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Abstract: Since Clos gave the first construction of a strictly nonblocking multistage interconnection
network, only a few other constructions have been proposed in almost a half-century. In this paper, we
introduce a constructive class of networks which utilizes crossbars of virtually any size and for which the
sizes can vary from stage to stage. The interconnection between stages is a generalized shuffle pattern.
We derive sufficient conditions for strictly nonblocking operation and suggest the potential for wide
application of these networks by providing several special case results. q 1999 John Wiley & Sons, Inc.
Networks 33: 269–291, 1999

1. INTRODUCTION yan, etc.) . Also, although photonic switching constraints
prompted this work, our results are technology indepen-
dent and, thus, EGS networks should in no way be consid-This work was initially motivated during the process of
ered as being limited to photonic applications.attempting to design efficient photonic nonblocking

EGS networks can exhibit numerous interesting attri-switching networks. Various photonic switching con-
butes including multistage modularity, fault tolerance,straints suggested a need for flexible design capabilities.
and elegant path hunting and control algorithms. In thisIt became apparent that it would be useful to be able to
paper, we primarily focus on sufficient conditions fordesign networks composed of various numbers of stages
which EGS networks are strictly nonblocking for point-of diverse functionality switching modules of (nearly)
to-point connections. As will be presently seen, this is aarbitrary sizes and shapes.
rather large undertaking in itself and will serve to intro-This led to the development of a broad class of net-
duce the reader to some fundamental properties of EGSworks, which we call extended generalized shuffle (EGS)
networks.networks, whose members demonstrate the diversity just

The results concerning nonblocking networks are theo-mentioned while at the same time satisfy a simple in-
retically interesting and, in addition, they serve as pointsterstage interconnection rule. (Formal definitions of these
of departure for the design of low probability blockingnetworks and other terminology used in this introduction
networks. This is important because strictly nonblockingfollow in Section 2.) The generality of EGS networks is
networks are seldom implemented in practice due to costsuch that they include all three-stage Clos networks [2]
and performance considerations. One interesting result toand all the so-called baseline networks [5] (Omega, Ban-
be presented is that the expressions that give the condi-
tions for nonblocking operation are global as opposed to
being specific to particular switching modules, that is,Correspondence to: G. W. Richards; e-mail: gwrichards@lucent.com
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270 RICHARDS AND HWANG

nowhere in these expressions does there exist the ratio of
the number of inlets to the number of outlets of any
switching module in the network. The implication is that
for the most part nonblocking networks can be designed
with arbitrarily sized switching modules.

The nonblocking conditions to be derived will be given
in general terms of the number of inlets and outlets on
the network, the number of inlets and the number of Fig. 1. Switching module representations.
outlets on the switching modules in each stage of the
network, and the number of stages in the network. For
academic comparison, we show that a strictly non- in which a single inlet may be connected to one or more

outlets simultaneously.) A network which allows onlyblocking EGS network with N inlets and N outlets can
be constructed with O(N( log N)2) crosspoints. This is point-to-point connections is said to be strictly non-

blocking if any idle inlet can be connected to any idleasymptotically as good as any construction we know of
[1] , but, perhaps, a more important consideration is outlet, regardless of the other point-to-point connections

existing in the network. Unless otherwise indicated, fromwhether practically sized EGS networks can be efficiently
and conveniently constructed for low (but nonzero) prob- this point on, we will refer to such networks simply as

nonblocking networks.abilities of blocking while meeting the constraints of the
technology being used. We think that the answer to this
question is usually yes. In the next section, we formalize 2.2. Switching Modules
via definitions much of what has been casually mentioned
in this Introduction. A switching module is defined as a device having two

sets of terminals denoted inlets and outlets, plus a set ofSome aspects of our approach may look similar to that
of Lea and Shyy [3, 4] , but there are a number of im- operational states such that for every inlet /outlet pair

there exists at least one operational state in which thatportant fundamental differences. First of all, their con-
struction applies only to k-extra-stage, 0 ° k ° log2N inlet /outlet pair are connected and at least one operational

state in which that inlet /outlet pair are not connected. No0 1, networks using 2 1 2 crossbars in which the first N
stages are a Banyan network and the last k stages are a operational states connect inlets to inlets or outlets to

outlets. Furthermore, an operational state does not neces-mirror image of the first k stages (and other networks
isomorphic to these) . Our construction imposes no con- sarily isolate connected inlet /outlet pairs, that is, a given

inlet can be simultaneously connected to more than onestraints on either the size of the crossbars or the number
of stages. In addition, we employ the same general inter- outlet, and at the same time, a given outlet can be simulta-

neously connected to more than one inlet.connection definition for all stages. Consequently, the
channel graphs of their networks have a special structure Thus, by our definition, a switching module is a device

that has the capability to connect and disconnect all inlet /and are relatively easy to analyze. Our channel graphs
are very general and thus demand a different and more outlet pairs but not necessarily independently. In a subse-

quent paper, we will consider various functional types ofcomprehensive analysis.
switching modules, corresponding to a different connect/
disconnect capability. However, in this paper, we limit
our consideration to that of conventional ‘‘crossbar’’-type2. TERMINOLOGY AND DEFINITIONS
switching modules.

Consider an n 1 m switching module (n inlets and mAs noted in the Introduction, this work was motivated by
constraints imposed by photonic technology on the design outlets) represented equivalently by either an n1m cross-

bar or a complete bipartite graph having two vertex setsof switching networks. We begin by considering the
switching modules from which a switching network is corresponding to the n inlets and m outlets, respectively,

and the nm edges corresponding to the nm crosspointsconstructed, followed by the logical association and inter-
connection of these modules. We then discuss strictly in the n 1 m crossbar. An existing edge in the bipartite

graph corresponds to a closed crosspoint in the crossbar,nonblocking operation, including the concepts of paths
and blocked paths. and a removed edge in the bipartite graph corresponds to

an open crosspoint in the crossbar (see Fig. 1) .
In this type of switching module, crosspoints may be2.1. Nonblocking Operation

opened or closed individually. This is the normal assump-
tion for a crossbar switch and results in a nonblockingWe are interested in networks that are strictly nonblocking

for point-to-point connections. A point-to-point connec- module since any inlet /outlet pair can be connected and
at the same time isolated from any other inlet or outlettion is one that connects a single inlet and a single outlet.

(This is distinguished, e.g., from a multipoint connection by requiring that the only closed crosspoint in any row

847/ 8u26$$0847 05-11-99 16:25:09 netwal W: Networks



EXTENDED GENERALIZED SHUFFLE NETWORKS 271

to both the stage-k and k / 1 switching modules that it
connects. For 1 ° i õ j ° s , let w √ Si and z √ Sj . A
set of j 0 i links, one from each Lk , i ° k õ j , is said
to satisfy the w Ç z chain condition if the stage-i link is
incident to w ; for k Å i , i / 1, . . . , j 0 2, the stage-k
and -k / 1 links are incident to the same stage-k / 1
switching module, and the stage- j 0 1 link is incident to
z . A path between w and z is defined as a set of j 0 i
links that satisfies the w Ç z chain condition, plus the
switching modules that these links connect.

Fig. 2. EGS network h. Any two nonidentical sets of j 0 i links (i.e., two sets
differing by at least one link) that satisfy the w Ç z chain
condition comprise two different paths between w and z .

or column is the one at the intersection of the inlet row Thus, different paths between a given pair of switching
and outlet column of the inlet /outlet pair to be connected. modules may have some, but not all, links in common

and, of course, they may also have no links in common.
The same is true for different paths between different2.3. Multistage Interconnection
pairs of switching modules. The total number P of pathsNetwork (MIN)
between w and z is equal to the number of j 0 i-link sets

A multistage interconnection network (MIN) is an inter- satisfying the w Ç z chain condition, where no two of
connection of stages of switching modules. A stage is a these sets are identical.
set of identical switching modules. Let Si , i Å 1, . . . , s , For network inlet x appearing on a stage-1 switching
denote the i th stage of an s-stage MIN, where Si contains module w and for network outlet y appearing on the stage-
ri modules, each having ni inlets and mi outlets. The N s switching module z , we say that a set of s 0 1 links
Å r1n1 inlets of the switching modules of S1 are the N satisfying the w Ç z chain condition comprises a path
inlets of the MIN and the MÅ rsms outlets of the switching between x and y as well as a path between w and z . The
modules of Ss are the M outlets of the MIN. For i Å 2, channel graph L(x , y) of input x and output y is defined
3, . . . , s , the inlets of the switching modules of Si are as the union of all paths between x and y .
connected by links only to outlets of the switching mod-
ules of Si01 , and for i Å 1, 2, . . . , s 0 1, the outlets of
the switching modules of Si are connected by links only
to inlets of the switching modules of Si/1 . So that all of 2.6. Blocked Paths
these inlets and outlets can be connected, we require that
rimi Å ri/1ni/1 , for 1 ° i ° s 0 1. A connection from inlet x to outlet y via some path p is

established by operating the appropriate crosspoint in
each of the s switching modules (one for each stage) that2.4. Extended Generalized Shuffle
successively connects x , the s 0 1 links of p , and y . Any(EGS) Network
link so involved in a connection is said to be busy. A

An EGS network is simply a MIN with a particularly blocked path between a given input/output pair is one
specified interconnection pattern. Formally, an EGS net- that contains at least one link that is busy from some
work is defined as a MIN in which, for i Å 1, 2, . . . , s , other connection. A path is idle if it contains no such
Si Å the integer set {0, 1, . . . , ri 0 1}, and for i Å 1, busy links.
2, . . . , s 0 1, the switching module a √ Si is connected
to switching module b √ Si/1 if and only if b √ {[ami

/ oi ]modri/1
: oi √ {0, 1, . . . , mi 0 1}}. (Our results

will obviously apply to any isomorphic networks.)
Figures 2 and 3 depict two isomorphic EGS networks.

The only difference between the two is that in Figure 2
all switching modules in each stage are positioned in
numerical order and in Figure 3 they are not.

2.5. Paths

Define Lk , k Å 1, 2, . . . , s 0 1, to be the set of links
connecting the outlets of Sk to the inlets of Sk/1 . We

Fig. 3. EGS network isomorphic to network h.denote l √ Lk as a stage-k link and say that l is incident
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272 RICHARDS AND HWANG

3. THE FUNDAMENTAL PRINCIPLE OF indicate flows of logic progression. Thus, a given logic
module can only be considered after providing results forSTRICTLY NONBLOCKING NETWORKS
the modules which direct arrows to the module in ques-
tion. Our ultimate objective is to provide results for theIn Section 2.1, we defined a strictly nonblocking network

as one in which any idle inlet /outlet pair can be connected row of modules second from the bottom, that is, modules
(4.2a) , (9.1a) , (9.1b), and (9.1c) , because these are theregardless of the other existing connections in the net-

work. In terms of paths, this means that there always components of PATHS ú BLOCKED PATHS.
The results for module (2.3) and the two modulesexists at least one idle path between any idle input/output

pair. Since the number of idle paths between an idle input/ (2.4) have already been provided via the definitions of a
MIN and an EGS network in Section 2. We next consideroutput pair is simply the total number of paths between

that pair minus the number of blocked paths between that modules (4.1i) and (4.2a) to determine a lower bound
on the number of paths between any inlet /outlet pair.pair, we have the following condition which represents

the fundamental principle of strictly nonblocking net-
works:

4. A LOWER BOUND ON PATHSStrictly Nonblocking Necessary Condition:
The number of paths between any inlet /outlet pair

While developing an expression for a lower bound onmust exceed the maximum number of paths which
PATHS, we will find it useful to provide a more generalcan be blocked between that pair.
result on the number of paths between switching modules
in any two stages of an EGS network.If the numbers of paths between all inlet /outlet pairs

differ by only a small amount and if the maximum num-
bers of paths which can be blocked between all inlet /

4.1. Numbers of Paths Between Switchingoutlet pairs also differ by only a small amount, then the
Modules in Different Stagesfollowing condition proves useful:

We will need the following preliminary results:
Strictly Nonblocking Sufficient Condition:

The minimum number of paths between any inlet /
Definition 4.1a. x denotes the largest integer ° x andoutlet pair exceeds the maximum number of paths
is called the floor function of x . x denotes the smallestwhich can be blocked between any inlet /outlet pair.
integer ¢ x and is called the ceiling function of x .

For the sake of brevity, we define
Definition 4.1b. xmodm denotes the smallest nonnegative

PATHS Å the minimum number of paths between remainder when dividing nonnegative integer x by posi-
any inlet /outlet pair. tive integer m . The equivalent mathematical formulation

BLOCKED PATHS Å the maximum number of is xmodm å x 0 mx /m .
paths which can be blocked between any inlet /
outlet pair, Lemma 4.1c. For nonnegative integers w and x and posi-

tive integers y and z , if z divides wy , then (w(xmody))modz
which yields Å (wx)modz .

Strictly Nonblocking Sufficient Condition: Proof. For integers a and b with 0 ° a and 0 ° b
PATHS ú BLOCKED PATHS. ° y 0 1, write x Å ay / b . Then, ( w (xmody ) )modz

Å (wb)modz . Also, (wx)modz Å (way / wb)modz Å (wb)modz ,
Thus, if we can count (determine expressions for) both because z divides wy . j
PATHS and BLOCKED PATHS for EGS networks, we
will have ascertained generalized sufficient conditions for Lemma 4.1d. For any s consecutive integers and some
these networks to be nonblocking. positive integer m , if each integer d of the s integers is

The logic to determine PATHS is relatively straightfor- replaced with m consecutive integers, given by md , md
ward but the logic to determine BLOCKED PATHS is / 1, . . . , md / m 0 1, the resulting ms integers are
multileveled and rather intricate. To aid the reader in consecutive.
following this process, we provide a logic map (Fig. 4) .
We will continually be referring to this map throughout Proof. Consider any two consecutive integers, d and

d / 1, in the original group of s . The smallest integermost of the rest of this paper. The various logic modules
on the map are labeled identically with corresponding replacing d / 1 is md / m which is consecutive with md

/ m 0 1, the largest integer replacing d . jresults from the text for ease of reference. The arrows
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EXTENDED GENERALIZED SHUFFLE NETWORKS 273

Fig. 4. The logic map for strictly nonblocking EGS networks.

0 1 and, thus, the lemma is true for j Å i / 1. We nowDefinition 4.1e. Define Ni , j å ∏ j
kÅi nk and Mi , j

show that if it is true for j Å i / t it is true for j Å iå ∏ j
kÅi mk .

/ t / 1.
We assume that ri Mi ,i/t01 Å ri/tNi/1,i/t . Again, by theLemma 4.1f. In a MIN, for 1 ° i õ j ° s , ri Mi , j01

definition of a MIN, we have that ri/tmi/t Å ri/t/1ni/t/1Å rjNi/1, j .
or mi/t Å (ri/t/1ni/t/1) /ri/t . Thus, we have ri Mi ,i/t01mi/t

Proof. By induction on the stage number. According Å ri Mi ,i/t Å (ri/tNi/1,i/tri/t/1ni/t/1) /ri/t Å ri/t/1Ni/1,i/t/1 ,
which proves the lemma. jto the definition of a MIN, rimi Å ri/1ni/1 for 1 ° i ° s
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274 RICHARDS AND HWANG

Definition 4.1g. For positive integer k , I(k) denotes the modulo rj and that in any brj / c consecutive integers
there are b / 1 integers in each of c different congruenceinteger set {0, 1, . . . , k 0 1}.
classes and b integers in each of the other rj 0 c congru-
ence classes. These b and b / 1 occurrences of differentLemma 4.1h. In an EGS network, for 1 ° i õ j ° s ,
congruence classes correspond directly to b and b / 1switching module w in stage i has paths to a multiset
paths from switching module w in stage i to differentFi , j(w) of switching modules in stage j given by
switching modules in stage j . Since b Å Mi , j01 /rj and
b / 1 Å Mi , j01 /rj , we have proved Theorem 4.1i forFi , j(w) Å {(wMi , j01 / d)modrj

: d √ I(Mi , j01)}.
the switching module cases. The result for links follows
immediately from the consideration that the only pathsProof. By induction on the stage number. By defini-
between a stage-i 0 1 link and a stage- j link are thosetion of an EGS network, switching module w in stage i is
which utilize (on a one-to-one basis) the paths betweenconnected (has paths) to a multiset Fi ,i/1(w) of switching
the stage i and stage- j switching modules to which thesemodules in stage i / 1 given by Fi ,i/1(w) Å {(wmi
links are incident, respectively. j/ oi )modri/1

: oi √ I(mi )}. Thus, the lemma is true for j
Å i / 1. We now show that if it is true for stage j Å i
/ t it is true for stage j Å i / t / 1. 4.2. Lower Bound on the Number of Paths

We assume that Fi ,i/t(w) Å {(wMi ,i/t01 / d)modri/t
: d Between Any Inlet/Outlet Pair

√ I(Mi ,i/t01)}. By definition of an EGS network, each
By substituting 1 for i and s for j in Theorem 4.1i, weof the switching modules in this multiset will have paths
have immediately that the number of paths between anyto mi/t switching modules in stage i / t / 1, resulting
stage-1 switching module and any stage-s switching mod-in a multiset in that stage given by
ule (or, equivalently, the number of paths between any
inlet /outlet pair) is either M1,s01 /rs Å N2,s /r1 or{[mi/t(wMi ,i/t01 / d)modri/t

/ oi/t]modri/t/1 M1,s01 /rs Å N2,s /r1 , which is the same as M1,s /M
Å N1,s /N or M1,s /M Å N1,s /N , because rsms Å M ,: d √ I(Mi ,i/t01) , oi/t √ I(mi/t)}
the total number of network outlets, and r1n1 Å N , theÅ {[wMi ,i/t / mi/td / oi/t]modri/t/1 total number of network inlets. Since these are the only
two possible values, a lower bound on PATHS is provided: d √ I(Mi ,i/t01) , oi/t √ I(mi/t)},
by simply choosing the floor function expression and we
have just provedby Definition 4.1e and Lemma 4.1c (which applies be-

cause ri/t/1 divides mi/tri/t according to the definition of
Theorem 4.2a. PATHS Å M1,s /M Å N1,s /N . (Thea MIN in Section 2.3) . Now, the operation mi/td / oi/t
minimum number of paths between any inlet /outlet pairis the same as that described in Lemma 4.1d. Thus, that
in an EGS network Å M1,s /M Å N1,s /N .)lemma applies and the smallest integer in the resulting

mi/tMi ,i/t01 Å Mi ,i/t consecutive integer set is zero,
An obvious observation is that if M divides M1,s or,occurring when d and oi/t are both zero. Our multiset

equivalently, if N divides N1,s , then M1,s /M Å N1,s /Nthus becomes {[wMi ,i/t / d ]modri/t/1
: d √ I (Mi ,i/t )}

Å M1,s /M Å N1,s /N Å M1,s /M Å N1,s /N , and this isÅ Fi ,i/t/1(w) , which proves the lemma. j
the single value for the number of paths between any
inlet /outlet pair. In most practical networks (for unifor-Theorem 4.1i. In an EGS network, for 1 ° i õ j ° s ,
mity’s sake), this will likely be the case. However, ourthe number of paths between any stage-i switching mod-
subsequent theoretical results will not require this condi-ule (or any stage-i 0 1 link) and any stage- j switching
tion. We will be able to establish nonblocking conditionsmodule (or any stage- j link) is either Mi , j01 /r j
for EGS networks which do not have the same numberÅ Ni/1, j/ri  or Mi , j01 /rj Å Ni/1, j/ri .
of paths between all inlet /outlet pairs.

Proof. First, we note that dividing both sides of the
equation in Lemma 4.1f by rirj yields Mi , j01 /rj Å Ni/1, j/
ri . Next, by Lemma 4.1h, we have Fi , j(w) Å {[wMi , j01 5. THE EFFECT OF A SINGLE
/ d]modrj

: d √ I(Mi , j01)}. The expression [wMi , j01 / d] INTERSECTING CONNECTION
(via substitution of all of the possible values of d) repre-
sents a set of Mi , j01 consecutive integers. Write Mi , j01 We have just determined an expression for PATHS and

must now consider BLOCKED PATHS in our search forÅ brj / c , where b and c are integers with 0 ° b and 0
° c ° rj 0 1. Since no two integers in a set of a ° rj the Strictly Nonblocking Sufficient Condition: PATHS

ú BLOCKED PATHS. To start this process, we willconsecutive integers belong to the same congruence class
modulo rj , we must have that in any brj consecutive inte- initially limit our considerations to the number of paths

between a given inlet /outlet pair which can be blockedgers there are exactly b integers in each congruence class
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EXTENDED GENERALIZED SHUFFLE NETWORKS 275

by a single additional connection in an EGS network. paths from li to y . So, there are Bi Fi/1 paths in L(x , y)
This corresponds to Module 5.2 in Figure 4. that include li and all of these paths are blocked by li .

Next, we consider how many additional paths are
blocked by li/1 , the stage-i / 1 intersecting link of C( i ,5.1. Channel Graphs and Intersecting
j) . Using the same logic as above, we have that li/1 ,Connections
considered singly, blocks Bi/1Fi/2 paths. However, this

Recall from Section 2.5 that the channel graph L(x , y) expression includes some paths already blocked by li ,
of inlet x and outlet y is defined as the union of all paths namely, all those paths containing both li and li/1 . Since
between x and y . L(x , y) thus comprises sets of stage-k there are Bi paths from inlet x to li and Fi/2 paths from
links, 1 ° k ° s 0 1. Any of these links may also be in li/1 to outlet y , there are Bi Fi/2 paths in L(x , y) that
the channel graph(s) of other inlet–outlet pairs. Thus, contain both li and li/1 . Thus, the total number of paths
we may find that one or more links of L(x , y) are busy in L(x , y) blocked by li and li/1 is given by Bi Fi/1

due to existing connections in the network. Any such / Bi/1Fi/2 0 Bi Fi/2 .
existing connection that utilizes one or more links of L(x , The logic for three or more contiguous intersecting
y) is said to intersect or be an intersecting connection of links is similar to that for two links in that we want to
L(x , y) . We will frequently shorten this terminology to determine how many additional paths are blocked by each
intersecting connection when the reference to L(x , y) is additional intersecting link. Theoretically, for k ¢ i / 2,
clear. when we compute the number of additional paths blocked

A link which is common to an intersecting connection by lk , we can start with BkFk/1 ( the number of paths
and L(x , y) is called an intersecting link. The set of blocked by lk , considered singly) and then subtract the
intersecting links associated with a given intersecting con- number of blocked paths included in this expression that
nection are consecutive in stage number. To see why this have already been tabulated for li through lk01 , namely,
is so, assume to the contrary that for i õ k õ j the stages- all the paths containing both lk and any of the intersecting
i and - j links of an intersecting connection are intersecting links li through lk01 . However, at this point, we introduce
links but the stage-k link is not. We then have an immedi- a simplifying approximation by subtracting only the
ate contradiction because there is a path from x to the Bk01Fk/1 paths containing both lk and lk01 . As we shall
stage-i link [ from the definition of L(x , y)] , a path from subsequently see, this approximation greatly facilitates
the stage-i link to the stage- j link that includes the stage-k our analysis and, fortunately, has very little effect on the
link (this being part of the overall path of the intersecting

sufficient nonblocking conditions for most practical EGS
connection), and, finally, a path from the stage- j link to

networks.
y [again from the definition of L(x , y)] . Thus, the stage-

The reason this latter point is true is that usually therek link is part of a path from x to y and must be included
are very few, if any, blocked paths that do not containin L(x , y) .
lk01 but do contain lk and any of the links li to lk02 . TheFor an intersecting connection, if i is the smallest stage
only way any such blocked paths could exist would benumber intersecting link and j 0 1 is the largest, we say
if there were at least one path from any of the links lithat the intersecting connection enters the channel graph
through lk02 to lk that did not include lk01 . By TheoremL(x , y) at stage i and departs at stage j , corresponding
4.1i, this cannot be true unless Mi ,k01 /rk Å Ni/1,k /ri ú 1.to the switching module stage numbers defining the
(Later, we will consider this situation in producing aboundaries of the intersecting links. We denote such an
refinement on the sufficient nonblocking condition.)intersecting connection as C( i , j) .

Since the described approximation counts all blocked
paths at least once, it may be used in the determination

5.2. Paths Blocked by a Single Intersecting of an upper bound on the total number of paths blocked
Connection by a single intersecting connection. From above, we have

that Bi Fi/1 / Bi/1Fi/2 0 Bi Fi/2 paths are blocked by liIn an EGS network, let us identify the stage-k link ( i
and li/1 , and for i / 2 ° k ° j 0 1, we will add BkFk/1° k° j 0 1) of C( i , j) as lk . Let Bk represent the number
0 Bk01Fk/1 blocked paths for each lk . Thus, an upperof paths from inlet x to lk . From Theorem 4.1i, we know
bound on the number of paths blocked by C( i , j) is giventhat Bk is either N1,k /N or N1,k /N . Similarly, let Fk/1

by ( j01
kÅi BkFk/1 0 ( j02

kÅi BkFk/2 , which can be rewrittenrepresent the number of paths from lk to outlet y . Again,
as ( j02

kÅi Bk (Fk/1 0 Fk/2 ) / Bj01 Fj or as ( j01
kÅi/1 (Bkby Theorem 4.1i, we know that Fk/1 is either Mk/1,s /M

0 Bk01)Fk/1 / Bi Fi/1 . We know there is a path from lkor Mk/1,s /M .
to lk/1 because these links are both included in C( i , j) .Recall from Section 2.6 that a blocked path between x
Therefore, (Fk/1 0 Fk/2) is nonnegative because everyand y is one that contains at least one link that is busy from
path from lk/1 to y is necessarily a part of some pathsome other connection. An intersecting link is such a link.
from lk to y . Furthermore, since the number of pathsConsider the stage-i intersecting link li of intersecting con-

nection C(i , j). There are Bi paths from x to li and Fi/1 between any two entities in a network can never be less
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than zero, Fj is also nonnegative. Thus, it is evident that mation or product series does not exist because the begin-
ning index exceeds the terminating index, the summation( j02

kÅi Bk(Fk/1 0 Fk/2) / Bj01Fj has a maximum value if
has a value of 0 and the product has a value of 1. Simi-each Bl is replaced by N1,l/N . Applying similar logic, we
larly, individual terms in a summation or product seriesfind that ( j01

kÅi/1 (Bk 0 Bk01)Fk/1 / Bi Fi/1 has a maximum
are given values of 0 or 1, respectively, if those individualvalue if each Fl is replaced by Ml ,s /M . Thus, we have
terms do not exist. This convention achieves the obviousthe result that B[C(i , j)], an upper bound on the number
desired result of not changing summation or product totalsof paths blocked by C(i, j), is given by
if nonexistent terms are encountered.)

There are three terms in the third line of Eq. (5.3a) .
B[C( i , j)] Å ∑

j01

kÅi

N1,k

N

Mk/1,s

M The first term is a function of various network parameters
and the entry stage i . The last two terms are functions of
various network parameters and the departure stage j .

0 ∑
j02

kÅi

N1,k

N

Mk/2,s

M
.

(5.2a)

Thus, the blocked-path contribution of an intersecting-
connection entry point is independent of the departure
point and vice versa. This means that any two feasible

5.3. Some Simplifying Observations sets of connections that have identical distributions of
entry points and departure points will have identical upperLet us consider for a moment how we might use the informa-
bounds on the total number of paths blocked, as deter-tion in Eq. (5.2a). This expression clearly indicates that the
mined by Eq. (5.3a) . This is an extremely important andnumber of paths blocked by a single intersecting connection
fortunate result because it removes the need to associatedepends on its entry and departure points. Thus, we will
the entry and departure points of a given intersectingeventually have to consider the numbers of connections that
connection. We need only be concerned with entry andcan enter and depart a channel graph at the various stages in
departure point distributions and not the specifics of thethe network. Our task would seem to be extremely difficult if
connection sets yielding these distributions.we needed to consider all of the possible ways that various

We can simplify Eq. (5.3a) via some relevant defini-connections could intersect a channel graph. Fortunately,
tions and observations. Define t to be the largest stagethis will not be necessary as we now explain.
number satisfying N1,t /N Å 1 and define u to be theLet us rewrite Eq. (5.2a) by adding and subtracting
smallest stage number satisfying Mu,s /M Å 1. (Notethe remaining terms through stage s for both summations.
that since N1,1 Å n1 ° N and Ms ,s Å ms ° M both t andThe result is
u exist.) According to the definition of t , we have that
N1,t/1 /N ú 1. This implies that all inlets have at least
one path to every stage-t / 1 switching module. Now, ifB[C( i , j)] Å ∑

s

kÅi

N1,k

N

Mk/1,s

M the value of i in C( i , j) were greater than t / 1, then,
according to the definition of C( i , j) , its stage-t / 1 link
(lt/1) would not intersect L(x , y) . But lt/1 must intersect0 ∑

s

kÅi

N1,k

N

Mk/2,s

M L(x , y) because there is at least one path from x to all
stage-t / 1 links and there is a path from lt/1 to the
stage-i link of C( i , j) [both links being part of C( i , j)]

0 ∑
s

kÅj

N1,k

N

Mk/1,s

M and a path from the stage-i link of C( i , j) to y [because
C( i , j) intersects L(x , y)] . Therefore, C( i , j) must have
i ° t / 1. Using similar logic, we can determine that j

/ ∑
s

kÅj01

N1,k

N

Mk/2,s

M
(5.3a) ¢ u 0 1.

The term ( s
kÅj N1,k /N (Mk/1,s /M 0 Mk/2,s /M) in

Eq. (5.3a) has u ° j / 1 Å min{k / 1} õ min{k / 2}.
Thus, in this term, all Mk/1,s /M Å Mk/2,s /M Å 1 and,Å ∑

s

kÅi

N1,k

N S Mk/1,s

M
0 Mk/2,s

M D
therefore, the entire term equals 0. Additionally, the sec-
ond term of Eq. (5.3a) has Mj/1,s /M Å 1 because u
° j / 1. So, we now have

/ N1, j01

N

Mj/1,s

M B[C( i , j)]

Å ∑
s

kÅi

N1,k

N S Mk/1,s

M
0 Mk/2,s

M D (5.3b)0 ∑
s

kÅj

N1,k

N S Mk/1,s

M
0 Mk/2,s

M D .

(We should note that here and throughout the paper we / N1, j01

N
.

adopt the usual convention that, in the event that a sum-
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Next, we add and subtract terms for k Å i 0 1 in the
B[C( i , j)] Å Mi/1,s

Msummation, yielding

B[C( i , j)] Å ∑
s

kÅi01

N1,k

N / N1, j01

N
/ ∑

u02

kÅt/1

N1,k

N
(5.3f)

1 S Mk/1,s

M
0 Mk/2,s

M D
(5.3c)

1 S Mk/1,s

M
0 Mk/2,s

M D 0 Mt/2,s

M
.

5.4. Discussion
/ N1, j01

N
0 N1,i01

N Equation (5.3f) is a very important intermediate result in
our development of sufficient conditions for nonblocking
EGS networks. When we arrived at Eq. (5.3a) , we were

1 S Mi ,s

M
0 Mi/1,s

M D . able to demonstrate the separability of the blocked-path
contributions of the entry point and departure point of
an intersecting connection. This was because every term
depended on either i or j , but not on both. In Eq. (5.3f) ,

Now, since i 0 1 ° t and N1,k /N Å 1 for all k ° t , we again no term depends on both i and j , and the terms that
have depend on them individually are greatly simplified. In

addition, in Eq. (5.3f) , we (surprisingly?) find terms that
depend on neither i nor j . This means that for any given

B[C( i , j)] EGS network there is a computable constant to be added
to the upper-bound calculation for blocked paths for every
intersecting connection. For many practical EGS net-
works, this constant will be found to have a value of
minus 1, thus making Eq. (5.3f) much easier to use than
might be first evident.

5.5. Examples
At this juncture, it would probably be helpful to the reader

Å ∑
t

kÅi01
S Mk/1,s

M
0 Mk/2,s

M D
/ ∑

s

kÅt/1

N1,k

N S Mk/1,s

M
0 Mk/2,s

M D
if we paused to consider some examples of the number
of paths between inlets and outlets in an EGS network/ N1, j01

N
/ Mi/1,s

M
0 Mi ,s

M
.

(5.3d)

and the numbers of these paths which can be blocked
due to other connections. After these examples, we will
continue our development of nonblocking conditions.

In the summation ( t
kÅi01 (Mk/1,s /M 0 Mk/2,s /M) , al- Figure 5(a) illustrates a channel graph L(x , y) of Net-

ternate terms cancel each other, except for the first and work h shown in Figure 2. Recall that L(x , y) is defined
last terms, yielding Mi ,s /M 0 Mt/2,s /M . Since the as the union of all paths between some inlet x and outlet
first of these two terms cancels the last term in Eq. (5.3d), y . In this instance, x is an inlet appearing on switch 4 in
we have stage 1 and y is an outlet appearing on switch 2 in stage

4. [Stage numbers are indicated in parentheses along the
top of Fig. 5(a) .] L(x , y) results from deleting all

B[C( i , j)] Å Mi/1,s

M switches and links in Figure 2 that are not part of any
path between x and y .

In Section 4.2, we observed that if M divides M1,s then
there is a single value for the number of paths between/ N1, j01

N
/ ∑

s

kÅt/1

N1,k

N
(5.3e)

any inlet /outlet pair as given by M1,s /M . In network h,
M1,s Å 3 1 6 1 3 1 m4 Å 54m4 and M Å 9m4 . Therefore,
M1,s /M Å 54m4 /9m4 Å 6, which is the number of paths

1 S Mk/1,s

M
0 Mk/2,s

M D 0 Mt/2,s

M
. that we observe between x and y above. We can uniquely

identify a particular path with a quadruplet of switch mod-
ule numbers (one number for each module successively

Now, for k ¢ u 0 1, we have Mk/1,s /M Å Mk/2,s /M employed in the path from stages 1 through 4). The six
paths between x and y are thus given by (4, 0, 0, 2) , (4,Å 1 and, therefore, Eq. (5.3e) finally becomes
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have M Å 9m4 , M3,4 Å 3m4 , and M2,4 Å 6 1 3m4 and,
therefore, that u Å 3. Thus, the summation term in Eq.
(5.3f) is equal to 0 because its lowest indexing value t
/ 1 Å 3 is greater than its highest indexing value u 0 2
Å 1. Additionally, the last term in Eq. (5.3f) has a value
of 1 because Mt/2,4 Å M4,4 Å m4 õ 4m4 Å M . Therefore,
Eq. (5.3f) reduces to

B[C( i , j)] Å Mi/1,4

M
/ N1, j01

N
0 1. (5.5a)

(a)

A sample calculation:

B[C(1, 3)] Å M2,4

M
/ N1,2

N
0 1

Å 6 1 3m4

9m4

/ 4n1

8n1

0 1 Å 2 / 1 0 1 Å 2.

Referring to Figure 5(a), it is easily verified that the
example C(1, 3) intersecting connection (4, 1, 6) blocks

(b) the two paths (4, 1, 6, 2) and (4, 1, 9, 2). It is also straight-
forward to verify in Figure 5(a) that every C(1, 3) inter-
secting connection blocks exactly two paths, thus substanti-

Fig. 5. (a ) A channel graph L (x , y ) of network h. (b) A chan- ating our above calculation that B[C(1, 3)] Å 2.
nel graph L (x , y ) of network h.

Since B[C( i , j)] is an upper bound on the number of
paths blocked by C( i , j) , we have, in general, the possi-
bility that one or more C( i , j) intersecting connections0, 3, 2) , (4, 1, 6, 2) , (4, 1, 9, 2) , (4, 2, 0, 2) , and (4,
blocks fewer than B[C( i , j)] paths (in L(x , y) . As an2, 3, 2) .
example of this, we first calculate thatAn intersecting connection C(i , j) of L(x , y) can enter

L(x , y) at stage i Å 1, 2, or 3 and depart at stage j Å 2, 3,
4 with the additional proviso that i õ j . Thus, there are six
possibilities for C(i, j), namely, C(1, 2), C(1, 3), C(1,

B[C(1, 4)] Å M2,4

M
/ N1,3

N
0 1

4), C(2, 3), C(2, 4), and C(3, 4). Note that such identifiers
Å 6 1 3m4

9m4

/ 3 1 4n1

8n1

0 1do not indicate specific intersecting connections but rather
refer to any intersecting connection entering at stage i and
departing at stage j . We may uniquely identify a particular Å 2 / 2 0 1 Å 3.
intersecting connection of type C(i , j) in a fashion similar
to the path identifiers in the previous paragraph, that is, with In Figure 5(b), we can observe that the C(1, 4) inter-
the switch module numbers employed successively from secting connection (4, 0, 3, 2) does indeed block the
stages i to j . Thus, for example, the C(2, 3) intersecting maximum of three paths, namely, (4, 0, 0, 2) , (4, 0, 3,
connections are (0, 0), (0, 3), (1, 6), (1, 9), (2, 0), and 2), and (4, 2, 3, 2) . However, the C(1, 4) intersecting
(2, 3). Figure 5(b) highlights path (4, 0, 3, 2) and C(2, connection (4, 1, 6, 2) blocks only two paths: (4, 1, 6,
3) intersecting connection (2, 0). [We note that (4, 0, 3, 2) and (4, 1, 9, 2) .
2) could alternatively be interpreted as a C(1, 4) intersecting Having completed these examples of paths and blocked
connection between an inlet other than x and an outlet other paths, we now return to the general development of non-
than y on the stage-1 switch 4 and the stage-4 switch 2, blocking conditions. We next consider a very important
respectively.] attribute of EGS networks that is crucial in the ability to

Next, we will consider B[C( i , j)] [an upper bound on construct efficient nonblocking networks.
the number of paths blocked by C( i , j)] as given by Eq.
(5.3f) . In Section 5.3, we defined t to be the largest stage
number satisfying N1,t /N Å 1 and u to be the smallest 6. THE FORWARD–BACKWARD
stage number satisfying Mu,s /M Å 1. INVARIANCE PROPERTY

From Figure 2, we see that N Å 8n1 , N1,2 Å 4n1 , and
N1,3 Å 3 1 4n1 and, therefore, that t Å 2. Similarly, we We will use the following preliminary results:
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6.1. Two Lemmas

Lemma 6.1a. If y is a positive integer, then x /y
Å x /y .

Proof. Represent x Å ay / b , where a is an integer
and 0 ° b õ y . Since 0 ° b ° b õ y , we have b /

Å wMi , j01 / d 0 rj
w / d /Mi , j01

rj/Mi , j01

Å wMi , j01 / d 0 rj
w / d /Mi , j01

rj/Mi , j01

(by Lemma 6.1a)

Å wMi , j01 / d 0 rj
w

rj/Mi , j01
y Å b /y Å 0. Thus,

Å wMi , j01 / d 0 rj
wMi , j01

rj

Å {(wMi , j01)modrj
/ d :d √ I(Mi , j01)}.

Now consider a partition of Si composed of ri /Ni/1, j

subsets (R0 , R1 , . . . , Rri /Ni/1, j01) each of cardinality Ni/1, j ,

x
y

Å ay / b
y

Å ay / b
y

Å a / b
y

Å a / b

y
where subset Ra is given by

Å ay / b

y
Å x

y
.

j
RaÅ H bri

Ni/1, j

/ a : b√ I(Ni/1, j)J for a√ IS ri

Ni/1, j
D .

Lemma 6.1b. In a MIN, for 1 ° i õ h õ j ° s , (1) if
Mi , j01 divides rj , then Mi ,h01 divides rh , and (2) if Ni/1, j

divides ri , then Nh/1, j divides rh . Then,

Proof. For Case (1) , applying Lemma 4.1f twice we Fi , j( Ra) Å {(RaMi , j01)modrj
/ d :d √ I(Mi , j01)}

have

Å S bri Mi , j01

Ni/1, j

/ aMi , j01D
modrj

/ drh

Mi ,h01

Å ri

Ni/1,h

Å rjNi/1, j

Mi , j01Ni/1,h

,

Å (brj / aMi , j01)modrj
/ d

which equals (rj/Mi , j01)Nh/1, j , the product of two inte-
Å (aMi , j01)modrj

/ dgers. Similarly, for Case (2) , applying Lemma 4.1f twice
we have Å {aMi , j01 / d : d √ I(Mi , j01)},

becauserh

Nh/1, j

Å rj

Mh , j01

Å ri Mi , j01

Ni/1, jMh , j01

,

aMi , j01 õ S ri

Ni/1, j
DMi , j01 Å rj .which equals (ri /Ni/1, j)Mi ,h01 , the product of two in-

tegers. j

Thus, Fi , j( Ra) is invariant to the selection of b√ I(Ni/1, j) ,
6.2. The Forward–Backward that is, Fi , j(a) Å Fi , j(b) for any two elements a and b
Invariance Theorem of Ra .

Now, for a*, a9 √ I(ri /Ni/1, j ) , where a * / 1 ° a 9,
the largest value of Fi , j( Ra =) Å a *Mi , j01 / (Mi , j01 0 1)

Theorem 6.2. In an EGS network, for 1 ° i õ j ° s , and the smallest value of Fi , j( Ra 0) Å a 9Mi , j01 / 0 ¢ (a *
if Mi , j01 divides rj (or, equivalently, Ni/1, j divides ri ) , / 1)Mi , j01 , which is larger than the largest value of
then for w x £, either Fi , j(w) Å Fi , j(£) or Fi , j(w) Fi , j( Ra =) . Thus, none of the values of Fi , j( Ra =) can be
> Fi , j(£) Å M. the same as any of the values of Fi , j( Ra 0) .

The theorem is now proven because, for w x £, if wProof.
and £ are in the same subset Ra , then Fi , j(w) Å Fi , j(£) .
Also, if w and £ are in different subsets, then Fi , j(w)
> Fi , j(£) Å M. j

Fi , j(w) Å {(wMi , j01 / d)modrj
: d √ I(Mi , j01)}

(from Lemma 4.1h)

6.3. DiscussionÅ wMi , j01 / d 0 rj
wMi , j01 / d

rj For ease of discussion, in any EGS network in which, for
1 ° i õ j ° s , Mi , j01 divides rj (or, equivalently, Ni/1, j(from Definition 4.1b)
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divides ri ) , we will say that the division condition holds secting connection in which the blocked-path contribu-
tions of the intersecting-connection entry point and depar-for stages i through j . From Lemma 6.1b, it follows imme-

diately that, if the division condition holds for stages i ture point are independent of each other. Thus, to deter-
mine an upper bound on the number of paths blocked bythrough j , it also holds for stages g through h , where i

° g õ h ° j . a group of intersecting connections, we need only be
concerned with their entry and departure point distribu-From Theorem 4.1, we know that the number of paths

between any stage-i switching module and any stage- j tions. (We do not care which entry point and departure
point are associated with any particular intersecting con-switching module is either Mi , j01 /rj or Mi , j01 /rj . If

Mi , j01 divides rj , then Mi , j01 ° rj and the maximum num- nection.) We will, however, need to know the maximum
number of connections that can intersect channel graphber of paths between any stage-i switching module and

any stage- j switching module is one. Therefore, in Theo- L(x , y) . We identify this value as v.
rem 6.2, Fi , j(w) will have only single occurrences of any
element. We thus recast the essence of Theorem 6.2 as
follows: 7.1. The Role of the Forward–Backward

Invariance PropertyThe Forward–Backward Invariance Property:
In any EGS network in which the division condition Consider an intersecting connection between some inlet
holds for stages i through j , there exists a partition x* x x and some outlet y * x y that enters L(x , y) at stage
Pi of Si composed of ri /Ni/1, j Å rj/Mi , j01 subsets, i , where 1 ° i ° k ° s . Since every stage-i switching
each of cardinality Ni/1, j , and a partition Pj of Sj module in L(x , y) has at least one path to at least one
composed of ri /Ni/1, j Å rj/Mi , j01 subsets, each of stage-k switching module in L(x , y) , there is at least one
cardinality Mi , j01 , where, for each subset r of Pi , path from x * to some stage-k switching module in L(x ,
there is a corresponding subset s of Pj , such that (1) y) . Thus, if there are no paths from a given inlet to
each switching module in r has a single path to every any stage-k switching modules of L(x , y) , then that inlet
switching module in s (and no paths to any other cannot be part of an intersecting connection that enters
switching modules in stage j) and (2) each switching L(x , y) from stages 1 through k .
module in s has a single path to every switching Now suppose that the division condition (and, hence,
module in r (and no paths to any other switching the Forward–Backward Invariance Property) holds for
modules in stage i) . stages 1 through k . Then, the stage-1 switch, on which

idle inlet x appears, is a member of a subset r (of cardinal-The crucial importance of the Forward–Backward Invari-
ity N2,k) of S1 , where each switching module in r has aance Property in the construction of nonblocking net-
single path to every switching module in some subset sworks will become evident in the next few sections.
of Sk (and no paths to any other switching modules in
stage k) . Thus, all stage-k switching modules in L(x ,6.4. Example
y) must be members of s. Additionally, each switchingFigure 6 illustrates an EGS network and highlights all of
module in s has a single path to every switching modulethe paths of a subset pair (r, s) of 9 switching modules
in r (and no paths to any other switching modules infrom the second stage and 4 switching modules from the
stage 1). Therefore, since each of the switching modulesfourth stage.
of r has n1 inlets, all of the stage-k switching modules inThe Forward–Backward Invariance Property applies
L(x , y) have paths to the same set of n1 1 N2,k Å N1,khere for stages 2 through 4 because m2m3 Å 2 1 2 Å 4
inlets (and paths to no other inlets) . Removing x fromwhich divides r4 Å 12 (or, equivalently, n3n4 Å 3 1 3 Å
consideration, we have that at most N1,k 0 1 inlets have9 which divides r2 Å 27). We note in passing that the
paths to any stage-k switches of L(x , y) . Using this inForward–Backward Invariance Property may hold for
conjunction with the result from the previous paragraphsome successive stages in a network and not hold for
gives N1,k 0 1 as an upper bound on the total number ofothers. For example, since m1m2 Å 6 1 2 Å 12 does not
intersecting connections that can enter L(x , y) fromdivide r3 Å 18 and m3m4 Å 2 1 5 Å 10 does not divide
stages 1 through k . [An additional observation, which wer5 Å 15, the property does not hold for stages 1 through
will use a little later, is that none of these N1,k 0 1 inlets3 for stages 3 through 5, but as we have just seen, it does
can be associated with an intersecting connection thathold for stages 2 through 4.
enters after stage k . If such an intersecting connection
did exist, its stage-k switching module d would not be a7. AN UPPER BOUND ON THE NUMBER
part of L(x , y) . But since all of the N1,k inlets ( includingOF INTERSECTING CONNECTIONS
x) have paths to the same stage-k switching modules,OF A CHANNEL GRAPH
there is a path from x to d . Also, there is also a path from
d to y via the portion of the intersecting connection fromIn Section 5.3, we established an expression for an upper

bound on the number of paths blocked by a single inter- d to the entry point and thence via L(x , y) . Thus, there
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Fig. 6. Forward–Backward Invariance Property ( for stages 2 through 4).

is a path from x to y that includes d and so d must be in k through s . Let us momentarily focus on stage k , (1 °
k ° s 0 2), to understand its role in establishing v.L(x , y) , a contradiction.]

By definition, an intersecting connection must utilizeTwo important consequences follow from these obser-
one or more links of L(x , y) . This implies that an inter-vations: First, the analysis is simplified because the num-
secting connection which enters at stage i cannot departbers of switching modules in stages 1 through k in L(x ,
any sooner than stage i / 1, that is, it must at leasty) do not have to be considered. Second, and far more
utilize a stage-i link. Thus, we have that at most N1,k 0 1importantly, the maximum number of intersecting con-
intersecting connections can utilize stage-1 links throughnections entering from stages 1 through k is potentially
stage-k links of L(x , y) (as limited by the maximummuch smaller than might otherwise be the case if the
number of connections that can enter from stages 1Forward–Backward Invariance Property did not limit the
through k) and at most Mk/2,s0 1 intersecting connectionsnumber of inlets having paths to any stage-k switches of
can utilize stage-k / 1 links through stage-s 0 1 links ofL(x , y) . This is one of the main reasons that we can
L(x , y) (as limited by the maximum number of connec-design efficient nonblocking EGS networks.
tions that can depart from stages k / 2 through s) . AnFor the moment, we will proceed on the assumption
upper bound on the number of intersecting connectionsthat the division condition holds, wherever we would like
is obtained by assuming that the N1,k 0 1 entering connec-it to hold, throughout a network. After establishing an
tions and the Mk/2,s0 1 departing connections are disjoint,expression for an upper bound on the number of inter-
that is, all of the N1,k 0 1 entering connections depart atsecting connections (v) , we will be able to replace this
or before stage k / 1 and all of the Mk/2,s 0 1 departingrather nebulous assumption with a precise sufficient con-
connections enter at or after stage k / 1.dition.

Thus, considering only the perspective of stage k , there
are at most (N1,k 0 1) / (Mk/2,s 0 1) Å N1,k / Mk/2,s 0 2
connections that can intersect L(x , y) . This expression is7.2. Entering and Departing Connections
valid for (1 ° k ° s 0 2), since it assumes that inter-

We have from above that at most N1,k 0 1 intersecting secting connections can enter as early as stage k and
connections can enter L(x , y) from stages 1 through k depart as late as stage k / 2. Considering all of the possi-
and, using similar logic, we can establish that at most ble values for k , we have that at most min1°k°s02{N1,k

/ Mk/2,s 0 2} connections can intersect L(x , y) .Mk ,s 0 1 intersecting connections can depart from stages
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7.3. An Expression for v Plus blocked paths, subject to the constraints imposed by Con-
a Sufficient Condition dition 7.3b and v.

Since the number of intersecting connections clearly can-
not exceed min{N 0 1, M 0 1}, we immediately have 8. ALLOCATION OF THE ENTRY
the following expression for v: AND DEPARTURE POINTS OF

THE INTERSECTING CONNECTIONS
vÅ min

1°k°s02
{N1,k/Mk/2,s0 2, N0 1, M0 1}. (7.3a)

We first determine the allocations assuming that Condi-
tion 7.3b holds and that there are v intersecting connec-

The development of this expression assumed that the divi- tions. Then, we will justify the assumption of v inter-
sion condition held wherever it was necessary to hold. secting connections by formally establishing the intuitive
Where is it possible for the division condition to not hold notion that the maximum number of blocked paths is
and yet maintain the validity of the arguments producing monotonically increasing in the number of intersecting
expression (7.3a)? We claim it is not required for stages connections, that is, any number d õ v of intersecting
1 through l , for any l satisfying N1,l ú v, nor for stages connections cannot maximally block as many paths as
r through s , for any r satisfying Mr,s ú v. can v intersecting connections.

First of all, for the case where v Å min{N 0 1, M
0 1}, the division condition is not required to hold any-
where, because the arguments which employ it yield a 8.1. Aggregate Numbers of Entering
larger value for v than min{N 0 1, M 0 1}. Next, and Departing Connections
consider the case where v Å min1°k°s02{N1,k / Mk/2,s In Section 7.1, we established that at most N1,k 0 1 inlets0 2}. Since N1,k is monotonically nondecreasing in k , the

can be associated with intersecting connections that entervalue of k yielding v must be less than any l satisfying N1,l L(x , y) from stages 1 through k , if the division conditionú v, and, thus, we do not require the division condition
holds for these stages. Assuming that Condition 7.3bto hold for stages 1 through l . Similarly, since Mk ,s is
holds, the division condition will hold for any k such thatmonotonically nonincreasing in k , the value of k / 2
N1,k ° v. For any other value of k ( i.e., when N1,k ú v) ,yielding v must be greater than any r satisfying Mr,s ú v.
there are at most v intersecting connections that can enterThus, we have the following condition which is suffi-
from stages 1 through k . Therefore, we have that at mostcient for expression (7.3a) to be valid:
min{N1,k 0 1, v} intersecting connections can enter from
stages 1 through k . Using similar logic, we find that at

Condition 7.3b. N1,k divides N for N1,k ° v and Mk ,s most min{Mk ,s 0 1, v} intersecting connections can de-
divides M for Mk ,s ° v. part from stages k through s , assuming Condition 7.3b

holds.

7.4. A Review
8.2. Maximizing the Number

Let us pause for a moment to highlight some of our results of Blocked Paths
so far and to see what remains in our quest to establish

We now have expressions for the maximum aggregatethe strictly nonblocking sufficient condition: PATHS
numbers of entering and departing intersecting connec-ú BLOCKED PATHS. (Fig. 4 may be helpful during
tions from stages 1 through k and stages k through s ,this discussion.)
respectively. What we need next is the allocation of theseTheorem 4.2a has given us an expression for PATHS.
intersecting connections on a per stage basis such that weExpression (5.3f) provides an upper bound on blocked
have an upper bound on the total number of blockedpaths per intersecting connection as a separable function
paths. This result will follow immediately upon inspectionof entry point, departure point, plus a constant. Condition
of expression (5.3f) .7.3b gives a sufficient condition for which expression

In this expression, the separable component of the(7.3a) yields v, an upper bound on intersecting connec-
number of blocked paths associated with each intersectingtions.
connection entering at stage i is given by Mi/1,s /M ,What remains is to allocate these v intersecting con-
which is a monotonically nonincreasing function in i .nections according to entry points and departure points
Therefore, an upper bound on the component of the num-and then to combine these allocations with expression
ber of blocked paths associated with entry points will be(5.3f) to calculate an upper bound on the number of
achieved if each stage i has as many as possible enteringblocked paths. The aforementioned allocations must be

such that they produce the largest possible number of intersecting connections, given that each stage k õ i also
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summation, we have that N1,k /N ¢ N1,t/1 /N ¢ 2,meets this objective. Thus, we will assume that min{N1,1

because (as defined in Section 5.3) t is the largest0 1, v} intersecting connections enter at stage 1,
stage number satisfying N1,t /N Å 1. Therefore,min{N1,2 0 1, v} 0 min{N1,1 0 1, v} intersecting con-

nections enter at stage 2, etc., so that we have, in general,
that min{N1,i 0 1, v} 0 min{N1,i01 0 1, v} intersecting
connections enter at stage i .

In expression (5.3f) , the separable component of the
number of blocked paths associated with each intersecting
connection departing at stage j is given by N1, j01 /N ,
which is a monotonically nondecreasing function in j .
Therefore, an upper bound on the component of the num-
ber of blocked paths associated with departure points will
be achieved if each stage j has as many as possible de-
parting intersecting connections, given that each stage k
ú j also meets this objective. This leads to an upper bound

∑
u02

kÅt/1

N1,k

N S Mk/1,s

M
0 Mk/2,s

M D
0 Mt/2,s

M
¢ ∑

u02

kÅt/1

2S Mk/1,s

M
0 Mk/2,s

M D
0 Mt/2,s

M
Å 2

Mt/2,s

M
0 2

Mu,s

M

0 Mt/2,s

M
(from alternate term cancellation)

of min{Mj,s 0 1, v} 0 min{Mj/1,s 0 1, v} intersecting
connections departing at stage j . [We should note that the Å Mt/2,s

M
0 2

Mu,s

M
Å Mt/2,s

Mthird component term in expression (5.3f) is a function of
neither i nor j and so does not affect this discussion.] 0 2 ¢ 2 0 2 Å 0 (by definitions of u and t) .

This proves that expression (5.3f) always has a posi-8.3. Justifying the Assumption of v
tive value, thus justifying our assumption of v inter-Intersecting Connections
secting connections.

In Sections 8.1 and 8.2, we developed expressions for the
allocation of entry and departure points that gives an up-
per bound on the number of blocked paths assuming that 9. AN UPPER BOUND ON
there are a total of v intersecting connections. We now BLOCKED PATHS
show that the assumption of v intersecting connections
is correct, that is, there is no number dõ v of intersecting We are now in a position to combine the results of Section
connections that can maximally block as many paths as 8 with expression (5.3f) to produce the three component
can v intersecting connections. We do this by proving terms of BLOCKED PATHS in Figure 4.
that for any given intersecting connection the upper bound
on the number of blocked paths (as given by expression

9.1. Expressions for the Three Components5.3f) is always positive.
of BLOCKED PATHSOur first observation is that the sum of the first two

terms of expression (5.3f) , that is, Mi/1,s /M / N1, j01 / From Section 8.2, we have (min{N1,i 0 1, v}
N , always has a value of at least 2, since both of these 0 min{N1,i01 0 1, v}) intersecting connections entering
terms always have a value of at least 1. Thus, we need at stage i, and from expression (5.3f), we have Mi/1,s/M
to show that the remaining portion of expression (5.3f) , as the separable blocked path contribution per intersecting

connection entering at stage i . Multiplying these twothat is, ( u02
kÅt/1 N1,k /N (Mk/1,s /M 0 Mk/2,s /M)

terms together and summing for all i , we have0 Mt/2,s /M , never has a value less than minus one.

CASE 1. t / 1 ¢ u 0 1.
∑
s

iÅ1

(min{N1,i 0 1, v}For this case, the first term (the summation term)
has a value of zero because the beginning index ex-
ceeds the terminating index. Additionally, the second
term equals one, since t / 2 ¢ u , and u (as defined 0 min{N1,i01 0 1, v})

Mi/1,s

M

(9.1a)

in Section 5.3) is the smallest stage number satisfying
Mu,s /M Å 1. Thus, the first term minus the second
term equals minus one. as an upper bound on the intersecting connection entry

point contribution of number of blocked paths.
From Section 8.2, we have (min{Mi ,s 0 1, v}CASE 2. t / 1 ° u 0 2.

0 min{Mi/1,s0 1, v}) intersecting connections departingFirst, we note that Mk/1,s /M0 Mk/2,s /M is never
at stage i, and from expression (5.3f), we have N1,i01/Nnegative because Mk/1,s /M is monotonically nonin-

creasing in k . Next, for all k within the limits of the as the separable blocked path contribution per intersecting
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10.1. A Strictly Nonblocking Theoremconnection departing at stage i . Multiplying these two
terms together and summing for all i , we have

Theorem 10.1. An EGS network is strictly nonblocking
∑
s

iÅ1

(min{Mi ,s 0 1, v} for point-to-point connections if N1,k divides N for N1,k °
v and Mk ,s divides M for Mk ,s ° v, where

v Å min
1°k°s02

{N1,k / Mk/2,s 0 2, N 0 1, M 0 1},0 min{Mi/1,s 0 1, v})
N1,i01

N

(9.1b)

and if
as an upper bound on the intersecting connection depar-
ture point contribution of number of blocked paths.

The third component term of BLOCKED PATHS is
M1,s

M
ú ∑

s

iÅ1

(min{N1,i 0 1, v}
simply the product of v and the remaining portion of
expression (5.3f) (a constant value for every intersecting
connection). Thus, we have 0 min{N1,i01 0 1, v})

Mi/1,s

M

vS ∑
u02

kÅt/1

N1,k

N S Mk/1,s

M
0 Mk/2,s

M D / ∑
s

iÅ1

(min{Mi ,s 0 1, v}

0 min{Mi/1,s 0 1, v})
N1,i01

N0 Mt/2,s

M D
(9.1c)

/ vS ∑
u02

kÅt/1

N1,k

N S Mk/1,s

Mfor this component.
We have finally accounted for all of the elements of

Figure 4. Also, since the sum of expressions (9.1a) ,
(9.1b), and (9.1c) is an upper bound on the total number 0 Mk/2,s

M D 0 Mt/2,s

M D ,
of paths blocked in L(x , y) , we have now established
expressions for both PATHS and BLOCKED PATHS.
Thus, we are ready to state the main result of this paper—

where t is the largest stage number satisfying N1,t /Na theorem that gives sufficient conditions for EGS net-
Å 1 and u is the smallest stage number satisfyingworks to be strictly nonblocking for point-to-point con-
Mu,s /M Å 1.nections. Later, we will consider a refinement to our logic

that has the potential to reduce the upper bound on the Review of Proof. According to the Strictly Non-
total number of blocked paths for many practical EGS blocking Sufficient Condition in Section 3.0, we needed
networks. (This refinement is not indicated on Fig. 4.) to show that the minimum number of paths between any

inlet /outlet pair exceeds the maximum number of paths
which could be blocked between any inlet /outlet pair. In
Section 4 (specifically Theorem 4.2a), we established10. THE MAIN RESULT—
that there are at least M1,s /M paths between any inlet /A STRICTLY NONBLOCKING THEOREM
outlet pair. Most of the rest of the paper up to this pointFOR EGS NETWORKS
has been involved in the process of determining an upper
bound on the number of paths which can be blockedWe have already proved the theorem that we are about
between any inlet /outlet pair.to state. That is what the logic map in Figure 4 is all about.

Two results were especially crucial in this endeavor:We will review this logic after presenting the theorem. We
The first was the formulation of expression (5.3f) as anwill also discuss some of the attributes and ramifications
upper bound on the number of paths blocked by a singleof the theorem.
intersecting connection. In developing this expression, aAdditionally, we will show that the theorem includes
simplifying assumption was introduced for those inter-(as a small but important subset) strictly nonblocking
secting connections composed of three or more inter-three-stage Clos networks. We will derive some important
secting links. With this simplification, all blocked pathsspecial case versions of the theorem and provide several

examples. were counted at least once (instead of exactly once), and,
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connection. This will generally not happen unless there
are a relatively large number of stages in the network.

The second assumption is that all of the blocked paths
of all of the intersecting connections are different. This
assumption is implicit in our process of simply adding
the various blocked path components (for v intersecting
connections) to arrive at a total number of blocked paths.
We must be careful here to distinguish that we are not

Fig. 7. Nonblocking EGS network r. talking about the likelihood of all counted blocked paths
being different, but whether or not this is even possible.
As with the first assumption, we are more likely to have
overcounted in a network with a large number of stages.thus, a valid upper bound remained. For most practical
Indeed, a little later, we will describe a refinement thatnetworks, the overcount is either zero or very small, pre-
shows that we have necessarily overcounted in some net-serving the utility of the approximation. However, the
works.most important aspect resulting from this simplifying as-

sumption was that the upper bound became a separable
function of the intersecting connection entry point and 10.2. Observations
departure point, plus a constant. This meant that we did

The first thing that we note about Theorem 10.1 is itsnot have to associate the entry point and departure point
generality. The conditions are in terms of the number ofof any particular intersecting connection. We needed only
inlets and number of outlets (N and M) of the network,to determine the numbers of entering and departing inter-
the number of inlets and number of outlets (ni and mi )secting connections at each stage, such that we maintained
on the switching modules in each stage i of the network,an upper bound on the total number of blocked paths.
and the number of stages (s) of the network. There areThis led to our second crucial result, namely, the For-
no individual constraints on any of these items. There isward–Backward Invariance Theorem (Theorem 6.2), in
no required relationship between N and M . There is nowhich we established that the Forward–Backward Invari-
symmetry required in the network. There is no relation-ance Property holds for stages i through j if the division
ship required between the size of the switching modulescondition holds for stages i through j . The importance of
in one stage and any other stage.this result was that it limited the number of connections

Perhaps the most important aspect of the theorem isthat could intersect channel graph L(x , y) , assuming that
that nowhere does there appear the ratio of any ni to anythe division condition held where necessary.
mi . The implication is that for the most part nonblockingUtilizing this information, we next established v
networks can be designed with arbitrarily sized switching[expression (7.3a) ] , an upper bound on the number
modules. Another way of viewing this situation is thatof intersecting connections. We then allocated v entry
the conditions for nonblocking operation are global aspoints and departure points, guaranteeing that we would
opposed to being specific to particular switching modules.maintain an upper bound on the number of blocked
The intuitive reason for this is that the nonblocking condi-paths which result from multiplying the numbers of
tions were established for the network as a whole andentering and departing intersecting connections at each
not for subsets thereof, that is, nothing was defined orstage with their corresponding blocked-path compo-
constructed recursively. (There are no imbedded strictlynents from expression (5.3f ) .
nonblocking subsets in these networks.)

Due in part to its generality, Theorem 10.1 is ratherA Note on Sufficiency. We have made two assumptions
complex. However, much of the complexity disappearsin this proof that may result in overcounting the maximum
for networks exhibiting various constraints, uniformity,possible number of blocked paths. Thus, we can assert the
and/or symmetry. We will present these simplificationssufficiency, but not the necessity, of the given conditions.
later.However, in many (most?) practical networks, the stated

upper bounds will either be exact or in error by only a
small amount. Let us consider these two assumptions to 10.3. An Example Nonblocking Network
better understand when overcounting is likely to occur:

Figure 7 depicts a five-stage EGS network r that has aThe first assumption is the simplification mentioned
different number of inlets than outlets and different sizeabove regarding the formulation of expression (5.3) . It
switching modules in each stage. We will evaluate thewas noted in Section 5.2 that this approximation can only
various expressions in Theorem 10.1 to see if this networkovercount blocked paths if there are at least two paths

between a pair of intersecting links of an intersecting is strictly nonblocking. We choose this nonuniform and
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Fig. 8. A channel graph L (x , y ) of network r.

nonsymmetric network as our first example so that we that can enter L(x , y) in stages 1 and 2 to the maximum
number of intersecting connections that can depart L(x ,may better understand the general capability of this theo-

rem. In the spirit of nonuniformity, note also the numbers y) in stages 4 and 5. This addition produces an upper
bound by implicitly assuming that the entering and de-of links between stages in this network.

The relevant parameters of the network are N Å 108, parting intersecting connections are all different, that is,
all of the intersecting connections entering at stages 1 andM Å 112, n1 through n5 Å 3, 6, 6, 4, and 11, respectively,

m1 through m5 Å 22, 2, 7, 4, and 4, respectively, and s 2 depart at or before stage 3 and all of the intersecting
connections departing at stages 4 and 5 enter at or afterÅ 5.

We first calculate M1,s /M , the minimum number of stage 3. If this is not so, then one or more of the inter-
secting connections entering at stages 1 or 2 must departpaths between any inlet /outlet pair. We have
at stages 4 or 5, thus resulting in fewer than 32 total
intersecting connections.M1,s

M
Å 22 1 2 1 7 1 4 1 4

112
Å 44 Å 44. Our result that v Å 32 is provisional at this point. We

must additionally verify that N1,k divides N for N1,k ° v
and Mk ,s divides M for Mk ,s ° v. Since N1,3 Å 108 Å NTherefore, there are exactly 44 paths between every inlet /
and M3,5 Å 112 Å M , these division conditions are satis-outlet pair. Figure 8 depicts the channel graph L(x , y)
fied and our result for v is valid. We should note hereof some inlet x and some outlet y of network r. (The
that if both division conditions had not been satisfied, wereader may wish to verify that there are indeed 44 paths
would be unable to establish the nonblocking status ofbetween x and y in this channel graph.)
network r because of a failure to satisfy all of the condi-Next, we need to determine v, the maximum number
tions of Theorem 10.1.of connections that can intersect L(x , y) . We have

Next, we determine stage numbers t and u . Since N1,3

Å 108 Å N õ 432 Å N1,4 , we have t Å 3. Also, sincev Å min
1°k°s02

{N1,k / Mk/2,s 0 2, N 0 1, M 0 1}
M3,5 Å 112 ÅMõ 224 ÅM2,5 , we have u Å 3. Therefore,
t / 1 ú u 0 2 and soÅ min{N1,1 / M3,5 0 2, N1,2 / M4,5 0 2,

N1,3 / M5,5 0 2, 107, 111}
vS ∑

u02

kÅt/1

N1,k

N S Mk/1,s

M
0 Mk/2,s

M DÅ min{3 / 112 0 2, 18 / 16 0 2,

108 / 4 0 2, 107, 111}

Å min{113, 32, 110, 107, 111} Å 32. 0 Mt/2,s

M D Å 32S0 0 M5,5

M D
This limitation on the number of intersecting connec-

tions results when our indexing variable k Å 2. Let us
review the logic employed here. When k Å 2, we are Å 32S0 4

112 D Å 032.
adding the maximum number of intersecting connections
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This example was chosen to illustrate various points.
It is not likely that anyone would ever choose to construct
such a network. However, it is interesting to note that,
even with such ‘‘strange’’ switching module sizes, we
have produced a reasonably efficient network. Using the
number of crosspoints as the conventional complexity
metric, we calculate 3 1 22 1 36 / 6 1 2 1 132 / 6Fig. 9. General three-stage Clos network.
1 7 1 44 / 4 1 4 1 77 / 11 1 4 1 28 Å 8272 as
compared to 108 1 112 Å 12096 for a single-stage cross-
bar switch.Our last step is to determine if

10.4. Corollary to Theorem 10.1M1,s

M
Å 44 ú ∑

s

iÅ1

(min{N1,i 0 1, v}

For many practical EGS networks, it will be the case that
min1°k°s02{N1,k / Mk/2,s 0 2} ° min{N 0 1, M 0 1}.

0 min{N1,i01 0 1, v})
Mi/1,s

M
For such networks, we have the following corollary of
Theorem 10.1:

/ ∑
s

iÅ1
S(min{Mi ,s 0 1, v} Corollary 10.4. If v Å min1°k°s02{N1,k / Mk/2,s 0 2},

then for the value of k giving v, Theorem 10.1 becomes

0 min{Mi/1,s 0 1, v})
N1,i01

N D 0 32. M1,s

M
ú ∑

k

iÅ1

(N1,i 0 N1,i01)
Mi/1,s

M

Evaluating the right side of this expression, we have / ∑
s

iÅk/2

(Mi ,s 0 Mi/1,s)
N1,i01

N
.

[ (2 0 0) 1 2 / (17 0 2) 1 1 / (32 0 17) 1 1
Proof. For the value of k giving v, we must have k

/ (32 0 32) 1 1 / (32 0 32) 1 1] ° t and k / 2 ¢ u , for, otherwise, v Å N1,k / Mk/2,s 0 2
¢ N1,k 0 1 ú N 0 1 and/or v Å N1,k / Mk/2,s 0 2/ [(32 0 32) 1 1 / (32 0 32) 1 1
¢ Mk/2,s 0 1 ú M 0 1, contradicting our assumption on

/ (32 0 15) 1 1 / (15 0 3) 1 1 / (3 0 0) 1 4] v. It follows that u 0 t ° 2. Hence,
0 32 Å (2 1 2 / 15 1 1 / 15 1 1)

∑
u02

kÅt/1

N1,k

N S Mk/1,s

M
0 Mk/2,s

M D/ (17 1 1 / 12 1 1 / 3 1 4) 0 32

Å 34 / 41 0 32 Å 43 õ 44.

Thus, we have at most 43 of the 44 paths between x 0 Mt/2,s

M
Å 0 Mt/2,s

M
Å 01.

and y that can be blocked and so network r is strictly
nonblocking.

The right side of (10.1) can be written asThis calculation assumed that two intersecting connec-
tions entered at stage 1, 15 at stage 2, and 15 at stage 3.
It also assumed that 17 departed at stage 3, 12 at stage
2, and 3 at stage 1. Part of the power of Theorem 10.1
is that the determination of an upper bound on the number
of blocked paths does not require these entrance and de-
parture points be pairwise associated with specific inter-
secting connections.

Earlier we noted the nonuniformity of the numbers of
links between stages in network r. We mention it again
to underscore the generality that it suggests. Observe,
for example, that the minimum number of links occurs

∑
k

iÅ1

[(N1,i 0 1) 0 (N1,i01 0 1)]
Mi/1,s

M

/ ∑
t/1

iÅk/1

(min{N1,i 0 1, v} 0 min{N1,i01 0 1, v})

/ ∑
s

iÅk/2

[(Mi ,s 0 1) 0 (Mi/1,s 0 1)]
N1,i01

M

/ ∑
k/1

iÅu01

(min{Mi ,s 0 1, v} 0 min{Mi/1,s 0 1, v})

between stages 2 and 3. Thus, we do not require the
number of links to be uniform or increasing as we move 0 v Å ∑

k

iÅ1

(N1,i 0 N1,i01)
Mi/1,s

Mtoward the center of the network.
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v Å min
1°k°s02

{N1,k / Mk/2,s 0 2, N 0 1, M 0 1}

Å min{N1,1 / M3,3 0 2, N 0 1, M 0 1}

Å min{n / m 0 2, N 0 1, M 0 1}.

We will verify that N1,k divides N for N1,k ° v and Mk ,s

divides M for Mk ,s ° v for any of these three possible
values of v. Since N1,k is product of integers, if N1,k divides
N for v ° N1,k , then N1, j , ( j õ k) , must also divide N
for N1, j ° v. Now, since v õ N and N1,2 Å n 1 N /n
Å N , the first division condition is satisfied for any possi-
ble value of v. Similarly, the second division condition
is satisfied by the fact that v õ M and N2,3 Å (M /m)
1 m Å M .

Next, we determine stage numbers t and u . Since N1,2

/ min{N1,t/1 0 1, v} 0 min{N1,k 0 1, v}

/ ∑
s

iÅk/2

(Mi ,s 0 Mi/1,s)
N1,i01

N

/ min{Mk01,s 0 1, v} 0 min{Mk/2,s 0 1, v}

0 v Å ∑
k

iÅ1

(N1,i 0 N1,i01)
Mi/1,s

M
/ v

0 (N1,k 0 1) / ∑
s

iÅk/2

(Mi ,s 0 Mi/1,s)
N1, i01

N

/ v 0 (Mk/2,s 0 1) 0 v

Å ∑
k

iÅ1

(N1,i 0 N1,i01)
Mi/1,s

M

Å N , t ¢ 2, and since M2,3 Å M , u ° 2. Therefore, t ¢ 2
/ ∑

s

iÅk/2

(Mi ,s 0 Mi/1,s)
N1,i01

N
, ¢ u c t / 1 ú u 0 2 and t / 2 ú u . Therefore,

vS ∑
u02

kÅt/1

N1,k

N S Mk/1,s

M
0 Mk/2,s

M Dbecause (N1,k 0 1) / (Mk/2,s 0 1) Å v.

0 Mt/2,s

M D Å v(0 0 1) Å 0v.
11. SOME SPECIAL CASES OF
THEOREM 10.1

Next, for i Å 1, 2, or 3, we have Mi/1,s /M Å 1, because
Mi/1,s is monotonically nonincreasing in i and M2,3 Å M .Using Theorem 10.1 and/or Corollary 10.4, we develop
Similarly, for i Å 1, 2, or 3, we have N1,i01 /N Å 1expressions for three important special-case classes of
because N1,i01 is monotonically nondecreasing in i andnetworks. The first of these are the three-stage Clos net-
N1,2 Å N . Therefore,works.

∑
s

iÅ1

(min{N1,i 0 1, v} 0 min{N1,i01 0 1, v})
Mi/1,s

M11.1. Three-Stage Clos Networks

Å ∑
s

iÅ1

(min{N1,i 0 1, v} 0 min{N1,i01 0 1, v})We will show that three-stage Clos networks are a subset
of the class of networks covered by Theorem 10.1. Figure
9 depicts the generalized Clos network in which each Å min{N1,3 0 1, v} 0 min{N1,0 0 1, v}
switching module in the first stage is connected by a

(via alternate term cancellation)
link to each switching module in the second stage and,
similarly, each switching module in the second stage is Å min{rN , v} 0 min{0, v} Å v
connected by a link to every switching module in the
third stage. The Clos network thus satisfies our definition and, similarly,
of a MIN. It also satisfies the definition of an EGS network
in that links from switching modules in stage i may be

∑
s

iÅ1

(min{Mi ,s 0 1, v} 0 min{Mi/1,s 0 1, v})
N1,i01

Nthought of as being connected consecutively to switching
modules in stage i / 1.

We begin by calculating M1,s /M , the minimum num- Å∑
s

iÅ1

(min{Mi ,s 0 1, v} 0 min{Mi/1,s 0 1, v})
ber of paths between any inlet /outlet pair. We have

Å min{M1,3 0 1, v} 0 min{M4,3 0 1, v}M1,s

M
Å r 1 (M /m) 1 m

M
Å r .

(via alternate term cancellation)

Å min{rM 0 1, v} 0 min{0, v} Å v.
Next, we need to determine v, the maximum number

of intersecting connections. We have Having computed all of the PATHS and BLOCKED
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Fig. 10. Generalized uniform network U (n ) .

PATHS terms, we have r ú v / v 0 v Å v Å min{n are when iÅ (s/2)0 1 or (s/2). Checking these two cases,
we get the same result (n / 1)n (s04)/2 0 2. Substituting 2k/ m 0 2, N 0 1, M 0 1} so r ¢ min{n / m 0 1,

N , M}. for s (the maximum value when s is even), we get (n
/ 1)nk02 0 2 õ (n / 1)nk02 Å ((n / 1)/n2)nk õ nkThe usual stated condition for three-stage Clos net-

works to be strictly nonblocking is r ¢ n / m 0 1. Our Å N (because n ¢ 2). Therefore,
more general result includes special cases in which r õ n
/ m 0 1 can suffice. v Å (n / 1)n (s04)/2 0 2 (for s even). (11.2b)

Let us now consider another important special case,
that is, when nearly all of the switching modules are

Expressions (11.2a) and (11.2b) are provisional pendingidentical and the number of inlets and outlets are equal.
verification of the two requisite division conditions of
10.1. This is easy in the case of a uniform network be-

11.2. Uniform Networks cause for any i (1 ° i ° k / 1) N1,i Å ni01 divides nk

Å N ú v and, similarly, for any i (s 0 k ° i ° s) Mi ,sA generalized uniform network is depicted in Figure 10 Å ns0i divides nk Å N ú v.and defined as follows: For (n ¢ 2), a uniform network
We have now established that the value of v satisfiesU(n) is an EGS network with N Å nk inlets and outlets

the condition for Corollary 10.4 to apply (for both oddand s Å s * / 2 stages of switching modules. The first
and even values of s) and thus we can use it in thestage of the network is composed of N 1 1 F switching
remaining analysis of uniform networks.modules. The next s * stages, (1 ° s * ° 2k 0 1), are

each composed of NF /n n 1 n switching modules. The
11.2.2. Equal Entry and Departure Componentslast stage is composed of N F 1 1 switching modules.

We observe that N1, j Å n j01 Å Ms0j/1,s for 2 ° j ° s
11.2.1. Determining v 0 1. Then, for s odd, it is easily verified that the first

(second, etc.) term in ( (s01) /2
iÅ1 (N1,i 0 N1,i01)Mi/1,s /MIn a U(n) , since n1 Å 1 and ni Å n for 2 ° i ° s 0 1,

equals the last (second to last, etc.) term in ( s
iÅ (s/3) /2 (Mi ,sN1,i Å ni01 for 1 ° i ° s 0 1. Similarly, we have Mi ,s

0 Mi/1,s)N1,i01 /N and that these two summations bothÅ ns0t , for 2° i° s . Therefore, min1°i°s02{N1,i /Mi/2,s

have (s 0 3)/2 terms. For i Å 1, N1,i Å N1,i01 Å 1 and0 2} Å min1°i°s02{ni01 / ns0i02 0 2}. We differentiate
thus Corollary 10.4 becomesthis expression with respect to i and for the moment con-

sider i to be real. The result is ni01( ln n) 0 ns0i02( ln n) ,
which we set equal to zero and solve for i , yielding i

Fns0k02ú 2 ∑
(s01) /2

iÅ2

(ni010 ni02) ns0i0k01 . (11.2c)Å (s 0 1)/2.
If s is odd, we have an integer solution for i , which,

when substituted in (ni01 / ns0i02 0 2), yields n (s01)/201

For s even, we write Corollary 10.4 as/ ns0(s01)/202 0 2 Å n (s03)/2 / n (s03)/2 0 2 Å 2n (s03)/2

0 2. In a uniform network, s has a maximum value of 2k
/ 1, and since this expression is monotonically increasing Fns0k02 ú ∑

s /2

iÅ1

(ni01 0 ni02) ns0i0k01
in s , its maximum value is 2n (2k/103)/2 0 2 õ 2n (2k02)/2

Å (2/n)nk ° nk Å N (because n ¢ 2). Therefore,
/ ∑

s

iÅ (s /2)/2

(ni01 0 ni02) ns0i0k01 .
v Å 2n (s03)/2 0 2 (for s odd). (11.2a)

For s even, we subtract (ni01 / ns0i02 0 2) from (n ( i/1)01 The first summation has one more term than the second.
We separate the i Å s /2 term and then, as above, the first/ ns0( i/1)02 0 2), yielding (n 0 1)[ni01 0 ns0i03], which

is easily shown to have a negative value if i õ (s/2) 0 1 (second, etc.) term in the first summation equals the last
(second to last, etc.) term in the second summation. Thisand a positive value if i ú (s/2) 0 1. Therefore, the two

possibilities for a minimum value of (ni01 / ns0i02 0 2) gives
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that the following expression satisfies all four expressionsFns0k02 ú 2 ∑
s /201

iÅ2

(ni01 0 ni02) ns0i0k01
(11.2e, 11.2f, 11.2g, and 11.2h):

/ (ns /201 0 ns /202) ns /20k01 .
(11.2d)

Fns0k02

11.2.3. Simplifying the Entry Point Blocked ú 2 [(s 0 k 0 3)(n 0 1) 0 1]
ns03

N
(11.2i)

Path Expression

We consider two cases: / n (s04) /2[2nsF /2 / (n 0 1)(1 0 sF )] .

CASE 1. 3 ° s ° k / 3.
We can solve expression (11.2i) for F and thus explicitlyIn this case, s 0 i 0 k 0 1 ° (k / 3) 0 i 0 k 0 1
indicate a sufficient condition for F to produce a strictlyÅ 2 0 i , so ns0i0k01 Å 1 for 2 ° i ° s . Thus,
nonblocking U(n) . Let I represent the right side of ex-(11.2c(d)) becomes
pression (11.2i) and note that I is an integer since both
terms composing I are always integers. Thus, we needFns0k02 ú 2(n (s03) /2 0 1) (Fns02) /NÅ Fns0k02ú I or, equivalently, Fns0k02

(for 3 ° s ° k / 3).
(11.2e)

¢ I / 1.
Now, since Fns0k02 ¢ Fns0k02 , we must have

Fns0k02 ¢ I / 1, implying that F ¢ (I / 1)n0s/k/2Fns0k02 ú ns /201 / ns /202 0 2
ú (I / 1)n0s/k/2 0 1 and so F ¢ (I / 1)n0s/k/2.

( for 3 ° s ° k / 3).
(11.2f)

Using this expression for F , we have Fns0k02 ¢  (I
/ 1)n0s/k/2 ns0k02 ¢ (I / 1)n0s/k/2ns0k02 Å (ICASE 2. k / 4 ° s ° 2k / 1.
/ 1) Å I / 1, as required.We note that if i õ s 0 k 0 1 then ns0i0k01

Substituting the right side of expression (11.2i) for IÅ ns0i0k01 and if i ¢ s 0 k 0 1 then ns0i0k01 Å 1.
in F ¢ (I / 1)n0s/k/2, we getTherefore, we split the summations in (11.2c(d)) and

they become
F ¢ n0s/k/2(2[(s 0 k 0 3)

Fns0k02 1 (n 0 1) 0 1](ns0k03) / 1)
ú 2(s 0 k 0 3)(ns0k02 0 ns0k03) / nk0s /2[2nsF /2 / (n 0 1)(1 0 sF )]

(11.2j)

/ 2n (s03) /2 0 2ns0k03

(11.2g)

as an explicit sufficient condition for F to produce a
strictly nonblocking U(n) .(for k / 4 ° s ° 2k / 1) and

Fns0k02 11.3. U (2) Networks
ú 2(s 0 k 0 3)(ns0k02 0 ns0k03) U(2) networks are important special cases of U(n) net-

works. This is because 2 1 2 switching modules are fun-/ ns /201 / ns /202 0 2ns0k03

(11.2h)

damental building blocks for many types of networks
reported in the literature. By substituting the value of 2(for k / 4 ° s ° 2k / 1).
for n in expression (11.2j) , we immediately have the
following result:11.2.4. Combining the Various Cases

A U(2) network is strictly nonblocking if
It can easily be verified that [(s 0 k 0 3)(n 0 1)
0 1](ns0k03) Å 01 if s ° k / 3 and Å[(s 0 k 0 3) F ¢ 20s/k/2(2(s 0 k 0 4)(2 s0k03) / 1)
(n 0 1) 0 1](ns0k03) if s ¢ k / 4. Given that s̈ denotes

/ 2 k0s /2 (2 1 2 sF /2 / 1 0 sF ) .
(11.3a)

the remainder when dividing s by 2, it can also be easily
verified that 2n s̈ /2 / (n 0 1)(1 0 s̈) Å 2n s̈ /2 for s odd
and Ån / 1 for s even. Subsequently, it can be verified We can decompose expression (11.3a) into four simpli-

TABLE I. F values for strictly nonblocking U(2) networks

3 ° s ° log2N / 2 log2N / 3 ° s ° 2log2N / 1

s even F ¢ 3N/2s/2 0 N/2s02 F ¢ 3N/2s/2 0 log2N / s 0 3
s odd F ¢ 21.5N/2s/2 0 N/2s02 F ¢ 21.5N/2s/2 0 log2N / s 0 3
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fied specific versions corresponding to the value of s rela- will be satisfied. Also, from above, 2 s0k04 Å 22k010k04

Å 2 k05 ú F Å k 0 1 will be satisfied for k ¢ 8.tive to k and the parity of s . The logic and manipulations
required to achieve these results are quite straightforward So, in a U(2) network with k ¢ 8 and s Å 2k 0 1

stages, a value of F Å log2N 0 1 is sufficient for a strictlyand are thus omitted. The refinement to be described next
section can improve on some of the values in Table I. nonblocking network. This value is one better than that

of Cantor [1] or of Shyy and Lea [4]. (Note that our
value of s includes the first and last fan-out and fan-in
stages and so s Å 2k 0 1 means only 2k 0 3 stages of

12. A REFINEMENT 2 1 2 switch modules.)
With F Å k 0 1, each of the 2k 0 3 stages has

In Section 10.1, we mentioned the possibility of over- (k 0 1)2 k01 2 1 2 switch modules each with four cross-
counting the number of blocked paths. In this section, we points. So, the total crosspoint count is (2k 0 3)4(k
develop specific conditions that guarantee that the sum 0 1)2 k01 Å 2(2k 0 3)(k 0 1)N , thus substantiating our
of expressions (9.1a) , (9.1b), and (9.1c) does indeed O(N( log N)2) construction claim in the Introduction.
overcount the maximum number of blocked paths. We
will not attempt to quantify this overcount (perhaps the

13. CONCLUSIONtopic of another paper) , but we will use to advantage the
fact that an overcount has occurred.

EGS networks are interesting because they are very gen-By Theorem 4.1i, for 1 ° i ° j ° s , the number of
eral, efficient, and can be constructed for a strictly non-paths between any stage-( i 0 1) link and any stage- j
blocking operation. They include as special cases numer-link is either Mi , j01 /rj or Mi , j01 /rj . Consider a U(2)
ous existing classes of networks. The regularity of thenetwork and let i Å 3 and j Å s 0 2. Then, rj Å F2 k01

interconnection pattern admits to very useful mathemati-and Mi , j01 Å 2 s05 . So if 2 s0k04 ¢ F , then Mi , j01 /rj ¢ 1
cal analyses. This extends to routing algorithms and high-and there is at least one path between every stage-2 link
speed control mechanisms, both of which are beyond theand every stage-(s 0 2) link.
scope of this already-lengthy paper.Our upper bound on the maximum number of blocked

paths assumes that all the paths blocked by entering and
departing intersecting connections are different paths. In REFERENCES
this case, however, if there is at least one path between
every stage-2 link and every stage-(s 0 2) link, then that [1] D. Cantor, On non-blocking switching networks, Net-
path will be counted twice in the totalling of blocked works 1 (1972), 367–377.
paths contributed by stage-2 link intersecting connections [2] C. Clos, A study of non-blocking switching networks,
and stage-(s 0 2) intersecting connections. [Both the Bell Syst Tech J 32 (1953), 406–424.
stage-2 link and stage-(s 0 2) link will count this path [3] C.-T. Lea, Multi-log2N networks and their applications
as a blocked path.] in high-speed electronic and photonic switching systems,

Let s Å 2k 0 1. Then, from Table I, we have IEEE Trans Commun C-38 (1990), 1740–1749.
F ¢ 21.5N /2 s /2 0 k / s 0 3 Å k . (Remember that k [4] D.-J. Shyy and C.-T. Lea, Log2(N , m , p) strictly non-
Å log2N .) From Section 11.2.1, we have (s 0 1)/2 as blocking networks, IEEE Trans Commun C-39 (1991),
the value of k giving v. It can be verified that (k 0 1)2 k03

1502–1510.
gives the number of blocked paths in Corollary 10.4 (for [5] C.L. Wu and T.Y. Feng, On a class of multistage intercon-
k ¢ 3). If an overcount by one has occurred, we need nection networks, IEEE Trans Commun C-29 (1980),

694–702.F2 k03 ú (k 0 1)2 k03 0 1. If F Å k 0 1, this inequality
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