INHLJ-/I’i DOI’ Dv'i,jfl/er: [NHLJ-/I’il:L

Proof. First, we note that dividing both sides of the
equation in Lemma 4.1f by rir; yields M; ;_1/r; = Niiq;/
ri . Next, by Lemma 4.1h, we have F; j(w) = {[wM; ;_;
+ d]moar; 1 d € 1(M;j-1)}. The expression [wM; j, + d]
(via substitution of all of the possible values of d) repre-
sents a set of M;;_; consecutive integers. Write M; ;_;
= br; + ¢, where b and c are integers with 0 <= b and O
= ¢ =r; — 1. Since no two integers in a set of a = r;
consecutive integers belong to the same congruence class
modulo r;, we must have that in any br; consecutive inte-
gers there are exactly b integers in each congruence class

modulo r; and that in any br; + ¢ consecutive integers
thereare b + 1 integersin each of c different congruence
classes and b integers in each of the other r; — ¢ congru-
ence classes. These b and b + 1 occurrences of different
congruence classes correspond directly toband b + 1
paths from switching module w in stage i to different
switching modules in stage j. Since b = [OM; ;_,/r;0and
b+ 1= 0OM;_./r;d we have proved Theorem 4.1i for
the switching module cases. The result for links follows
immediately from the consideration that the only paths
between a stage-i — 1 link and a stage-j link are those
which utilize (on a one-to-one basis) the paths between
the stage i and stage- j switching modules to which these
links are incident, respectively. |

4.2. Lower Bound on the Number of Paths
Between Any Inlet/Outlet Pair

By substituting 1 for i and s for j in Theorem 4.1i, we
have immediately that the number of paths between any
stage-1 switching module and any stage-s switching mod-
ule (or, equivalently, the number of paths between any
inlet/outlet pair) is ether (Mg 1/rs0 = N,o/r 0 or
My 1/rsd= N,s/r100, which is the same as (M, /MO
= [N;s/NOor (M, o/ MO= [N, ¢/ N[J, because rim; = M,
the total number of network outlets, and r,n, = N, the
total number of network inlets. Since these are the only
two possible values, alower bound on PATHS s provided
by simply choosing the floor function expression and we
have just proved

Theorem 4.2a. PATHS = IM;//MO= N,;¢/NO (The
minimum number of paths between any inlet/outlet pair
in an EGS network = [M; /M= [IN;¢/N)

An obvious observation is that if M divides M, or,
equivalently, if N divides N, ¢, then IM; /M O= IN; o/ NO
= M o/MO= N, o/NO= M3¢/M = N;¢/N, and this is
the single value for the number of paths between any
inlet/outlet pair. In most practical networks (for unifor-
mity’s sake), this will likely be the case. However, our
subsequent theoretical results will not require this condi-
tion. We will be able to establish nonblocking conditions
for EGS networks which do not have the same number
of paths between all inlet/outlet pairs.

5. THE EFFECT OF A SINGLE
INTERSECTING CONNECTION

We have just determined an expression for PATHS and
must now consider BLOCKED PATHS in our search for
the Strictly Nonblocking Sufficient Condition: PATHS
> BLOCKED PATHS. To start this process, we will
initially limit our considerations to the number of paths
between a given inlet/outlet pair which can be blocked



by a single additional connection in an EGS network.
This corresponds to Module 5.2 in Figure 4.

5.1. Channel Graphs and Intersecting
Connections

Recall from Section 2.5 that the channel graph L(x, y)
of inlet x and outlet y is defined as the union of al paths
between x and y. L(X, y) thus comprises sets of stage-k
links, 1 = k = s — 1. Any of these links may also be in
the channel graph(s) of other inlet—outlet pairs. Thus,
we may find that one or more links of L(X, y) are busy
due to existing connections in the network. Any such
existing connection that utilizes one or more links of L (X,
y) is said to intersect or be an intersecting connection of
L(X, y). We will frequently shorten this terminology to
intersecting connection when the reference to L (X, y) is
Clear.

A link which is common to an intersecting connection
and L(X, y) is caled an intersecting link. The set of
intersecting links associated with a given intersecting con-
nection are consecutive in stage number. To see why this
iS S0, assume to the contrary that for i < k < j the stages-
i and - j links of an intersecting connection are intersecting
links but the stage-k link is not. We then have an immedi-
ate contradiction because there is a path from x to the
stage-i link [ from the definition of L(Xx, y)], a path from
the stage-i link to the stage- j link that includes the stage-k
link (this being part of the overall path of the intersecting
connection), and, finally, a path from the stage-j link to
y [again from the definition of L(x, y)]. Thus, the stage-
k link is part of a path from x to y and must be included
inL(x,Y).

For an intersecting connection, if i isthe smallest stage
number intersecting link and j — 1 is the largest, we say
that the intersecting connection enters the channel graph
L(x, y) a stage i and departs at stage j, corresponding
to the switching module stage numbers defining the
boundaries of the intersecting links. We denote such an
intersecting connection as C(i, j).

5.2. Paths Blocked by a Single Intersecting
Connection

In an EGS network, let us identify the stage-k link (i
=k=j—1)of C(i,]) as\. Let B, represent the number
of paths from inlet x to A. From Theorem 4.1i, we know
that By is either N, /NOor [Ny, /NO. Similarly, let Fy,,
represent the number of paths from \, to outlet y. Again,
by Theorem 4.1i, we know that F,,, is either (M, 1 /MO
or My, 1/ MO

Recall from Section 2.6 that a blocked path between x
and y is one that contains at least one link that is busy from
some other connection. An intersecting link is such a link.
Consider the stage-i intersecting link \; of intersecting con-
nection C(i, j). There are B; paths from x to \; and F;,;
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paths from \; to y. So, there are B, F, 1 paths in L(X, y)
that include \; and dl of these paths are blocked by \; .

Next, we consider how many additional paths are
blocked by .., the stage-i + 1 intersecting link of C(i,
j). Using the same logic as above, we have that A4,
considered singly, blocks B, 1F;,, paths. However, this
expression includes some paths already blocked by \;,
namely, all those paths containing both \; and \;, ;. Since
there are B; paths from inlet x to \; and F;., paths from
N\i:1 to outlet y, there are B; F;,, paths in L(Xx, y) that
contain both \; and \;;;. Thus, the total number of paths
in L(x, y) blocked by \; and \i,; is given by B Fi,
+ BiiiFi2 — BiFisa.

The logic for three or more contiguous intersecting
links is similar to that for two links in that we want to
determine how many additional paths are blocked by each
additional intersecting link. Theoreticaly, for k = i + 2,
when we compute the number of additional paths blocked
by A, we can start with BF,,; (the number of paths
blocked by \., considered singly) and then subtract the
number of blocked paths included in this expression that
have already been tabulated for \; through \,_;, namely,
al the paths containing both A, and any of the intersecting
links \; through \,_,. However, at this point, weintroduce
a simplifying approximation by subtracting only the
B._1F.1 paths containing both A\, and \,_;. As we shall
subsequently see, this approximation greatly facilitates
our analysis and, fortunately, has very little effect on the
sufficient nonblocking conditions for most practical EGS
networks.

The reason this latter point is true is that usualy there
are very few, if any, blocked paths that do not contain
M1 but do contain A and any of the links \; to A\,_,. The
only way any such blocked paths could exist would be
if there were at least one path from any of the links \;
through \,_, to N\, that did not include \,_;. By Theorem
4.1i, this cannot be true unless M; 1/ = Nipqi/ri > 1.
(Later, we will consider this situation in producing a
refinement on the sufficient nonblocking condition.)

Since the described approximation counts all blocked
paths at least once, it may be used in the determination
of an upper bound on the total number of paths blocked
by a single intersecting connection. From above, we have
that B;F,.1 + B;i,:Fi,» — B F;, paths are blocked by X
and \j,,,andfori + 2=k=j— 1, wewill add B.Fy.1
— By 1F«.1 blocked paths for each A.. Thus, an upper
bound on the number of paths blocked by C(i, j) isgiven
by =t BiF1 — 22 BcFyi2, Which can be rewritten
as 2457 Bu(Frs1 — Fesz) + Bj_iFj or as =i54, (B
— By1)Fii1 + BiFii1. We know there is a path from A\,
to A1 because these links are both included in C(i, j).
Therefore, (Fri1 — Fii2) iS nonnegative because every
path from A\, to y is necessarily a part of some path
from A\ to y. Furthermore, since the number of paths
between any two entitiesin a network can never be less
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than zero, F; is also nonnegative. Thus, it is evident that
3422 Bo(Fier — Fiiz) + B 1F; has a maximum vaue if
each B is replaced by IN,,/NCL Applying similar logic, we
find that =J-%; (B — Bi_1)Fs1 + Bi Fi,1 has amaximum
vaue if each F, is replaced by M, /MO Thus, we have
the result that B[C(i, j)], an upper bound on the number
of paths blocked by C(i, j), is given by

BIC(i, )] = jf P\lﬁkw [M#W

SIS

k=i

(5.2a)

5.3. Some Simplifying Observations

Let us consider for amoment how we might use theinforma-
tionin EQ. (5.2a). This expression clearly indicates that the
number of paths blocked by a single intersecting connection
depends on its entry and departure points. Thus, we will
eventudly have to consider the numbers of connections that
can enter and depart a channel graph at the various stagesin
the network. Our task would seem to be extremely difficult if
we needed to consider al of the possible ways that various
connections could intersect a channe graph. Fortunately,
this will not be necessary as we now explain.

Let us rewrite Eq. (5.2a) by adding and subtracting
the remaining terms through stage s for both summations.
The result is

sre( it = 3 || M|

pd

> N k Mk+ 5

m2 [Wl [ |\/|1
k=i

+ Y P\'—lﬂ [M“ﬂ (5.3a)
SN M

+
- 1
2|
=
- 1
=
=5
"

- (1

k=j

e7)

(We should note that here and throughout the paper we
adopt the usual convention that, in the event that a sum-

mation or product series does not exist because the begin-
ning index exceeds the terminating index, the summation
has a value of 0 and the product has a value of 1. Simi-
larly, individual terms in a summation or product series
aregiven valuesof 0 or 1, respectively, if those individual
terms do not exist. This convention achieves the obvious
desired result of not changing summation or product totals
if nonexistent terms are encountered.)

There are three terms in the third line of Eq. (5.3a).
Thefirst term is afunction of various network parameters
and the entry stage i. The last two terms are functions of
various network parameters and the departure stage j.
Thus, the blocked-path contribution of an intersecting-
connection entry point is independent of the departure
point and vice versa. This means that any two feasible
sets of connections that have identical distributions of
entry points and departure pointswill haveidentical upper
bounds on the total number of paths blocked, as deter-
mined by Eqg. (5.3a). Thisis an extremely important and
fortunate result because it removes the need to associate
the entry and departure points of a given intersecting
connection. We need only be concerned with entry and
departure point distributions and not the specifics of the
connection sets yielding these distributions.

We can smplify Eqg. (5.3a) via some relevant defini-
tions and observations. Define t to be the largest stage
number satisfying N;,/NO= 1 and define u to be the
smallest stage number satisfying (M, /MO = 1. (Note
that since N;; = n; = N and Mg = my = M both t and
u exist.) According to the definition of t, we have that
N1..1/NO> 1. This implies that all inlets have at least
one path to every stage-t + 1 switching module. Now, if
the value of i in C(i, j) were greater than t + 1, then,
according to the definition of C(i, j), its stage-t + 1 link
(M\+1) would not intersect L (X, y). But \..; must intersect
L(x, y) because there is at least one path from x to al
stage-t + 1 links and there is a path from A, to the
stage-i link of C(i, j) [both links being part of C(i, j)]
and a path from the stage-i link of C(i, j) to y [ because
C(i, ) intersects L(x, y)]. Therefore, C(i, j) must have
i =t + 1 Using similar logic, we can determine that j
=u-— 1

The term 2% Ny W/ NO(My11,s/ MO — My126/MD) in
Eqg. (5.3a) hasu = j + 1 = min{k + 1} < min{k + 2}.
Thus, in thisterm, all (M1 ¢/ MO= M, ,s/MO= 1 and,
therefore, the entire term equals 0. Additionaly, the sec-
ond term of Eq. (5.3a) has [M;,1s/MO= 1 because u
=j + 1. So, we now have

BIC(i, )]

£ 11

IVMKT”S—‘ > (5.3b)




Next, we add and subtract terms for k = i — 1 in the
summation, yielding

BLCq, il = 5 |

k=i—1

e

(5.3¢)

Now, sincei — 1 = tand (N, /NO= 1for al k = t, we
have

BIC(i, j)]

411
-, 18P )

k=t+1

(5.3d)

In the summation 2} ; ((My,1s/ MO— My, 2s/MD), al-
ternate terms cancel each other, except for the first and
last terms, yielding [(M; /MO — M.,/ M. Since the
first of these two terms cancelsthelast termin Eq. (5.3d),
we have

Bo(i, ) = | M|

SEaiRAN

k=t+1

(TP P

Now, for k = u — 1, we have (M, 1 s/MO= My, s/ MO
= 1 and, therefore, Eq. (5.3e) finally becomes

(5.3¢e)
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(i, )] = | Mese |

[l 3 I

(51T

5.4. Discussion

Equation (5.3f) is a very important intermediate result in
our development of sufficient conditions for nonblocking
EGS networks. When we arrived at Eq. (5.3a), we were
able to demonstrate the separability of the blocked-path
contributions of the entry point and departure point of
an intersecting connection. This was because every term
depended on either i or j, but not on both. In Eq. (5.3f),
again no term depends on both i and j, and the terms that
depend on them individualy are greatly simplified. In
addition, in Eq. (5.3f), we (surprisingly?) find terms that
depend on neither i nor j. This means that for any given
EGS network there is a computable constant to be added
to the upper-bound calculation for blocked pathsfor every
intersecting connection. For many practical EGS net-
works, this constant will be found to have a value of
minus 1, thus making Eg. (5.3f) much easier to use than
might be first evident.

(5.3f)

5.5. Examples

At thisjuncture, it would probably be helpful to the reader
if we paused to consider some examples of the number
of paths between inlets and outlets in an EGS network
and the numbers of these paths which can be blocked
due to other connections. After these examples, we will
continue our development of nonblocking conditions.

Figure 5(a) illustrates a channel graph L (X, y) of Net-
work n shown in Figure 2. Recall that L (X, y) is defined
as the union of al paths between some inlet x and outlet
y. In thisinstance, x is an inlet appearing on switch 4 in
stage 1 and y is an outlet appearing on switch 2 in stage
4. [ Stage numbers are indicated in parentheses along the
top of Fig. 5(a).] L(x, y) results from deleting all
switches and links in Figure 2 that are not part of any
path between x and y.

In Section 4.2, we observed that if M divides M, s then
there is a single value for the number of paths between
any inlet/outlet pair as given by M;¢/M. In network n,
Mis=3 X 6 X 3 X my = 54m, and M = 9m,. Therefore,
Mis/M = 54m,/9m, = 6, which is the number of paths
that we observe between x and y above. We can uniquely
identify aparticular path with aquadruplet of switch mod-
ule numbers (one number for each module successively
employed in the path from stages 1 through 4). The six
paths between x and y are thus given by (4, 0, 0, 2), (4,
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--------- Path (4,0,3,2) |
= ((2,3) intersecting connection (2,0) |

(b)

Fig. 5. (a) A channel graph L(x, y) of network n. (b) A chan-
nel graph L(x, y) of network 7.

0,32),(4,1,6,2),(4,1,09, 2), (4,20, 2), ad (4,
2,3 2).

An intersecting connection C(i, j) of L(X, y) can enter
L(x,y) a stagei = 1, 2, or 3 and depart at stagej = 2, 3,
4 with the additional proviso that i < j. Thus, there are six
possibilities for C(i, j), namely, C(1, 2), C(1, 3), C(1,
4),C(2,3),C(2,4),and C(3,4). Notethat such identifiers
do not indicate specific intersecting connections but rather
refer to any intersecting connection entering at stage i and
departing at stage j. We may uniquely identify a particular
intersecting connection of type C(i, j) in a fashion smilar
to the path identifiers in the previous paragraph, that is, with
the switch module numbers employed successively from
sages i to j. Thus, for example, the C(2, 3) intersecting
connections are (0, 0), (0, 3), (1, 6), (1, 9), (2, 0), and
(2, 3). Figure 5(b) highlights path (4, 0, 3, 2) and C(2,
3) intersecting connection (2, 0). [We note that (4, 0, 3,
2) could dternatively beinterpreted asaC(1, 4) intersecting
connection between an inlet other than x and an outlet other
than y on the stage-1 switch 4 and the stage-4 switch 2,
respectively.]

Next, we will consider B[ C(i, j)] [an upper bound on
the number of paths blocked by C(i, j)] as given by Eq.
(5.3f). In Section 5.3, we defined t to be the largest stage
number satisfying IN;,/NO= 1 and u to be the smallest
stage number satisfying (M, /MO= 1.

From Figure 2, we see that N = 8ny, Ny, = 4n;, and
Niz = 3 X 4n; and, therefore, that t = 2. Similarly, we

have M = 9my, M3, = 3my, and M,, = 6 X 3m, and,
therefore, that u = 3. Thus, the summation term in Eq.
(5.3f) is equal to 0 because its lowest indexing value t
+ 1 = 3is greater than its highest indexing value u — 2
= 1. Additionally, the last term in Eq. (5.3f) has a value
of 1 because My, 4 = My4q = My < 4m, = M. Therefore,
Eqg. (5.3f) reduces to

Brc, ) = [Miae | 4 [Mars) (s

A sample calculation:

sro(s, ) = [Mer| 4[R2 ]y

M N
::ﬁﬁﬁ@W+{@ﬂ—1=2+1—1:z
oam, 8n,;

Referring to Figure 5(a), it is easly verified that the
example C(1, 3) intersecting connection (4, 1, 6) blocks
the two paths (4, 1, 6, 2) and (4, 1, 9, 2). It isaso Straight-
forward to verify in Figure 5(a) that every C(1, 3) inter-
secting connection blocks exactly two paths, thus substanti-
ating our above cdculation that B[C(1, 3)] = 2

Since B[C(i, j)] is an upper bound on the number of
paths blocked by C(i, j), we have, in genera, the possi-
bility that one or more C(i, j) intersecting connections
blocks fewer than B[C(i, j)] paths (in L(Xx, y). As an
example of this, we first calculate that

oo [5]: []-»

_ [6><3m4—‘Jr {3><4n1-‘ .
9am, 8n,

—2+2-1=3

In Figure 5(b), we can observe that the C(1, 4) inter-
secting connection (4, 0, 3, 2) does indeed block the
maximum of three paths, namely, (4, 0, 0, 2), (4, O, 3,
2), and (4, 2, 3, 2). However, the C(1, 4) intersecting
connection (4, 1, 6, 2) blocks only two paths. (4, 1, 6,
2)and (4, 1,9, 2).

Having completed these examples of paths and blocked
paths, we now return to the general development of non-
blocking conditions. We next consider a very important
attribute of EGS networks that is crucial in the ability to
construct efficient nonblocking networks.

6. THE FORWARD-BACKWARD
INVARIANCE PROPERTY

We will use the following preliminary results:



6.1. Two Lemmas

Lemma 6.1a. If y is a positive integer, then OxOyO
= [k/yO

Proof. Represent x = ay + b, where a is an integer
and0 = b <y.Since0 = (b= b <y, we have (ITh
yO= [b/yd= 0. Thus,

252225 2 29

<[5+ 13
I RE.

Lemma6.lb. InaMIN,forl=i<h<j=s,(1)if
M; ;-1 dividesr;, then M; ,_; dividesr,, and (2) if Niiq;
dividesr;, then Ny, ; divides ry,.

Proof. For Case (1), applying Lemma 4.1f twice we
have

I li

Mi h-1

__" Nii1,j
Mij-1Nis1n

Ni +1,h

which equals (r;/M;;_1) N4, the product of two inte-
gers. Similarly, for Case (2), applying Lemma 4.1f twice
we have

I _ f _
Nhs1, Mhi,j-1

riMij_1
Niz1,jMn -1

which equals (ri/Ni.1;)Mipn_1, the product of two in-
tegers. |

6.2. The Forward-Backward
Invariance Theorem

Theorem 6.2. In an EGS network, for 1 =i < = s,
if M;;_, divides r; (or, equivalently, N, ; divides r;),
then for w # v, ether Fi;(w) = Fi;(v) or F;(w)
N Fi’j(U) = @

Proof.
Fi,j(W) = {(WMi,j—l + d)modrj . d = I(Mi,j—l)}
(from Lemma 4.1h)

WM, 1 + dJ

=WMi'j_1+d—l‘j \‘ r
i

(from Definition 4.1b)
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= WMi,j—l + d - rJ LW + d/Mi,J‘*]-J
e d o |
rj/Mi'j,l

(by Lemma 6.1a)

w
=wM; ;s +d-—r
o { ri/Mi,j—lJ
= WMi’j,]_ + d - I’,— \‘ %J
j

= { (WM 1) moar, + did € 1(M; 1)}

Now consider a partition of § composed of r; /N ;
subsets (Ry, Ry, . . ., R,i,NM_J.,l) each of cardinality Ni.qj,
where subset R, is given by

Ra={|\lbi+a:bel(Ni+l,j)} forael<L>.

i+1,] i+1,]
Then,

Fii(Ra) = { (RaMi j-1) moar, + did € 1(M;;-1)}

= <% + aMi’jl> + d
Ni+1,j

modr;

= (bl’j + a.Mi,j,]_)moer + d
= (aMi,j—l)modrj +d

= {aMi'j,]_ + d . d S I(Mi'jfl)} ,

because

fi
aMi i < —_— Mi i1 = [Ij.
J-1 <Ni+1,j> j-1 J

Thus, F; j( R,) isinvariant tothe selection of b € I (N, 1,),
that is, F; j(a) = F;;(8) for any two elements « and 3
of R..

Now, for a’, a” € I(ri/Ni;1;) , wherea’ + 1 = a’,
the largest value of F; j(Ry/) = a'M;j_1 + (Mjj_; — 1)
and the smallest value of F; j(Ry) = a"M;j_; + 0 = (@’
+ 1)M;;_;, which is larger than the largest value of
Fij(Ra). Thus, none of the values of F;;(R,) can be
the same as any of the values of F; j( R.).

The theorem is now proven because, for w + v, if w
and v are in the same subset R,, then F; ;(w) = F;;(v).
Also, if w and v are in different subsets, then F; ;(w)
NF ;W) = <. ]

6.3. Discussion

For ease of discussion, in any EGS network in which, for
l=i<j=s, M_,dividesr; (or, equivalently, Ni.;
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dividesr;), we will say that the division condition holds
for stagesi through j . From Lemma6.1b, it followsimme-
diately that, if the division condition holds for stages i
through j, it also holds for stages g through h, where i
=g<h=j.

From Theorem 4.1, we know that the number of paths
between any stage-i switching module and any stage- |
switching module is either OM; ;_,/r;0or OM; ;_,/r;0 If
M; j_1 dividesr;, then M; ;_; = r; and the maximum num-
ber of paths between any stage-i switching module and
any stage- j switching module is one. Therefore, in Theo-
rem 6.2, F; ;(w) will have only single occurrences of any
element. We thus recast the essence of Theorem 6.2 as
follows:

The Forward—Backward Invariance Property:

In any EGS network in which the division condition
holds for stages i through j, there exists a partition
P of § composed of r;/Ni1; = r;/M;;_, subsets,
each of cardinality N;,,;, and a partition P; of §
composed of ri/Ni;q; = r;/M;;_; subsets, each of
cardinality M;;_;, where, for each subset p of P;,
thereis a corresponding subset o of P;, such that (1)
each switching modulein p hasasingle path to every
switching module in o (and no paths to any other
switching modulesin stage ) and (2) each switching
module in o has a single path to every switching
module in p (and no paths to any other switching
modules in stage i).

The crucia importance of the Forward—Backward Invari-
ance Property in the construction of nonblocking net-
works will become evident in the next few sections.

6.4. Example

Figure 6 illustrates an EGS network and highlights all of
the paths of a subset pair (p, o) of 9 switching modules
from the second stage and 4 switching modules from the
fourth stage.

The Forward—Backward Invariance Property applies
here for stages 2 through 4 because mym; = 2 X 2 = 4
which dividesr, = 12 (or, equivaently, nsn, = 3 X 3 =
9 which divides r, = 27). We note in passing that the
Forward—Backward Invariance Property may hold for
some successive stages in a network and not hold for
others. For example, since mym, = 6 X 2 = 12 does not
divider; = 18 and mym, = 2 X 5 = 10 does not divide
rs = 15, the property does not hold for stages 1 through
3 for stages 3 through 5, but as we have just seen, it does
hold for stages 2 through 4.

7. AN UPPER BOUND ON THE NUMBER
OF INTERSECTING CONNECTIONS
OF A CHANNEL GRAPH

In Section 5.3, we established an expression for an upper
bound on the number of paths blocked by a single inter-

secting connection in which the blocked-path contribu-
tions of the intersecting-connection entry point and depar-
ture point are independent of each other. Thus, to deter-
mine an upper bound on the number of paths blocked by
a group of intersecting connections, we need only be
concerned with their entry and departure point distribu-
tions. (We do not care which entry point and departure
point are associated with any particular intersecting con-
nection.) We will, however, need to know the maximum
number of connections that can intersect channel graph
L(X,y). We identify this value as w.

7.1. The Role of the Forward-Backward
Invariance Property

Consider an intersecting connection between some inlet
X" # x and some outlet y’ # y that enters L (X, y) at stage
i,wherel =i = k = s. Since every stage-i switching
module in L(X, y) has at least one path to at least one
stage-k switching module in L(X, y), thereis at least one
path from x’ to some stage-k switching module in L(X,
y). Thus, if there are no paths from a given inlet to
any stage-k switching modules of L(X, y), then that inlet
cannot be part of an intersecting connection that enters
L(x, y) from stages 1 through k.

Now suppose that the division condition (and, hence,
the Forward—Backward Invariance Property) holds for
stages 1 through k. Then, the stage-1 switch, on which
idleinlet x appears, isamember of asubset p (of cardinal-
ity N,,) of S;, where each switching module in p has a
single path to every switching module in some subset o
of S (and no paths to any other switching modules in
stage k). Thus, al stage-k switching modules in L(X,
y) must be members of o. Additionally, each switching
module in o has a single path to every switching module
in p (and no paths to any other switching modules in
stage 1). Therefore, since each of the switching modules
of p has n, inlets, al of the stage-k switching modulesin
L(x, y) have paths to the same set of n; X Ny = Nig
inlets (and paths to no other inlets). Removing x from
consideration, we have that at most N, — 1 inlets have
paths to any stage-k switches of L(x, y). Using this in
conjunction with the result from the previous paragraph
gives Ny — 1 as an upper bound on the total number of
intersecting connections that can enter L(x, y) from
stages 1 through k. [ An additional observation, which we
will use alittle later, is that none of these N, — 1 inlets
can be associated with an intersecting connection that
enters after stage k. If such an intersecting connection
did exigt, its stage-k switching module d would not be a
part of L(X, y). But since al of the N, inlets (including
x) have paths to the same stage-k switching modules,
there is a path from x to d. Also, there is also a path from
d to y via the portion of the intersecting connection from
d to the entry point and thence via L(X, y). Thus, there
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M,

Fig. 6. Forward—Backward Invariance Property (for stages 2 through 4).

is a path from x to y that includes d and so d must be in
L(x, y), a contradiction.]

Two important consequences follow from these obser-
vations: First, the analysisis simplified because the num-
bers of switching modules in stages 1 through k in L(X,
y) do not have to be considered. Second, and far more
importantly, the maximum number of intersecting con-
nections entering from stages 1 through k is potentialy
much smaller than might otherwise be the case if the
Forward—Backward Invariance Property did not limit the
number of inlets having paths to any stage-k switches of
L(X, y). This is one of the main reasons that we can
design efficient nonblocking EGS networks.

For the moment, we will proceed on the assumption
that the division condition holds, wherever we would like
it to hold, throughout a network. After establishing an
expression for an upper bound on the number of inter-
secting connections (w), we will be able to replace this
rather nebulous assumption with a precise sufficient con-
dition.

7.2. Entering and Departing Connections

We have from above that at most N;x — 1 intersecting
connections can enter L(x, y) from stages 1 through k
and, using similar logic, we can establish that at most
M, s — 1 intersecting connections can depart from stages

k through s. Let us momentarily focus on stage k, (1 =
k = s — 2), to understand its role in establishing w.

By definition, an intersecting connection must utilize
one or more links of L(X, y). Thisimplies that an inter-
secting connection which enters at stage i cannot depart
any sooner than stage i + 1, that is, it must at least
utilize a stage-i link. Thus, we have that at most Ny, — 1
intersecting connections can utilize stage-1 links through
stage-k links of L(X, y) (as limited by the maximum
number of connections that can enter from stages 1
through k) and at most My, »s — 1 intersecting connections
can utilize stage-k + 1 links through stage-s — 1 links of
L(x, y) (as limited by the maximum number of connec-
tions that can depart from stages k + 2 through s). An
upper bound on the number of intersecting connections
is obtained by assuming that the N, x — 1 entering connec-
tionsand the M, »s — 1 departing connectionsare dijoint,
that is, all of the Ny, — 1 entering connections depart at
or before stage k + 1 and al of the M, ,s — 1 departing
connections enter at or after stage k + 1.

Thus, considering only the perspective of stagek, there
are at most (Nl,k - 1) + (Mk+2‘3 - 1) = Nl,k + Mk+2,s - 2
connections that can intersect L (X, y). This expression is
valid for (1 = k = s — 2), since it assumes that inter-
secting connections can enter as early as stage k and
depart as late as stage k + 2. Considering al of the possi-
ble values for k, we have that a most min;_.—s »{ Ny
+ Mo — 2} connections can intersect L (X, V).
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7.3. An Expression for o Plus
a Sufficient Condition

Since the number of intersecting connections clearly can-
not exceed min{ N — 1, M — 1}, we immediately have
the following expression for w:

w= min {Ny+M2s—2,N=1,M—1}.

1=k=s—-2

(7.38)

The development of this expression assumed that the divi-
sion condition held wherever it was necessary to hold.
Whereisit possible for the division condition to not hold
and yet maintain the validity of the arguments producing
expression (7.3a)? We claim it is not required for stages
1 through I, for any | satisfying N;; > w, nor for stages
r through s, for any r satisfying M, s > w.

First of all, for the case where w = min{N — 1, M
— 1}, the division condition is not required to hold any-
where, because the arguments which employ it yield a
larger value for w than min{N — 1, M — 1}. Next,
consider the case where w = Min;_,—s »{ Nix + Myyos
— 2} . Since Ny is monotonically nondecreasing in k, the
value of kyielding w must be lessthan any | satisfying Ny
> w, and, thus, we do not require the division condition
to hold for stages 1 through |. Similarly, since My is
monotonically nonincreasing in k, the value of k + 2
yielding w must be greater than any r satisfying M, s > w.

Thus, we have the following condition which is suffi-
cient for expression (7.3a) to be valid:

Condition 7.3b. Njj divides N for Ny = w and M,
divides M for M, s = w.

7.4. A Review

L et us pause for amoment to highlight some of our results
so far and to see what remains in our gquest to establish
the strictly nonblocking sufficient condition: PATHS
> BLOCKED PATHS. (Fig. 4 may be helpful during
this discussion.)

Theorem 4.2a has given us an expression for PATHS.
Expression (5.3f) provides an upper bound on blocked
paths per intersecting connection as a separable function
of entry point, departure point, plus a constant. Condition
7.3b gives a sufficient condition for which expression
(7.3a) yields w, an upper bound on intersecting connec-
tions.

What remains is to allocate these w intersecting con-
nections according to entry points and departure points
and then to combine these allocations with expression
(5.3f) to calculate an upper bound on the number of
blocked paths. The aforementioned allocations must be
such that they produce the largest possible number of

blocked paths, subject to the constraints imposed by Con-
dition 7.3b and w.

8. ALLOCATION OF THE ENTRY
AND DEPARTURE POINTS OF
THE INTERSECTING CONNECTIONS

We first determine the allocations assuming that Condi-
tion 7.3b holds and that there are w intersecting connec-
tions. Then, we will justify the assumption of w inter-
secting connections by formally establishing the intuitive
notion that the maximum number of blocked paths is
monotonically increasing in the number of intersecting
connections, that is, any number d < w of intersecting
connections cannot maximally block as many paths as
can w intersecting connections.

8.1. Aggregate Numbers of Entering
and Departing Connections

In Section 7.1, we established that at most N, — 1 inlets
can be associated with intersecting connections that enter
L(x, y) from stages 1 through k, if the division condition
holds for these stages. Assuming that Condition 7.3b
holds, the division condition will hold for any k such that
N1k = w. For any other value of k (i.e., when N,y > w),
there are at most w intersecting connections that can enter
from stages 1 through k. Therefore, we have that at most
min{ Nyx — 1, w} intersecting connections can enter from
stages 1 through k. Using similar logic, we find that at
most min{ My s — 1, w} intersecting connections can de-
part from stages k through s, assuming Condition 7.3b
holds.

8.2. Maximizing the Number
of Blocked Paths

We now have expressions for the maximum aggregate
numbers of entering and departing intersecting connec-
tions from stages 1 through k and stages k through s,
respectively. What we need next is the allocation of these
intersecting connections on a per stage basis such that we
have an upper bound on the total number of blocked
paths. Thisresult will follow immediately upon inspection
of expression (5.3f).

In this expression, the separable component of the
number of blocked paths associated with each intersecting
connection entering at stage i is given by [M,,;s/M[],
which is a monotonicaly nonincreasing function in i.
Therefore, an upper bound on the component of the num-
ber of blocked paths associated with entry points will be
achieved if each stage i has as many as possible entering
intersecting connections, given that each stage k < i also



meets this objective. Thus, we will assume that min{ N, ;
— 1, w} intersecting connections enter at stage 1,
min{ N, — 1, w} — min{ Ny, — 1, w} intersecting con-
nections enter at stage 2, etc., so that we have, in general,
that min{ Ny; — 1, w} — min{Ny;_; — 1, w} intersecting
connections enter at stage i.

In expression (5.3f), the separable component of the
number of blocked paths associated with each intersecting
connection departing at stage j is given by N; ;_./NC,
which is a monotonically nondecreasing function in j.
Therefore, an upper bound on the component of the num-
ber of blocked paths associated with departure points will
be achieved if each stage j has as many as possible de-
parting intersecting connections, given that each stage k
> j also meetsthisobjective. Thisleadsto an upper bound
of min{M;s — 1, w} — min{ M;;1s — 1, w} intersecting
connections departing at stage j . [ We should note that the
third component term in expression (5.3f) isafunction of
neither i nor j and so does not affect this discussion.]

8.3. Justifying the Assumption of w
Intersecting Connections

In Sections 8.1 and 8.2, we developed expressions for the
alocation of entry and departure points that gives an up-
per bound on the number of blocked paths assuming that
there are a total of w intersecting connections. We now
show that the assumption of w intersecting connections
iscorrect, that is, thereisno number d < w of intersecting
connections that can maximally block as many paths as
can w intersecting connections. We do this by proving
that for any given intersecting connection the upper bound
on the number of blocked paths (as given by expression
5.3f) is always positive.

Our first observation is that the sum of the first two
terms of expression (5.3f), that is, (M;.1¢/ MO+ ONy 1/
N[, always has a value of at least 2, since both of these
terms always have a value of at least 1. Thus, we need
to show that the remaining portion of expression (5.3f),
that is, 2221 Ny /NO([M1/ MO — M2/ MD)
— M40/ MO, never has a value less than minus one.

Casel. t+1=u-1

For this case, the first term (the summation term)
has a value of zero because the beginning index ex-
ceeds the terminating index. Additionally, the second
term equals one, sincet + 2 = u, and u (as defined
in Section 5.3) is the smallest stage number satisfying
(Mys/MO= 1. Thus, the first term minus the second
term equals minus one.

CAse2. t+1=u-— 2
First, we note that (M, 1 o/ MO— M,/ MOis never
negative because [M, 1 s/MOis monotonicaly nonin-
creasing in k. Next, for al k within the limits of the
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summation, we have that Ny /NO= [N;,,,/NO= 2,
because (as defined in Section 5.3) t is the largest
stage number satisfying ON;,/NO= 1. Therefore,

5[N] (] - [Mai]
£ )
2 [Ma | -2 [

(from alternate term cancellation)

] - P

— 2 =0 (by definitions of u and t).

Mt+25

Mt+25

I\/|t+25

]
|-

MHZS—‘
W

This proves that expression (5.3f) always has a posi-
tive value, thus justifying our assumption of w inter-
secting connections.

9. AN UPPER BOUND ON
BLOCKED PATHS

We are now in aposition to combine the results of Section
8 with expression (5.3f) to produce the three component
terms of BLOCKED PATHS in Figure 4.

9.1. Expressions for the Three Components
of BLOCKED PATHS

From Section 8.2, we have (min{N; - 1, w}

—min{ Ny;_; — 1, w}) intersecting connections entering
a sege i, and from expresson (5.3f), we have (M, ;/M[
as the separable blocked path contribution per intersecting
connection entering at stage i. Multiplying these two
terms together and summing for al i, we have

s

Z (min{Ny; — 1, w}

(9.18)

) [He]

as an upper bound on the intersecting connection entry
point contribution of number of blocked paths.

From Section 8.2, we have (min{M;s — 1, w}
— min{ M;;1s — 1, w} ) intersecting connections departing
a dage i, and from expresson (5.3f), we have [INy;_1/NO
asthe separable blocked path contribution per intersecting

— min{ Ny —
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connection departing at stage i. Multiplying these two
terms together and summing for al i, we have

(min{M;s — 1, w}

IMo

- min{Mi.1s — 1, w}) [NlTl

as an upper bound on the intersecting connection depar-
ture point contribution of number of blocked paths.

The third component term of BLOCKED PATHS is
simply the product of w and the remaining portion of
expression (5.3f) (a constant value for every intersecting
connection). Thus, we have

’7Mk+2,s—‘ )
M

(F P
)

k=t+1

(9.1¢)

for this component.

We have finally accounted for al of the elements of
Figure 4. Also, since the sum of expressions (9.1a),
(9.1b), and (9.1c) is an upper bound on the total number
of paths blocked in L(x, y), we have now established
expressions for both PATHS and BLOCKED PATHS.
Thus, we are ready to state the main result of this paper—
a theorem that gives sufficient conditions for EGS net-
works to be strictly nonblocking for point-to-point con-
nections. Later, we will consider arefinement to our logic
that has the potential to reduce the upper bound on the
total number of blocked paths for many practical EGS
networks. (This refinement is not indicated on Fig. 4.)

10. THE MAIN RESULT—
A STRICTLY NONBLOCKING THEOREM
FOR EGS NETWORKS

We have already proved the theorem that we are about
to state. That iswhat thelogic map in Figure 4 isall about.
Wewill review thislogic after presenting the theorem. We
will also discuss some of the attributes and ramifications
of the theorem.

Additionaly, we will show that the theorem includes
(as a small but important subset) strictly nonblocking
three-stage Clos networks. We will derive someimportant
specia case versions of the theorem and provide several
examples.

10.1. A Strictly Nonblocking Theorem

Theorem 10.1. An EGS network is strictly nonblocking
for point-to-point connections if Ny divides N for N,y =
w and M, ¢ divides M for M, s = w, where

w = min {Nl,k + Mk+2,s -
1=k=s-2

2N-1, M- 1},

and if

“/I\I/TSJ > é (min{ Ny; — 1, w}

— min{ Ny, — 1, }) [MITHS—‘

+

i (min{M;s — 1, v}

min{ Mi.1s — 1, w}) [NlTH—‘

(P

k=t+1

+

where t is the largest stage number satisfying [IN;,/NO
= 1 and u is the smallest stage number satisfying
M,o/MO= 1.

Review of Proof. According to the Strictly Non-
blocking Sufficient Condition in Section 3.0, we needed
to show that the minimum number of paths between any
inlet/outlet pair exceeds the maximum number of paths
which could be blocked between any inlet/outlet pair. In
Section 4 (specificaly Theorem 4.2a), we established
that there are at least (M, o/ M Opaths between any inlet/
outlet pair. Most of the rest of the paper up to this point
has been involved in the process of determining an upper
bound on the number of paths which can be blocked
between any inlet/outlet pair.

Two results were especially crucia in this endeavor:
The first was the formulation of expression (5.3f) as an
upper bound on the number of paths blocked by a single
intersecting connection. In developing this expression, a
simplifying assumption was introduced for those inter-
secting connections composed of three or more inter-
secting links. With this simplification, all blocked paths
were counted at |east once (instead of exactly once), and,
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Fig. 7. Nonblocking EGS network p.

thus, a valid upper bound remained. For most practical
networks, the overcount is either zero or very smal, pre-
serving the utility of the approximation. However, the
most important aspect resulting from this simplifying as-
sumption was that the upper bound became a separable
function of the intersecting connection entry point and
departure point, plus a constant. This meant that we did
not have to associate the entry point and departure point
of any particular intersecting connection. We needed only
to determine the numbers of entering and departing inter-
secting connections at each stage, such that we maintained
an upper bound on the total humber of blocked paths.

This led to our second crucial result, namely, the For-
ward—Backward Invariance Theorem (Theorem 6.2), in
which we established that the Forward—Backward Invari-
ance Property holds for stages i through j if the division
condition holds for stagesi through j. The importance of
this result was that it limited the number of connections
that could intersect channel graph L (X, y), assuming that
the division condition held where necessary.

Utilizing this information, we next established w
[expression (7.3a)], an upper bound on the number
of intersecting connections. We then allocated w entry
points and departure points, guaranteeing that we would
maintain an upper bound on the number of blocked
paths which result from multiplying the numbers of
entering and departing intersecting connections at each
stage with their corresponding blocked-path compo-
nents from expression (5.3f).

A Note on Sufficiency. We have made two assumptions
in this proof that may result in overcounting the maximum
possible number of blocked paths. Thus, we can assert the
sufficiency, but not the necessity, of the given conditions.
However, in many (most?) practical networks, the stated
upper bounds will either be exact or in error by only a
small amount. Let us consider these two assumptions to
better understand when overcounting is likely to occur:

The first assumption is the simplification mentioned
above regarding the formulation of expression (5.3). It
was noted in Section 5.2 that this approximation can only
overcount blocked paths if there are at least two paths
between a pair of intersecting links of an intersecting
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connection. This will generally not happen unless there
are arelatively large number of stages in the network.

The second assumption is that all of the blocked paths
of al of the intersecting connections are different. This
assumption is implicit in our process of simply adding
the various blocked path components (for w intersecting
connections) to arrive at atotal number of blocked paths.
We must be careful here to distinguish that we are not
talking about the likelihood of all counted blocked paths
being different, but whether or not this is even possible.
As with the first assumption, we are more likely to have
overcounted in a network with a large number of stages.
Indeed, a little later, we will describe a refinement that
shows that we have necessarily overcounted in some net-
works.

10.2. Observations

The first thing that we note about Theorem 10.1 is its
generality. The conditions are in terms of the number of
inlets and number of outlets (N and M) of the network,
the number of inlets and number of outlets (n, and m)
on the switching modules in each stage i of the network,
and the number of stages (s) of the network. There are
no individual constraints on any of these items. There is
no required relationship between N and M. There is no
symmetry required in the network. There is no relation-
ship required between the size of the switching modules
in one stage and any other stage.

Perhaps the most important aspect of the theorem is
that nowhere does there appear the ratio of any n; to any
m . The implication is that for the most part nonblocking
networks can be designed with arbitrarily sized switching
modules. Another way of viewing this situation is that
the conditions for nonblocking operation are globa as
opposed to being specific to particular switching modules.
Theintuitive reason for thisisthat the nonblocking condi-
tions were established for the network as a whole and
not for subsets thereof, that is, nothing was defined or
constructed recursively. (There are no imbedded strictly
nonblocking subsets in these networks.)

Due in part to its generality, Theorem 10.1 is rather
complex. However, much of the complexity disappears
for networks exhibiting various constraints, uniformity,
and/or symmetry. We will present these simplifications
later.

10.3. An Example Nonblocking Network

Figure 7 depicts a five-stage EGS network p that has a
different number of inlets than outlets and different size
switching modules in each stage. We will evaluate the
various expressionsin Theorem 10.1 to seeif this network
is strictly nonblocking. We choose this nonuniform and
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Fig. 8. A channel graph L(x, y) of network p.

nonsymmetric network as our first example so that we
may better understand the general capability of this theo-
rem. In the spirit of nonuniformity, note also the numbers
of links between stages in this network.

The relevant parameters of the network are N = 108,
M = 112, n, through ns = 3, 6, 6, 4, and 11, respectively,
m, through ms = 22, 2, 7, 4, and 4, respectively, and s
=5

We first calculate (M, /M [J the minimum number of
paths between any inlet/outlet pair. We have

{MLSJ _ L22><2><7><4><4J _ o= a4
M 112

Therefore, there are exactly 44 paths between every inlet/
outlet pair. Figure 8 depicts the channel graph L(X, y)
of some inlet x and some outlet y of network p. (The
reader may wish to verify that there are indeed 44 paths
between x and y in this channel graph.)

Next, we need to determine w, the maximum number
of connections that can intersect L(Xx, y). We have

min {Nix + Mas — 2N — 1, M — 1}

1=k=s-2

min{ Np; + Mas — 2, Nop + Mys — 2,
Nis + Mss — 2, 107, 111}

min{3 + 112 — 2, 18 + 16 — 2,

108 + 4 — 2, 107, 111}

min{113, 32, 110, 107, 111} = 32.

This limitation on the number of intersecting connec-
tions results when our indexing variable k = 2. Let us
review the logic employed here. When k = 2, we are
adding the maximum number of intersecting connections

that can enter L(x, y) in stages 1 and 2 to the maximum
number of intersecting connections that can depart L (X,
y) in stages 4 and 5. This addition produces an upper
bound by implicitly assuming that the entering and de-
parting intersecting connections are al different, that is,
all of the intersecting connections entering at stages 1 and
2 depart at or before stage 3 and al of the intersecting
connections departing at stages 4 and 5 enter at or after
stage 3. If this is not so, then one or more of the inter-
secting connections entering at stages 1 or 2 must depart
at stages 4 or 5, thus resulting in fewer than 32 total
intersecting connections.

Our result that w = 32 is provisiona at this point. We
must additionally verify that N, divides N for Ny = w
and M, ¢ divides M for M s = w. Since N;; = 108 = N
and M35 = 112 = M, these division conditions are satis-
fied and our result for w is valid. We should note here
that if both division conditions had not been satisfied, we
would be unable to establish the nonblocking status of
network p because of afailure to satisfy all of the condi-
tions of Theorem 10.1.

Next, we determine stage numberst and u. Since N 3
= 108 = N < 432 = N4, we have t = 3. Also, since
Mss = 112 = M < 224 = M, 5, we have u = 3. Therefore,
t+1>u—-2andso

L2 RO 1)

=

o)) =



Fig. 9. General three-stage Clos network.

Our last step is to determine if

W/TJ: 44> Z (min{Ny; — 1, w}

i=1

— min{ Ny, — 1, w}) PV'ITHS —‘

+ i <(min{ Ms— 1, o}

— min{ M5 — 1, w}) {NlT"l—‘ ) — 32

Evaluating the right side of this expression, we have

[(2-0)x2+ (17-2)x1+(32-17)x 1
+ (32 -32) X1+ (32-32) x1]
+[(32-32)x1+(32-32)x1
+(32-15) X1+ (156 -3) x 1+ (3 - 0) x 4]
-32=(2%x2+15x1+15x%x1)
+(17Xx1+12x1+3x4)-32
=34+ 41 - 32 = 43 < 44,

Thus, we have a most 43 of the 44 paths between x
and y that can be blocked and so network p is strictly
nonblocking.

This calculation assumed that two intersecting connec-
tions entered at stage 1, 15 at stage 2, and 15 at stage 3.
It also assumed that 17 departed at stage 3, 12 at stage
2, and 3 at stage 1. Part of the power of Theorem 10.1
isthat the determination of an upper bound on the number
of blocked paths does not require these entrance and de-
parture points be pairwise associated with specific inter-
secting connections.

Earlier we noted the nonuniformity of the numbers of
links between stages in network p. We mention it again
to underscore the generality that it suggests. Observe,
for example, that the minimum number of links occurs
between stages 2 and 3. Thus, we do not require the
number of links to be uniform or increasing as we move
toward the center of the network.
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This example was chosen to illustrate various points.
Itisnot likely that anyone would ever choose to construct
such a network. However, it is interesting to note that,
even with such ‘‘strange’’ switching module sizes, we
have produced a reasonably efficient network. Using the
number of crosspoints as the conventional complexity
metric, we calculate 3 X 22 X 36 + 6 X 2 X 132 + 6
XTX4 +4X4xX77+ 11X 4Xx28=28272as
compared to 108 x 112 = 12096 for a single-stage cross-
bar switch.

10.4. Corollary to Theorem 10.1

For many practical EGS networks, it will be the case that
minlskssfz{ Nl,k + Mk+2,s — 2} = m|n{ N — 1, M — 1} .
For such networks, we have the following corollary of
Theorem 10.1:

Corollary 10.4. If w = ming_y—s >{ N1y + Myi2s — 2},
then for the value of k giving w, Theorem 10.1 becomes

+ z (Mis — Mi;1s) {N?\’;fl]

i=k+2

Proof. For the value of k giving w, we must have k
=tand k + 2 = u, for, otherwise, w = Ny + Myio6 — 2
= Nl,k —1>N-1and/or w = Nl,k + Mk+2,5 -2
= My2s — 1 > M — 1, contradicting our assumption on
w. It follows that u — t = 2. Hence,

ISR
] - ]

The right side of (10.1) can be written as

i—gl [(Nyi = 1) = (Nyja = 1)] ’7%—‘

t+1

+ 5 (mn{Ny — 1, o} — min{Ny_; — 1, w})
T3 [Mie = 1) = (Mias — 1)) {NTW

+ f (min{ M; s —

i=u—1

1, w} — min{M;s — 1, w})
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+ min{Ny1 — 1, w} — min{ Ny — 1, w}
° Ny
+ z (Mi,s - Mi+1,s) lrlTl—‘
i=k+2
+ min{ M, 15 — 1, w} — min{Myos — 1, w}

_ ‘ Mi+l,s
—w =73 (N — Nyi1) ’77—‘ tw
i=1

(M= D+ 5 = wn [M2]

i=k+2

J’_

- (Mk+2,s - 1) - w

w
é (Naj = Naj-a) [MT”S—‘

+ i (Mis — Mii1s) {Nl—'fl—‘ :

i=k+2 N

because (Nyx — 1) + (M5 — 1) = w.

11. SOME SPECIAL CASES OF
THEOREM 10.1

Using Theorem 10.1 and/or Corollary 10.4, we develop
expressions for three important specia-case classes of
networks. The first of these are the three-stage Clos net-
works.

11.1. Three-Stage Clos Networks

We will show that three-stage Clos networks are a subset
of the class of networks covered by Theorem 10.1. Figure
9 depicts the generalized Clos network in which each
switching module in the first stage is connected by a
link to each switching module in the second stage and,
similarly, each switching module in the second stage is
connected by a link to every switching module in the
third stage. The Clos network thus satisfies our definition
of aMIN. It also satisfiesthe definition of an EGS network
in that links from switching modules in stage i may be
thought of as being connected consecutively to switching
modules in stage i + 1.

We begin by calculating (M, ¢/ M [J the minimum num-
ber of paths between any inlet/outlet pair. We have

2] - [extme)

Next, we need to determine w, the maximum number
of intersecting connections. We have

min { Ny + Myos —
1=k=s—2

MiN{Ny; + M3z —2,N— 1, M — 1}
mn{n+m-2N-1M - 1}.

2N-—1,M— 1}

&
I

We will verify that N, divides N for Ny, = w and My ¢
divides M for M, s = w for any of these three possible
values of w. Since Ny isproduct of integers, if Ny divides
N for w = Ny, then Ny;, (j < k), must also divide N
for Nyj = w. Now, since w < N and N;, = n X N/n
= N, thefirst division condition is satisfied for any possi-
ble value of w. Similarly, the second division condition
is satisfied by the fact that w < M and N,53 = (M/m)
X m= M.

Next, we determine stage numberst and u. Since N,
=N,t =2 andsince M3 = M, u = 2. Therefore, t = 2
=Uu=t+1>u—-2andt+ 2 > u. Therefore,

(E (P 1)

€

Next, fori = 1, 2, or 3, we have [(M;,, o/ MO= 1, because
Mi, 15 IS monotonically nonincreasing ini and M, s = M.
Similarly, for i = 1, 2, or 3, we have N;; ;/NO= 1
because N;;_; is monotonically nondecreasing in i and
Ni> = N. Therefore,

i (min{Ny; — 1, w} — min{Ny;_1 — 1, w}) {_M'i\zlvs—‘

i (Mmin{Ny; — 1, w} — min{Ny_; — 1, w})

= m|n{ N1’3 - 1, W} - m|n{ Nl,O - l, UJ}
(via alternate term cancellation)

=min{rN, v} — min{0, w} = w
and, similarly,
> . . Nyi—1
z (min{Ms — 1, w} — min{Mi,1s — 1, w}) IVT—‘
i=1

=3 (Min{Mis— 1, w} — min{Mi,;s— 1, u})

i=1

= m|n{ M1,3 - 1, LU} - m|n{ M4,3 - 1, CL)}
(via dternate term cancellation)

=min{rM — 1, w} — min{0, w} = w.

Having computed all of the PATHS and BLOCKED
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Fig. 10. Generalized uniform network U(n).

PATHS terms, we haver > w + w — w = w = min{n
+m-2,N—-—1, M -1} sor = min{n+ m — 1,
N, M}.

The usual stated condition for three-stage Clos net-
works to be strictly nonblocking isr = n + m — 1. Our
more general result includes special casesin whichr < n
+ m — 1 can suffice.

Let us now consider another important special case,
that is, when nearly all of the switching modules are
identical and the number of inlets and outlets are equal.

11.2. Uniform Networks

A generalized uniform network is depicted in Figure 10
and defined as follows: For (n = 2), a uniform network
U(n) is an EGS network with N = n* inlets and outlets
and s = s’ + 2 stages of switching modules. The first
stage of the network is composed of N 1 X F switching
modules. The next s’ stages, (1 = s’ = 2k — 1), are
each composed of NF/n n X n switching modules. The
last stage is composed of N F X 1 switching modules.

11.2.1. Determining w

Inau(n),sincen; =1landn =nfor2=i=s-1,
Ny, =n"tforl=i=s— 1 Similarly, we have M, ¢
=n*" for2 =i =s. Therefore, min_i_¢ »{ Ny; + Mi 25
— 2} =min_i_¢ o{n""*+ ns'"2 - 2} . We differentiate
this expression with respect to i and for the moment con-
sider i to bereal. Theresultisn'"*(Inn) — ns"~2(Inn),
which we set equal to zero and solve for i, yielding i
= (s— 1)/2
If sis odd, we have an integer solution for i, which,
when subtituted in (n""* + n®'"2 — 2), yields n(s" /21
+ nsf(sfl)/zfz 2= r](573)/2 4 n(573)/2 2= 2n(&3)/2
— 2. In a uniform network, s has a maximum value of 2k
+ 1, and since this expression is monotonically increasing
in's, its maximum value is 2nkr1732 _ 2 « on(Ek=2)2
= (2/n)n* = n* = N (because n = 2). Therefore,
w=2n"32_2 (for sodd). (11.2a)
For s even, we subtract (n'~* + n*'~2 — 2) from (n¢* Y2
+ ns (*D=2 _ 2y yidding (n — 1)[n'"* — n>"%], which
is easily shown to have a negative value if i < (s/2) — 1
and a poditive value if i > (s/2) — 1. Therefore, the two
possibilities for a minimum value of (n'"* + n>"2 — 2)

arewheni = (s/2) — 1 or (s/2). Checking these two cases,
we get the same result (n + 1)n® 4’2 — 2. Substituting 2k
for s (the maximum value when s is even), we get (n
+ 1n?2 -2 < (n+ 1)n“2 = ((n + 1)/n*)n* < n*
= N (because n = 2). Therefore,

w=(n+1)nE92_ 2 (for seven). (11.2b)

Expressions (11.2a) and (11.2b) are provisiona pending
verification of the two requisite division conditions of
10.1. Thisis easy in the case of a uniform network be-
cause for any i (1 =i = k + 1) N;; = n' * divides n*
= N> wand, smilarly, foranyi (s— k=1 =5s) M,
= n*"'dividesn* = N > w.

We have now established that the value of w satisfies
the condition for Corollary 10.4 to apply (for both odd
and even values of s) and thus we can use it in the
remaining analysis of uniform networks.

11.2.2. Equal Entry and Departure Components

We observe that N;; = ni™* = Mg, for2 = j <s
— 1. Then, for s odd, it is easily verified that the first
(second, etc.) term in =M% (N — Npj_q)IMi,1¢/MO
equalsthelast (second to last, etc.) termin =i i 3)2 (Mi s
— Mi;15)IN;;_1/NOand that these two summations both
have (s — 3)/2 terms. Fori = 1, N;; = N3;_; = 1 and
thus Corollary 10.4 becomes

(s=1)/2

D:ns—k—2D> 2 z (ni_l_ ni_z)DnS_i_k_]'D. (1120)

i=2

For s even, we write Corollary 10.4 as

s/2

[Fnsfk72|j> z (nifl _ nifz)Dnsfifkfllj
i=1
+ z (ni—l _ ni_z)DnS_i_k_ID.
i=(s/2)+2

The first summation has one more term than the second.
We separate the i = s/2 term and then, as above, the first
(second, etc.) term in the first summation equals the last
(second to last, etc.) term in the second summation. This
gives



290 RICHARDS AND HWANG

s/2—1
Fns*?0>2 5 (n"'—

i=2

+ (ns/2—1 _

ni*2)|]nsfifk71|:|

s/2—2 /2—k—1 (11'2d)
n )0n® O

11.2.3. Simplifying the Entry Point Blocked
Path Expression

We consider two cases.

Casel. 3=s=k+ 3.
Inthiscase, s—i—k—-1=(k+3)—-i—k-1
=2 —i,so*" % 0=1for2 =i = s. Thus,
(11.2c(d)) becomes

D:nsfk72|j> Z(n(573)/2 _ 1)

(11.2¢)
(for 3=s=k+ 3).

D:ns—k—2D> ns/Z—l + ns/2—2 -2
(for 3=s=k+ 3).

Case2. k+4=s=2k+ 1L
We note that if i < s — k — 1 then [h*' % 'O
= nSfifkfl andifi = s — k- 1then Ehsfifkflmz 1
Therefore, we split the summationsin (11.2c(d)) and
they become

(11.2f)

D:n37k72|:|
>2(s—k—3)(n%2—nvk3) (11.29)
+ 2n(373)/2 _ 2nsfk73
(fork+4=s=2k+1)ad
D:ns—kf2|:|
>2(s— k—3)(n%2—ns 3 (11.2h)

+ nslzfl 4 r]s./272 _ 2n57k73

(fork+ 4 =s= 2k + 1).

11.2.4. Combining the Various Cases

It can easily be verified that [(J(s — k — 3)(n — 1)
—1(n**3*0= -1ifs=k+ 3and =[(s = k — 3)
(n—1) — 1](n**3)if s= k + 4. Given that s denotes
the remainder when dividing s by 2, it can also be easily
verified that 2n¥? + (n — 1)(1 — s) = 2n%? for s odd
and =n + 1 for s even. Subsequently, it can be verified

that the following expression satisfies all four expressions
(11.2e, 11.2f, 11.2g, and 11.2h):

D:ns—k—ZD

> 2 L[(s —Kk-3)(n-1) - 1] ”HJ (11.21)

N

+ N2 4 (n - 1)(1 - s)].

We can solve expression (11.2i) for F and thus explicitly
indicate a sufficient condition for F to produce a strictly
nonblocking U(n). Let | represent the right side of ex-
pression (11.2i) and note that | is an integer since both
terms composing | are always integers. Thus, we need
Fn® 2)/NO= [(Fn* % 20> | or, equivalently, (Fns* 20
=1+ 1

Now, since Fn**2 = [Fn**?[] we must have
Fns*2 = | + 1, implying that F = (I + 1)n s*™*2
>+ D)ns™20-1andso F = [{I + 1)n stk2[]
Using this expression for F, we have (Fn® % 20= 1|
4 1)n7s+k+ZDI,]sfkfz|:|2 EU 4 1)nfs+k+2nsfk72|:|: [U
+1)0= 1+ 1, as required.

Substituting the right side of expression (11.2i) for |
inF = I + 1)ns"*"2[] we get

F = D173+k+2(2[[(3 _ k _ 3)
X (n— 1) — 1(n*** 0+ 1)0

+ nk7512[2n512 +(n—1)(1- S)]

(11.2))

as an explicit sufficient condition for F to produce a
strictly nonblocking U(n).

11.3. U(2) Networks

U(2) networks are important special cases of U(n) net-
works. Thisis because 2 x 2 switching modules are fun-
damental building blocks for many types of networks
reported in the literature. By substituting the value of 2
for n in expression (11.2j), we immediately have the
following result:

A U(2) network is strictly nonblocking if

F=[R°220s — k — 4)(25 %) 0+ 1)0

k—s/2 s/2 - (11.39)
+ 295(2 X 2% + 1 - s).

We can decompose expression (11.3a) into four simpli-

TABLE I. F values for strictly nonblocking U(2) networks

3=s=log,N + 2

log;N + 3 =s=2log;N + 1

F = 3N/2%2 — N/2*2
F = 2"5N/2%2 — N/2°2

s even
s odd

F = 3N/2%2 — log,N + s — 3
F = 2'5N/2%% — log;N + s — 3




fied specific versions corresponding to the value of srela-
tive to k and the parity of s. The logic and manipulations
required to achieve these results are quite straightforward
and are thus omitted. The refinement to be described next
section can improve on some of the values in Table I.

12. A REFINEMENT

In Section 10.1, we mentioned the possibility of over-
counting the number of blocked paths. In this section, we
develop specific conditions that guarantee that the sum
of expressions (9.1a), (9.1b), and (9.1c) does indeed
overcount the maximum number of blocked paths. We
will not attempt to quantify this overcount (perhaps the
topic of another paper), but we will use to advantage the
fact that an overcount has occurred.

By Theorem 4.1i, for 1 = i = j = s, the number of
paths between any stage-(i — 1) link and any stage-j
link is either OM; ;_;/r;0or OM; ;_1/r;00 Consider a U (2)
network and leti = 3andj = s — 2. Then, r; = F2*°*
and Mi,j—l =255 Sif 254 = F, then D\/'iyj,llerZ 1
and there is at least one path between every stage-2 link
and every stage-(s — 2) link.

Our upper bound on the maximum number of blocked
paths assumes that all the paths blocked by entering and
departing intersecting connections are different paths. In
this case, however, if there is at least one path between
every stage-2 link and every stage- (s — 2) link, then that
path will be counted twice in the totalling of blocked
paths contributed by stage-2 link intersecting connections
and stage-(s — 2) intersecting connections. [Both the
stage-2 link and stage-(s — 2) link will count this path
as a blocked path.]

Let s = 2k — 1. Then, from Table I, we have
F = 2™N/2%% — k + s — 3 = k. (Remember that k
= log,N.) From Section 11.2.1, we have (s — 1)/2 as
the value of k giving w. It can be verified that (k — 1) 2% 3
gives the number of blocked paths in Corollary 10.4 (for
k = 3). If an overcount by one has occurred, we need
F23 > (k- 1)2“°% - 1L If F = k — 1, thisinequality
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will be satisfied. Also, from above, 257K 4 = 22k-1-k=4
= 25> F = k — 1 will be satisfied for k = 8.

So, in a U(2) network with k = 8 and s = 2k — 1
stages, avalue of F = log,N — 1 issufficient for astrictly
nonblocking network. This value is one better than that
of Cantor [1] or of Shyy and Lea [4]. (Note that our
value of s includes the first and last fan-out and fan-in
stages and so s = 2k — 1 means only 2k — 3 stages of
2 X 2 switch modules.)

With F = k — 1, each of the 2k — 3 stages has
(k — 1)2%* 2 x 2 switch modules each with four cross-
points. So, the total crosspoint count is (2k — 3)4(k
—1)2*=2(2k — 3)(k — 1)N, thus substantiating our
O(N(log N)?) construction claim in the Introduction.

13. CONCLUSION

EGS networks are interesting because they are very gen-
eral, efficient, and can be constructed for a strictly non-
blocking operation. They include as special cases humer-
ous existing classes of networks. The regularity of the
interconnection pattern admits to very useful mathemati-
cal analyses. This extends to routing algorithms and high-
speed control mechanisms, both of which are beyond the
scope of this aready-lengthy paper.
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