
218 IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 2, FEBRUARY 1993

A Hybrid Neural Network Model
for Solving Optimization Problems

K. T. Sun and H. C. Fu, Member, ZEEE

Abstract-In this paper, we propose a hybrid neural network
model for solving optimization problems. We first derive an
energy function, which contains the constraints and cost criteria
of an optimization problem, and we then use the proposed neural
network to find the global minimum (or maximum) of the energy
function, which corresponds to a solution of the optimization
problem. The proposed neural network contains two subnets: a
Constraint network and a Goal network. The Constraint network
models the constraints of an optimization problem and computes
the gradient (updating) value of each neuron such that the
energy function monotonically converges to satisfy all constraints
of the problem. The Goal network points out the direction of
convergence for finding an optimal value for the cost criteria.
These two subnets ensure that our neural network finds feasible
as well as optimal (or near-optimal) solutions. We use two well-
known optimization problems-the Traveling Salesman Problem
and the Hamiltonian Cycle Problem-to demonstrate our method.
Our hybrid neural network successfully finds 100% of the feasible
and near-optimal solutions for the Traveling Salesman Problem
and also successfully discovers solutions to the Hamiltonian Cycle
Problem with connection rates of 40% and 50%.

Index Terms-Energy functions, feasible solutions, neural net-
work, optimization problems.

I. INTRODUCTION
EURAL networks have been used to solve a wide variety N of optimization problems [2], [lo], [14], [20], [22],

[23], [28], [31]. Hopfield and Tank [8] suggested that the
Traveling Salesman Problem [6] can be represented by an
energy function that can be iteratively solved on a neural
network. The difficulty in using a neural network to optimize
an energy function is that the iteration procedure may often
be trapped into a local minimum, which usually corresponds
to an invalid solution. Moreover, the values assigned to
the parameters of an energy function can greatly affect the
convergence rate of iterations. Aiyer et al. [l] proposed a
mathematical method for predicting a set of parameters on
the Hopfield model that allow the Hopfield net to reach a
feasible solution. However, Aiyer’s .method is still restricted to
quadratic functions (the Hopfield net) only. Many optimization
problems, such as satisfiability problems, cannot be solved by
the Hopfield net. In this paper, we propose a hybrid neural
network for solving energy functions of different orders. The
solutions found by our network are all feasible.

Manuscript received February 15, 1991; revised September 10. 1991. This
work was supported in part by the National Science Council under Grant

The authors are with the Department of Computer Science and Information
Engineering, National Chiao-Tung University Hsinchu, Taiwan 30050, R.O.C.

IEEE Log Number 9205428.

NSC 79-0408-E009-23.

We first express an optimization problem by a set of logical
expressions and then map the logical expressions into algebraic
equations. Based on these algebraic equations, an energy
function is formulated. The energy function has two parts:
constraints and the cost criteria. The proposed neural network
also has two parts: a Constraint net (for the constraints) and
a Goal net (for the cost criteria). Benchmark tests on the
traveling salesman problem show that our neural network can
provide 100% of the feasible and near-optimal (or optimal)
solutions to the test problems.

The contents of this paper are as follows. In Section
11, we describe the proposed method for constructing an
energy function from an optimization problem. In Section
111, we present the operations and functions of the proposed
neural network model. A neural state updating method, the
coordinate Newton method, and some convergence theorems
are also introduced in Section 111. In Section IV, the results of
experimental tests of our network are presented and discussed.
Concluding remarks are given in Section V.

11. PROBLEM REPRESENTATION AND
THE TRANSFORMATION METHOD

Since Hopfield and Tank [SI constructed an energy function
to represent the Traveling Salesman Problem (TSP) so that
it could be iteratively solved on their neural network, many
energy functions have been proposed to represent different
optimization problems. To date, there is no systematic transfor-
mation method for constructing an energy function to represent
an optimization problem. In this section, we shall propose
such a systematic transformation method. Our transformation
method contains three steps: 1) representing an optimization
problem as a set of logical expressions; 2) mapping these
logical expressions into a set of algebraic equations; and 3)
formulating an energy function from these algebraic equations.
Each of these steps will be discussed as follows.

A. Representing an Optimization Problem
by a Set of Logical Expressions

Since most optimization problems contain two parts: con-
straints and cost criteria, to achieve an optimal solution, the
constraints must he satisfied and the cost criteria must be
minimized (or maximized). For example, in the Traveling
Salesman Problem [9], the constraints are that each city must
be visited exactly once and that a salesman can arrive at only
one city at a time during the tour, and the minimization of the
cost criteria is to find the shortest tour length. For this problem,

0018-9340/93$03 00 0 1993 IEEE

~~ __

SUN AND FU: HYBRID NEURAL NETWORK MODEL FOR SOLVING OPTIMIZATION PROBLEMS 219

we use the logical symbol Czj or its complement to represent
whether or not a city z is being visited at time j during a
tour, and we use the algebraic symbol d,, to represent the
distance between cities z and y. Thus, the constraints and the
minimization of cost criteria can be represented by the logical
expressions at the bottom of this page and in the following.

In both of these constraints, N represents the number of
cities in the problem, and 1 5 i,j 5 N .

Cost criteria: To find the shortest tour length.

where @ is an exclusive-OR operator (XOR).
Under constraints (1) and (2), the space of feasible solutions

can be represented by a binary value matrix [c] N , N . In
matrix [C], there can be only one “1” (True) in each row
and each column; all other variables must be “0” (False),
so that constraints (1) and (2) are satisfied. Mapping logical
expressions into algebraic equations is the second step of the
transformation method. If we try to map expressions (1) and
(2) directly into algebraic equations, however, the transformed
algebraic equations will contain NNth power terms, making it
difficult and complicated to update the new value on a neural
net and slowing down the convergence speed. Therefore, we
propose to rewrite the constraints of the problem using shorter
logical expressions with fewer state variables. The rewritten
constraints and the logical expressions are as follows:

Constraint I : Each city i must be visited at least once and
no more than once. This constraint can be expressed by the
following set of logical equations:
* At least one Gib, 1 5 k 5 N , is True. *\

* No more than one C i k , 1 5 k 5 N . is True. *\

Constraint 2: A salesman arrives in at least one and no more
than one city at any time j during the tour. Similarly, this
constraint can be expressed by the following set of logical
equations:
* At least one C k j , 1 5 k 5 N , is True. *\

Clj V Czj V C3j V . . . V CAT, = T r u e ,

* No more than one C k j , 1 5 k 5 N , is True. *\
Clj A C2j = False, Clj A C3j = False, . . . ,

Clj A C N ~ = False,
Czj A Csj = False, . . . , C2j A C N ~ = False, . . . ,

CN-lj A Cp~j = False. (5)

The logical expression “Cyi+l @ C,i-1 = True” in the cost
expression can also be formulated as

(Cyz+l A c,i-1) V (Eyi+l A Cyi-l) = False. (6)

Now, we shall simplify the cost expression in (6) by eliminat-
ing the term “(Cyi+l A C,i-l) = False, 1 5 y, i 5 N” that
also appears in the constraints [Le., in (4)]. Thus, we can delete
this term - from (6) so that expression - (6) can - be simplified to
Cyz++l A C,i-1 = False. Since “Cyi+l A Cyi-l = False”
is logically equivalent to “C,i+l V C,i-1 = True,” the cost
expression then becomes

-

N N

M i n x x [& , (C , t A (c,i+l V C y i - l))] .

Now the constraints and the cost criteria of a TSP can be
represented by expressions (4), (5) , and (7).

(7)
X,Y i

B. Mapping Logical Expressions into Algebraic Equations

By applying a mapping method similar to that used in
[29], logical expressions can be formulated as algebraic equa-
tions without changing their semantic meaning. The mapping
method is listed as follows: Replace each instance of

1) True by 1 ,
2) False by 0,
3) Logical variable C%j by c ; j ,

4) A NOT operator by subtraction from one, and
5) An AND operator by multiplication.

Constraint 1: Each city i must be visited exactly once.

Constraint 2: A salesman arrives at only one city at any time j during the tour.

220 lEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 2, FEBRUARY 1993

When an OR operator is needed, it can be derived by com-
bining the NOT and AND operators. For example, xi V =
Xi A Y i . (X i V x) can then be transformed into the algebraic
equation 1 - (1 - x;)(1 - yi).

Based on this mapping method, the logical expressions of a
TSP can be transformed into the following algebraic equations:

Constraint 1: Each city a must be visited at least once and
no more than once.

-

C. Constructing an Energy Function from
the Algebraic Equations

function E, can be formulated as follows:
For the constraints of the TSP [(8) and (9)], a squared error

”
E, = C (t i - (11)

i= l

where ti represents the target value (at the right-hand side) and
ai represents the iteration value (at the left-hand side) of each
algebraic expression of (8) and (9). N’ is the total number of
algebraic equations in (8) and (9). An energy function E can
be obtained by combining (10) and (11) as follows:

N’

E = E, + Cost = A c (t i - ~ i) ~ + BCost

where A and B are the parameters. When the constraints are
satisfied (i.e., E, = 0) and the cost criteria is minimized, the
shortest tour length of the TSP is obtained.

Parameter Setting: There are two adjustable parameters in
(12). Previous studies of neural networks for optimization
problems have had to assign appropriate values to the param-
eters in an energy function to find a feasible solution [l], [22].
Consequently, choosing improper values for the parameters
in the energy function slows down the convergence speed
and results in invalid solutions [l], [22]. In the next section,
we propose a neural network and a neural state updating
method in which the parameters of the energy function can be
fixed values and no initial setting of the proper parameters is
required. In addition, our method accelerates the convergence
speed and generates feasible solutions.

(12)
i=l

0 ... 1...0

Constraint
Network

I Network Goa’ 11
Fig. 1. The structure of the hybrid neural network.

111. MINIMIZATION OF THE ENERGY FUNCTION

Many neural network models and algorithms [4], [ll], [12],
[MI-[20], [23], [30], [32] have been proposed for solving
optimization problems. Most of the algorithms often converge
to an invalid solution or require a large amount of computation
time to reach an optimal (or near-optimal) solution. In this
section, we propose a neural network model that finds an
optimal (or near-optimal) solution within a short computation
time.

The proposed neural network, which we called the hybrid
neural network, contains two subnets: a Constraint network
and a Goal network (see Fig. 1).

The Constraint network models the constraints of the prob-
lem and computes the gradient (updating) value of each neuron
(i.e., Ax1, Axz, . . . , Ax,). By using these gradient value
Ax’s, the Goal network computes the direction of convergence
during each iteration for minimizing (or maximizing) the cost
criteria (functions). The underlying point of this method is to
ensure the constraints are satisfied (or at least are closer to
being satisfied) at each stage of the gradient descent search
on the cost functions. Therefore, the hybrid neural network
produces feasible and near-optimal solutions.

We have designed an array processor system [5], [13] (see
Fig. 2) for our hybrid neural network. In Fig. 2, each processor
element (neuron) xi in the Constraint Net computes the updat-
ing value Axi, and all updating values (Axl, Axz, . . . , AZN)
are sent to the Max-Min Net to determine which neuron is to
be updated. Each processor in the Goal net computes F.
Both the Axi and are sent to the Max-Min net to
determine which variable xi is to be updated. The output
of the Max-Min Net enables the Selector module to output
the corresponding updating value Axi, which will be passed
back to the input neurons to update their states. The iteration
procedure continues until a stable state (i.e., Axi = 0) is
reached.

The Coordinate Newton Method: To minimize the squared
error function E,, we propose a neural state updating method
called the coordinate Newton method to compute the updating
value of each neuron (i.e., each variable) at each iteration.
This method is based on the concept of the coordinate descent
method [17], in which a function f(z) is minimized with
respect to one of the coordinate variables xi of z at each

SUN AND FU: HYBRID NEURAL NETWORK MODEL FOR SOLVING OPTIMIZATION PROBLEMS 221

Constraint Network

Goal Network

Fig. 2. The architecture of our hybrid neural network system.

iteration until the gradient of function f reaches zero (i.e.,
Vf(z) = 0). In order to achieve faster convergence speed, we
apply the Newton method [17] instead of the gradient method
to search for the minimum. By using the Newton method to
find the minimum of a function f , the updating value Ax for
a vector X at an iteration t is defined by (13).

Fig. 3 .

Fig. 4.

For a function f, an initial point zo is monotonically reduced to a
minimum point z*.

A convex function f(x1,xz) converges to the minimum point zi on
the updating coordinate in each iteration.

AXt = [F (x ')) l - l V f (~ X ~) ~ , and (potential) curve of a function f . The proof of this theorem
is given in Appendix A.

Theorem 2: The coordinate Newton method always finds (13)
- -

the minimum point of a function f along the updating coor-
dinate at each iteration, where f has nonzero second-partial
derivatives over a convex set f2 in which each variable is of

For updating a function f with only one variable x, (13) can
be simplified as

-
dx2

Thus, the updating value along a coordinate variable zi will be

where the value xi" is the new value on the coordinate xi
such that the new point zt+l is closer to the minimum point.
Some interesting properties of the coordinate Newton method
are presented in the following theorems.

Theorem 1: The coordinate Newton method monotonically
reduces a function f to a stable state, where f has nonzero
second-order partial derivatives over a convex set f2 in which
each variable is of order two.

Fig. 3 illustrates that an initial point z'monotonically re-
duces to a minimum point z* by the coordinate Newton
method. Each ellipse curve in Fig. 3 represents an equal value

order two.
Theorem 2 means that the new point zt+l is the minimum

point along the updating coordinate xi of the iteration t. The
proof of this theorem is shown in Appendix B. Fig. 4 illustrates
that an initial point z' of a convex function f (x l rx2) con-
verges to the minimum point z1 along the updating coordinate
21. At the next iteration, the point 2' converges to the
minimum point z2 along the updating coordinate 22, and the
convergence procedure proceeds continuously until a stable
point z* is reached (i.e., Of = 0).

Another property of the coordinate Newton method is that
it converges to a minimum with order two of convergence.

Order of Convergence: When a sequence {a} converges
to z*, the order of convergence [16] of {zk} is defined as the
supremum of the nonnegative number p satisfying

(16)
-1 Xk+l - x* I O < lim < 00.
k - i m 1 xk - x* I p

A larger order of p implies a faster convergence speed.
Theorem 3: Let f be a function on R". Assume that there

exists a minimum point z*, and the Hessian F (z *) is positive

222 IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 2, FEBRUARY 1993

definite. If the initial point zo is not a minimum and it is
sufficiently close to z*, the sequence of points generated by
the coordinate Newton method converge to x* with order two
convergence.

The proof of this theorem is presented in Appendix C.
From Theorem 3, the coordinate Newton method has the same
convergence-of order two-as the Newton method. In order
to apply the coordinate Newton method in the proposed neural
network for solving optimization problems, we propose the
following algorithm:

Hybrid Network Updating Algorithm (HNUA)

1.

2.

3.

4.

5.

Apply the coordinate Newton method to minimize the
squared error function E , by computing the updating

value Ax, (= &) for all variables (neurons) x,’s.

Calculate the partial derivative of the Cost function over
each variable xi (Le., F).
Determine the maximum value Ax* of N I Ax , 1’s

a E ,

az2

Ax* = Inax({[Axi I,l 5 i 5 N }) , (17)

then form a set r of variables x j that corresponds to the
maximum updating value Ax*, i.e.,

Among the x j variables in set I?, select a variable XI,
which corresponds to the minimum value of the partial
derivative of the Cost function,

dCost
x,+ = min(- , vx j E r).

arg dx j

Update x i by adding the Axi obtained in Step 1,

= + ax;.
Check the gradient of function E, (i.e., V E, = 2, Vi).
If V E , is equal to OlxN, i.e., the energy function
converges to a stable state (Axi = O,Vi), then stop.
Otherwise, return to step 1 for the next iteration.

The HNUA is implemented by the Constraint network and
the Goal network. Steps 1 and 2 can be executed in parallel on
these two subnetworks. The max and min operations in steps 3
and 4 are performed by the Max-Min net. Based on the output
from the Max-Min net, the Selector module selects the neuron
xk for updating. Finally, the Constraint net checks the gradient
value V E , to see whether the iteration procedure should be
stopped or not. If the gradient V E , is equal to O l x ~ , then
the energy function has converged to a stable state, which
represents a solution to the optimization problem.

We will apply the HNUA to solve two well-known opti-
mization problems: the Traveling Salesman Problem and the
Hamiltonian Cycle Problem.

Example 1: Traveling Salesman Problem (TSP): By apply-
ing the transformation method, the TSP can be represented by
an energy function E [(12)]. The steps involved in using the
HNUA to solve the TSP are described as follows.

1. Apply the coordinate Newton method on the squared
error function E, [see (l l)] to compute the Ac,, for

each variable czi, 1 5 x , i 5 N :

N
dCost - - dzy(cyi+l+ cyi-i - cyi+icyi-i). (23)
acxi y=l,y#x

Determine the maximum value Ac* of N 2 I Acxi)’s,

Ac* = max({l Ac,,) ,1 I x , i I N }) , (24)

then form a set r of variables cyj that corresponds to
the maximum updating value Ac*, Le.,

Among the cyj’s in set r, select a variable Cwk which
corresponds to the minimum value of the partial deriva-
tive of the Cost function.

acost ,vcyj E r).
c W k = min(-

arg dcyj

Update Cwk by adding the updating value obtained in
Step 1.

Test the gradient of function E, (Le., VE,) . If V E , is
equal to O1 N2, i.e., the energy function converges to a
stable state (i.e., Acxi = 0, Vx, i), then stop. Otherwise,
return to step 1 for the next iteration.

Based on the HNUA, the squared error function E, of
the TSP monotonically converges to a stable state, because
the squared error function E, has nonzero second partial
derivatives over a convex set in which each variable is of
order two (see Theorems 1 and 2). Many interesting properties
of the squared error function E, are presented with proofs in
Appendix D.

Example 2: Hamiltonian Cycle Problem (HCP): A Hamil-
tonian cycle in a graph G = (V, E) is a cycle in graph
G containing all vertices in V. If G is directed, then the
Hamiltonian cycle is directed; if G is undirected, then the
Hamiltonian cycle is undirected. Note that not all graphs have
a Hamiltonian cycle, and the problem of determining whether a
graph G has a Hamiltonian cycle is NP-complete. To solve an
HCP, we need to derive an energy function for the HCP. The
energy function for an HCP can be derived in a way similar
to the derivation of (12) for TSP. Since the nodes in an HCP
are not fully connected, the cost (distance) d i j between nodes
is defined as follows:

dij = 1, if node i is connected to node j .

d i j = N , if there is no connection between node i and node j .

(28)

We represent the distance between two unconnected nodes i
and j by a number N for ease of formulation and computation
of the energy function.

SUN AND FU: HYBRID NEURAL NETWORK MODEL FOR SOLVING OPTIMIZATION PROBLEMS 223

The procedure of using the Hybrid Network Updating
Algorithm to solve an HCP is similar to the procedure for
solving the TSP. To avoid repetition, in the following we will
discuss only the major procedure differences between these
two problems. For an HCP, a valid tour length is N for an N
nodes problem. The total distance connected to a node x at
time i is equal to the value of p. Using the distance defined
in (28), a value of greater than or equal to N indicates
a disconnected path to node x at time i . In order to continue
searching for a connected cycle, we randomly select a node y
to visit at time i and remove the selected nodes at time i + 1
and time i - 1. Thus, another path is tried in order to establish
a complete cycle. This process can be seen as a hill-climbing
technique used to escape from a spurious minimum z: and to
search for the global minimum z* (an optimal solution).

From the TSP and HCP, we see that the coordinate Newton
method is suitable for rapidly solving different optimization
problems with different orders of the squared error function
E,. Therefore, a wide variety of optimization problems, such
as the satisfiability problem [23], the traffic control problem
in interconnection networks [25], [26], the restrictive channel
routing problem [27], the independent set problem, the multi-
processor scheduling problem, and the partition problem can
be also solved by this method.

IV. EXPERIMENTAL RESULTS

Simulation systems for the proposed neural network were
constructed on an IBM RS/6000 workstation. The Traveling
Salesman Problem (TSP) and the Hamiltonian Cycle Problem
(HCP) were used as examples to test the performance of the
proposed neural network. For the TSP, we tested 10, 50, 100
and 200-city problems with randomly chosen city coordinates
within a unit square, similar to [21]. One hundred test cases
with different city coordinates were simulated and tested for
problems with different number of cities. The initial values
of the neurons for different tests were all set to “O”, except
for the starting city c11 (=1) of the tour. Fig. 5 shows the
tour length distribution for a 10-city TSP. For this case, our
test result, 2.28, is an optimal solution. Table I shows our
simulation results along with the results for the Potts Neural
Network (N N ,) [21], Elastic Net (EN) [4], Genetic Algorithm
(GA) [19], Simulated Annealing (SA) [l l] , Hybrid Approach
(HA) [12], and Random Distribution (RD).

Using our neural network, the simulation time for solving
a 200-city problem on an IBM RS/6000 workstation was
about two minutes. As shown in Table I, our results are
far better than those obtained by RD (random distribution),
and our results are comparable to those for the Potts Neural
Network (NN,). Although our method, HN, generates the
longest or the second longest tour lengths, our object is to
compare the overall performance of the different methods,
including such factors as tour length, convergence speed, and
feasible solution rate. As listed in Table I, our method is
the only method that does not apply hill-climbing technique
to escape from a local minimum. Obviously, applying hill-
climbing technique requires a lot of computation. Davis [3]
and Wilson et al. [30] have reported that some neural networks

2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 6.4 6.8 7.2 7.6 8 8.4 8.8 9.2

Tour Length

Fig. 5. The distribution of tour lengths of a 10-city TSP. Our solution falls
at the position z* (= 2.28), which is an optimal solution.

TABLE I

NETWORK (HN), Pons NEURAL NETWORK (NNp), ELASTIC
NET (EN), GENETIC ALGORITHM (GA), SIMULATED ANNEALING (SA),

HYBRID APPROACH (HA), AND RANDOM DISTRIBUTION (RD)

COMPARISON OF AVERAGE TOUR LENGTHS DERIVED USING THE HYBRID

-v Different Approaches
(number
ofcities) HN NNp EN GA SA HA RD

50 6.7 6.61 5.62 5.58 6.8 - 26.95

100 9.28 8.58 7.69 7.43 8.68 7.48 52.57
200 12.77 12.66 11.14 10.49 12.79 10.53 106.42

that do not use hill-climbing technique can become trapped
into invalid solutions. Although our method guarantees that
the solution search for the travelling salesman problem stops
at the global minimum of the constraints, it may stop at the
local minimum of the cost function. Thus we claim that our
method generates feasible solutions for the TSP, although
these solutions may not be optimal solutions. In addition,
our method does not require setting proper values for the
parameters in the energy function or estimating the temperature
T, for the annealing schedule, both of which are critical for
obtaining a good solution using the Potts Neural Network.
The Elastic Net (EN) can only be applied to the TSP using
geometrical distances between cities, which is too restrictive
for the general TSP. The distances for a general TSP may
contain costs, times, etc., and the Elastic Net cannot be used
to solved this general problem. The genetic algorithm has the
best performance, since it provides the shortest tour lengths.
When a genetic algorithm is used, the solution is obtained
after many evolutions of generations. In each generation,
thousands of feasible solutions are generated, and the better
solutions are selected to evolve the next generation. Therefore,
using the genetic algorithm to compute a solution provides a
higher probability of discovering a near-optimal solution than
other methods, which generates only one result. However, the
genetic algorithm requires a large amount of computation to
find a solution. In addition, different operations of the genetic
algorithm, such as crossover, mutation, and inversion, must
be specially defined to solve different optimization problems.
For example, the crossover operation in the genetic algorithm
can be defined to exchange the positions of cities on the
tour for the TSP, and it can also be defined to change the
assignment of objects to different sets for partition problem.

224 IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 2, FEBRUARY 1993

14000 -

f, E 4000 ..
a

10 20 30 50 100

number of cities

(a)

250 T

fn

O J I

10 20 30 50 100

number of cities

(b)

Fig. 6 . The number of iterations needed by our method and another efficient
algorithm to solve an HCP with connection density (a) 40% and (b) 50%.

So the genetic algorithm cannot provide a systematic method
for solving different optimization problems. The simulated
annealing (SA) method uses much time to reach a stable state,
which makes it impractical for larger problems. The hybrid
approach (HA), which combines three methods-the greedy
method, simulated annealing, and exhaustive search-is a
complex and computation-inefficient algorithm for solving the
TSP. Compared with the other methods listed in Table I, our
method provides greater computational efficiency.

For the HCP, we also tested 10, 20, 30, 50, and 100-node
problems with connection densities of 40% and 50%. One
hundred tests with different connection distributions between
nodes were simulated for each different size and density
problem. A comparison of our method with the branch-and-
bound algorithm [9], is shown in Figs. 6(a) and (b).

The branch-and-bound algorithm is a tree search procedure
in which the number of iteration steps grows exponentially as
the size of the problem is increased. However, our simulation
results show that the number of iteration steps in our neural
network approach grows approximately in linear. When the
connection density is 50%, the results of our method are
comparable to those of the branch-and-bound algorithm. When
the connection density is reduced to 40%, our method performs
much better than the branch-and-bound algorithm. Our method
seems to be suitable for solving HCP's with lower connection
densities.

V. CONCLUSIONS

In this paper, a hybrid neural network and a neural state
updating method for solving optimization problems have been
proposed. A transformation method for representing an op-

timization problem by an energy function has also been
presented. The transformation method can be applied to any
type of optimization problem that can be represented by
logical expressions such as those used in Section I1 of this
paper. The energy function has two parts: the constraints
and the cost criteria. It is solved using a hybrid neural
network that comprises two subnets: the Constraint net and
the Goal net, which correspond to the two parts of the energy
function. The energy of the function is iteratively minimized
(or maximized) by the neural network ~ operations until a
stable state is reached. The coordinate Newton method, a
neural state updating method that combines the concepts of
the coordinate descent method and the Newton method, is
proposed for computing the updating value of each variable
(neuron). Various merits of using the coordinate Newton
method to determine the gradient value of each variable in
order to reduce (or increase) the energy of the function are 1)
the coordinate Newton method's convergence speed (order two
convergence) is faster than that of the gradient descent method;
2) the coordinate Newton method is more suitable for parallel
implementation than the Newton method; 3) if a function f
has nonzero second-order partial derivatives over a convex set
R in which each variable is of order two, then by applying the
coordinate Newton method, a) the function f is monotonically
reduced to a stable state, b) the function f always reaches the
minimum point along the updating coordinate at each iteration;
and 4) the stable state of the energy function represents a
feasible solution.

In summary, the proposed neural network technique for
solving optimization problems has the following advantages:

1) It provides a mapping technique for systematically trans-
forming an optimization problem into an energy func-
tion.

2) It does not require selection of the proper values for
parameters in an energy function in order to obtain an
optimal (or near-optimal) solution.

3) It prevents the energy function from being trapped into
an invalid solution.

APPENDIX A
PROOF OF THEOREM 1

The coordinate Newton method monotonically reduces a
function f to a stable state, where f has nonzero second-
order partial derivatives over a convex set R, in which each
variable is of order two.

Proof: According to Taylor's series expansion, we can
expand a function f (z) at point z0 as follows:

1 1
f (z) = f (~ ~) + d f (~ ~) + - d ~ f (z O) i 3 d ~ f (~ ~) + . . . 2! , (29)

f Po) where d k f (z O) = E,1 cz2 . . . Czk a z l B x z azn qiqz . .
and qz = x, - 2:. By applying the coordinate Newton method,
the updating value of 2, along the coordinate 2, at iteration t is

afo

ax:

2t+l - 2; - aZ,
z a z f (x ') ' and

2;" = xi, VJ # r .

-

(30)

SUN AND FU: HYBRID NEURAL NETWORK MODEL FOR SOLVING OPTIMIZATION PROBLEMS

~

225

kt z 1 xt+' and zo = xt. Then q; = x i - ~4 = - x: =
Ax;, such that the value of qi is equal to Axi. Rewrite (29)
in terms of z t ,x t t l and A z . Then

1 d3f(zt)
3! dX?

+ -Ax: ~ +
Since each variable in function f is of order two, the higher
order terms (&Ax?- + . . .) vanish and (31)'becomes axt

Then,

1 (*)2

Af(z t) = 2 a2f(zt) ' (33)
ax:

Since f (z) is a convex function, the second partial derivatives
of function f (z) are greater than 0 (i.e., > 0).
Therefore, we can prove that

A f (z t) 5 0. (34)

This implies that the' function f is monotonically reduced to
a stable state. Q.E.D.

APPENDIX B
PROOF OF THEOREM 2

The coordinate Newton method can always find the mini-
mum point of a function f along the updating coordinate at
each iteration, where f has nonzero second-partial derivatives
over a convex set R in which each variable is of order two.

Proof: The function f(z),z = (xl, 2 2 , . . . , zn), can be
expressed in terms of the variable X, as follows:

f (z) = Ex: + Fx, + G , and E > 0; F, G E R, (35)

where E , F and G are the terms that contain variables x l , V j #
i in the function f (z) . By applying the coordinate Newton
method to function f on the coordinate 2%) the variable x, is
updated by

afo
-az, (36) W '

If new point z' is the minimum point on the coordinate z,,
then the partial derivative of f over X, at the next iteration
should equal zero.

d + --xi a + 0
dxa d X 2

= 2E(1 - l) + F (l - l)

= o + o
= 0 . (37)

From the minimization of convex functions, (37) shows that
the new point z' is the minimum point on the coordinate xi at
the next iteration. Thus, the coordinate Newton method always
finds the minimum point along the updating coordinate at each
iteration. Q.E.D.

APPENDIX C
PROOF OF THEOREM 3

Let f be a function on R". Assume that there exists a
minimum point z* and that the Hessian F(x*) is positive
definite. If the initial point zo is not a minimum and is
sufficiently close to z*, the sequence of points generated by
the coordinate Newton method converge to x* with order two
convergence.

Proof: According to the coordinate Newton method, the
updating value for each neuron is x:+' = xr +Ax:, which can
be represented in vector form for the purpose of proving the
convergence of the function f . In vector form the updating
value is

%t+l = zt - [e ,F(z t) e r] - 'Vf (z t) e re , (38)

where e, is the zth coordinate unit vector (i.e., el =
(1,O,O , . . . , O),e2 = (O,1,O ,..., 0) , . . . , e , = (O , O , O ,...,
1)); F (x t) is the Hessian matrix [17], [d2 f /dx ,dx ,] ,Vz ,~ ,
of the function f ; and V f (z t) is the gradient of function f at
time t . There exists p, a > 0, p > 0 such that 1 z - x* I< p,
I [e,F(x)e:]-' I 5 a and I Vf(z)eFe , + [e%F(x)eT](z* -

z) 15 p I z - z* 1 2 , for all z. Now suppose zt is selected
with a.P I zt - z* I < 1. Then

I zt+' - z* I =I zt - z* - [e Z ~ (x t) e T] - ' o f (z ') e F e , I
=I [e Z ~ (z t) e r] - ' (~ f (z t) e ~ e ,

+ [e Z ~ (z t) e r] (z * - z')) I
51 [e , ~ (z ~) e ? l - + l 1 0 1 zt - z* l 2
- < ap I xt - z* 12 (39)
<)z t - z * I . (40)

Equation (40) shows that the new point zt+' is closer to z*
than the point zt, and (39) shows that the order of convergence
of the coordinate Newton method is two. Q.E.D.

APPENDIX D
PROPERTIES OF THE SQUARED

ERROR FUNCTION E, OF THE TSP

Property 1: Based on the coordinate Newton method, the
value of each variable cxi, 1 5 x, i 5 N , in the squared error
function E, is bound within [0,1].

226 IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 2, FEBRUARY 1993

Proof: The squared error function E, [(l l)] can be
rewritten as

E, = 7; yI + c$icii
z i j # i x y f z i

x i i x

Equation (41) can be expressed in terms of the variable cxi:

E, = A& + Bcxi + C, (42)

where A 2 0, C 2 0, and B 5 0. Therefore, (42) is a convex
function of cxi and can be expressed as

B B2 B2
E, = A (c ; ~ + -c,i + -) + C - - A 4A2 4 A (43)

B B2
= A(cXi + -)2 + C - -. 2A 4A (44)

From Theorem 2, is equal to the minimum point (= g)
at iteration t + 1 , so the value of the variable c,i is bound by

(45)

From (41), the value of A (summation of the terms with order
two) is greater than or equal to f B (summation of the terms
with order one), thus c::’ is further bound by

(46) t+l - -B cxi - ~ < 1. 2A -

This proves that the value of the variable e,; is bound by
[OJ]. Q.E.D.

Property 2: For the neuron state matrix [C] N x N of a TSP,
when the value of a variable e,; equals one and the values of
other elements in row z and column i are not all zeros, then
the gradient value of 2 is not equal to zero.

Proof: When more than one variable in a row z and
column i is one and the values of the other elements in row
z and column i are not all equal to zero, (45) shows that the
gradient value of E is not equal to zero (not in a stable
state). Q.E.D.

Property3: By applying the HNUA, when the squared
error function E, reaches a stable state and a variable c,i
equals one, then each row and each column of matrix [q n r X N
must contain only one “1” and all other entries of this row and
column must be “0”, which corresponds to a feasible solution.

Proof: From (41), the first-order partial derivative of E,
with respective to the variable e,, is

When the function E, reaches a stable state and the value of
e,, is equal to one, (47) becomes

aEs
dcx,
- = 2[c;1 + c22 + ’ ’ ’ + cE,-l + c:,+1 + . . . +

+ e:, + e;, + . ’ . + c;-1, + + . . . + e”,]
= 0 , 1 <z,i 5 N . (48)

Since (48) contains only squared terms, all variables in row z
other than c,, must be zero. Similarly, on the stable state, the
partial derivative 2 , V l # i , must be zero. Then,

aE,
dcxl
- = -2(1 - c11)2(1 - c21)2.. . (1 - C X - 1 l) (l - cx+11)2

. ’ ‘ (1 - C N [) 2

= 0, Vl # a .
(49)

From property 2, there exists only one element cpl that is “1”
in column 1 of matrix [C] N , N , and the other elements are all
zeros. Similarly, we can prove that any row or any column
contains only one “1.” Q.E.D.

ACKNOWLEDGMENT

We are grateful to Profs. S. Y. Kung and J. N. Hwang and C .
C . Chiang for their helpful discussions and suggestions. Also,
we wish to thank anonymous reviewers for their insightful
comments.

REFERENCES

S. V. B. Aiyer et al., “A theoretical investigation into the performance of
the Hopfield model,” IEEE Trans. NeuralNetworks, vol. 1, pp. 204-215,
June 1990.
B. Angeniol, G. De La Croix Vaubois, and J.-Y. Le Texier, “Self-
organizing feature maps and the travelling salesman problem,” Neural
Networks, vol. I, pp. 289-293, 1988.
G. W. Davis, “Sensitivity analysis in neural net solutions,” IEEE Trans.
Syst., Man, Cybern., vol. 19, no. 5, pp. 1078-1082, 1989.
R. Durbin, R. Szeliski, and A. Yuille, “An analysis of the elastic net
approach to the traveling salesman problem,” Neural Computat., vol. 1,
p. 384, 1989.
H. C. Fu, J. N. Hwang, S. Y. Kung, W. D. Mao, and J. A. Vlontzos, “A
universal digital VLSI design for neural networks,” in Proc. IJCNN’89,
Washington DC, June, 1989.
M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
io the Theory of NP-compleness. San Francisco, CA: Freeman, 1979.
K. M. Gutzmann, “Combinatorial optimization using a continuous state
Boltzmann machine,” in Proc. IEEE First Int. Conf Neural Networks,
vol. 111, San Diego, CA, June 1987, pp. 721-728.
J. J. Hopfield and D. W. Tank, “Neural composition of decisions
optimization problems,” vol. 55, pp. 141 - 152, 1985.
E. Horowitz and S . Sahni, “Dynamic programming,” in Fundamentals of
Computer Algorithms. Rockville, MD: Computer Science Press, 1978.
J. J. Johnson, “A neural network approach to the 3-satisfiability prob-
lem,” J . Parallel Distributed Comput., pp. 435 -449, 1989.
S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, p. 671, 1983.
S. Kirkpatrick and G. Toulouse, “Configuration space analysis of the
traveling salesman problem,” J. Phys., vol. 42, p. 1277, 1985.
S. Y. Kung, VLSI Array Processors. Englewood Cliffs, NJ: Prentice-
Hall, 1988.
B. W. Lee and B. J. Sheu, “Combinatorial optimization using
competitive-Hopfield neural network,” in Proc. Int. Joint Conf Neural
Networks, vol. 11, Washington DC, Jan. 1990. pp. 627-630,
R. P. Lippmann, “Introduction to computing with neural nets,” IEEE
ASSP Mag., pp. 4-22, Apr, 1987.
D. G. Luenberger, “Speed of convergence,” in Linear and Nonlin-
ear Programming. Reading, MA: Addison-Wesley., 1984, ch. 6, pp.
189-192.

SUN AND FU: HYBRID NEURAL NETWORK MODEL FOR SOLVING OPTIMIZATION PROBLEMS 227

-, “Basic descent methods,” in Linear and Nonlinear Program-
ming.
S. Mehta and L. Fulop, “A neural algorithm to solve the Hamiltonian
cycle problem,” in Proc. Int. Joint Conf Neural Networks, vol. 111, San
Diego, CA, June 18-22, 1990 pp. 843-849.
H. Muhlenbein, M. Gorges-Schleuter, and 0. Kramer, “Evolution al-
gorithms in combinatorial optimization, Parallel Computat., vol. 7, p.
65, 1988.
C. Peterson and B. Soderberg, “A new method for mapping optimization
problems onto neural networks,” Int. J. Neural Syst., vol. I, pp. 3-22,
1989.
C. Peterson, “Parallel distributed approaches to combinatorial optimiza-
tion: Benchmark studies on the traveling salesman problem,” Neural
Computat., M.I.T. Press Journals, vol. 2, pp. 261-269, 1990.
J. Ramanujam and P. Sadydppan, “Parameter identification for con-
strained optimization using neural networks,” in Proc. 1988 Connec-
tionist Models Summer School, Morgan Kaufmann, 1988 pp. 154- 161.
K. T. Sun and H. C. Fu, “Solving satisfiability problems with neural
networks,’‘ in Proc. IEEE Region I O Con5 Comput. and Commun. Syst.,
vol. 1, Hong Kong, Sept. 24-27, 1990, pp. 17-22.
-, “A neural network for solving the satisfiability problems,” in
Proc. Int. Comput. Symp. 1990, National Tsing Hua University, Taiwan,
R.O.C., Dec. 17-19, 1990 pp. 757-762.
-, “An O(n) parallel algorithm for solving the traffic control
problem on crossbar switch networks,” Parallel Processing Lett. (PPL),
vol. 1, no. I, pp. 51-58, 1991.
-, “A neural network algorithm for solving the traffic control
problem in multistage interconnection networks,” in Proc. Int. Joint
Con$ Neural Networks (IJCNN-91), Singapore, Nov. 24-28, 1991 pp.
1136- 1141.
-, “A neural network approach to restrictive channel routing
problems,” in Proc. Int. Conf: Artificial Networks ICA”’92.
G . A. Taglianeri and E. W. Page, “Solving constraint satisfaction
problems with neural networks,” in Proc. Int. Conf Neural Networks,
San Diego, CA, June 1987, pp. 741-747.
R. J. Williams, “Learning the logic of activation functions,” in Parallel
Distributed Processing, Vol. 1. Cambrideg, M A M.I.T. Press, 1986,
ch. 10, pp. 423-443.
G. V. Wilson and G. S. Pawley, “On the stability of the travelling
salesman algorithm of Hopfield and Tank,” Biol. Cybern., vol. 58, pp.
63-70, 1988.
X. Xu and W. T. Tsai, “An adaptive neural algorithm for traveling
salesman problem,” in Proc. Int. Joint Conf: Neural Networks, vol. I,
Washington, DC, Jan. 1990, pp. 716-719.

Reading, MA: Addison-Wesley, 1984, ch. 7, pp. 197-237.
[32] A. Yuille, “Generalized deformable models, statistical physics, and

matching problems,” Neural Computat., vol. 2, pp. 1-24, 1990.

K. T. Sun received the B.S. degree in information
science from Tunghai University in 1985 and the
M.S. and Ph.D. degrees in computer science and
information engineering from National Chiao-Tung
University in 1987 and 1992, respectively.

He is a Research Associate in Chung Shan In-
stitute of Science and Technology, and an Adjunt
Associate Professor at the Information Science De-
partment in Tunghai University, Taiwan, R.O.C. His
research interests include logical programming, par-
allel processing, array processors, fuzzy theorems,
and neural networks.

H. C. Fu (S’79-M’80) received the B.S. degree
in electrical and communication engineering from
National Chiao-Tung University in 1972, and the
M.S. and Ph.D. degrees in electrical and computer
engineering from New Mexico State University in
1975 and 1981, respectively.

From 1981 to 1983 he was a member of Technical
Staff in Bell Laboratories. Since 1983 he has been
on the faculty of the Department of Computer Sci-
ence and Information Engineering, National Chiao-
Tune Universitv. Hsinchu. Taiwan. R.O.C. From

Y ,,
1987 to 1988, he was a Director of the Department of Information Manage-
ment at the Research, Development and Evaluation Commission in Executive
Yuan, R.O.C. In the academic year 1988-1989, he was a Visiting Scholar
at Princeton University. From 1989 to 1991, he was the Chairman of the
Department of Computer Science and information Engineering at N.C.T.U.,
where he is currently a Professor there. He is the author of over 40 technical
papers in computer engineering. His current research interests are in computer
architecture, array processing, parallel processing, and neural computing.

Dr. Fu is a member of the IEEE Computer Society, Phi Tau Phi, and the
Eta Kappa Nu Electrical Engineering Honor Society.

