
VISUAL OBJECT-ORIENTED PROGRAMMING ENVIRONMENT 585

Received July 16, 1997; accepted April 10, 1998.
Communicated by Y. S. Kuo.
*This research was supported in part by the National Science Council, under contract number NSC 87-2213-E009-
002.

JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 15, 585-614 (1999)

585

Towards a Practical Visual Object-Oriented Programming
Environment: Desirable Functionalities and

Their Implementation*

CHUNG-HUA HU+ AND FENG-JIAN WANG

Institute of Computer Science and Information Engineering
National Chiao Tung University
Hsinchu, Taiwan 300, R.O.C.

E-mail: fjwang@csie.nctu.edu.tw
+Information Technology Laboratory

Chunghwa Telecommunication Laboratories
Taoyuan Hsien, Taiwan 326, R.O.C.

E-mail: chhu@ms.chttl.com.tw

The ultimate goal of a programming environment is to help simplify the software
development process. For an object-oriented language, a visual (object-oriented) program-
ming environment (VOOPE) must at least satisfy four essential requirements to meet this
goal: interactivity, integration, incrementality, and intelligence. In this study, object-ori-
ented techniques were systematically applied to construct such a VOOPE. On the other
hand, some characteristics of object-oriented languages, such as inheritance and
polymorphism, may themselves be barriers to understanding, maintaining, and even con-
structing object-oriented programs. To solve, or at least alleviate, this problem, a language-
based editing process has been designed and incorporated into our VOOPE. This process
contains two key elements: syntax-directed editing facilities and an in-place editing assistant,
which facilitate object-oriented program development by providing useful programming
guidance and by reducing the number of potential programming errors. We have so far
developed a window-based environment prototype using Visual C++ and the Microsoft
Foundation Classes library.

Keywords: visual programming, integrated programming environment, object-oriented
techniques, incremental program development, C++

1. INTRODUCTION

Visual programming [1-3] has become popular in recent years. The use of concise
and appropriate graphics facilitates easier understanding compared to the use of plain text
alone. Visual object-oriented programming [4] has progressed in two directions. In one
direction, the visual syntax of an object-oriented language is defined, and programs are
edited using visual language constructs. The visual syntax usually embodies graphical
representations for such object-oriented language features as class constructs, inheritance,
object instantiation, message passing (between objects), and polymorphism. With an ob-

CHUNG-HUA HU AND FENG-JIAN WANG586

ject-oriented programming language containing such visual syntax, called a VOOPL, a
constructed program is inherently visual in nature. Prograph [5] and VIPR [6] are two
examples of VOOPLs.

In the other direction lies a visual object-oriented programming environment (VOOPE)
for object-oriented program construction (and execution). One important issue in design-
ing a VOOPE is the construction of a graphical user interface associated with a friendly
user-interaction model. For example, a VOOPE may allow the user to open multiple win-
dows for constructing and visualizing object-oriented programs, and may provide some
interaction facilities (e.g., point-and-click or drag-and-drop) which enable the user to inter-
act with the environment via pointing devices. SPE [7], MCPE [8], Visual C++ [9], and
Smalltalk [10] are examples of VOOPEs.

The ultimate goal of a programming environment is to help simplify the software
development process [11]. For a VOOPE, the following four design requirements are
essential: interactivity, integration, incrementality, and intelligence. The main characteris-
tics of the 4I ’s requirements are as follows.

 ∑ Interactive user interface [12-14]
A programming environment usually comprises a number of “front-end” tools, such as a
program editor and a browser, that the user can interact directly with to construct and/or
examine various kinds of program information. The window-based interface associated
with the direct-manipulation [15] interaction model is one of the keys to a practical visual
programming environment.

 ∑ Integration mechanism supporting environment evolution [16, 17]
A programming environment is said to be “integrated” [8, 18, 19] only if its constituent
tools can share consistent programming information and communicate with each other
through a common platform. An effective integration mechanism allows the addition of
a new tool or removal of an old one without large-scale modification, thus making envi-
ronment evolution possible.

 ∑ Incremental program development [14, 19, 20]
During programming, a number of analyzers, such as semantic and data-flow analyzers,
and a code generator can be invoked incrementally. Incremental program development,
in general, has the following two advantages. First, analysis and execution of incomplete
programs are possible. Second, programming errors, such as syntactic and semantic
errors, can be detected earlier than in conventional “edit-compile-debug” environments.

 ∑ Language-level assistance on program construction
An “intelligent” programming environment [21-23] may provide automatic program-
ming capabilities or at least language-level assistance to facilitate program editing and
analysis. The language-level assistance employs programming information, such as syn-
tactic and semantic information, to aid program construction by providing a certain amount
of editing assistance and, at the same time, detecting potential programming errors or
anomalies.

The contributions of our work, as shown in Fig. 1, are twofold. First, this paper
presents an object-oriented approach that aids construction of a VOOPE based on the pro-
posed model-view-shape (MVS) architecture [24, 25]. This architecture enforces a layered

VISUAL OBJECT-ORIENTED PROGRAMMING ENVIRONMENT 587

and loosely-coupled structure, so that the user-interface part of a component can be more
independent, maintainable, and reusable than those proposed in the original model-view-
controller architecture. During the construction of our VOOPE, object-oriented techniques
have been systematically applied to construct a C++ class hierarchy. Application designers
can reuse and extend the class hierarchy so as to rapidly develop new tools for the VOOPE
or visual programming environments that support different languages. To date, a window-
based VOOPE prototype has been constructed using Visual C++ and the Microsoft Foun-
dation Classes library [26].

Second, the VOOPE prototype provides well-designed editing, display, and analysis
facilities that enable end users to effectively construct object-oriented programs. In other
words, users are able to acquire some language-level assistance from the VOOPE during
programming, so that they can reduce the number of programming errors (e.g., syntactic
and semantic errors) or at least be informed of errors before compilation. This assistance is
especially significant in object-oriented programming because some object-oriented lan-
guage features, such as inheritance and polymorphism, are themselves barriers to
understanding, maintaining, and even constructing programs [27, 28].

The rest of this paper is organized as follows. Section 2 gives the system architecture
of a practical VOOPE. In section 3, a number of design and implementation aspects of our
VOOPE are discussed. Section 4 describes how the user constructs object-oriented pro-
grams by interacting with the VOOPE. We discuss the main features supported by several
VOOPEs in section 5 and draw the conclusions in section 6.

 Fig. 1. Goals of our work.

The Model -View-Shape
class hierarchy

Appl icat ion
designer

End user

Extending and
customiz ing

Integrated visual object-oriented
programming envi ronment

Language-Based
Diagram EditorMessage Handler

Language-Based
Diagram Editor

Language-Based
Text Editor

Language-Based
Diagram EditorFlow-Based Editor

Language-Based
Diagram EditorNew Tool

Rapid
prototyping

Power
programming

CObject

TMVObject

Model View

Shape

Class definition

Publ icM

Shape

Shape()

~Shape()

Subclass

Node

Object-or iented programs

Method implementation

True

Node: :OnDraw()

False

False

True

CHUNG-HUA HU AND FENG-JIAN WANG588

2. SYSTEM ARCHITECTURE

A practical VOOPE, whose system architecture is shown in Fig. 2, is proposed here
to meet the above requirements. Tools widely used in a VOOPE are categorized into four
toolsets according to the functions they perform: programming, software-maintenance, soft-
ware-reuse, and program-analysis. The first three toolsets, which interact with users dur-
ing various phases of software development, are usually equipped with (graphical) user-
interface packages to display different kinds of program information. For example, the
flow-based editor is used to display program flow information, such as control flow, data
flow, or certain kinds of program-dependency relationships, in the graphical layout. By
interacting with the flow-based editor, the user is able to specify and control the program
structure at will. Another example, the message handler, is responsible for reporting pro-
gramming errors and helping users locate erroneous program fragments. Tools in the first
three toolsets are capable of receiving user-input events, interpreting and handling these
events, and responding to users in some way.

 Fig. 2. The system architecture of a practical VOOPE.

File system

Program-database manager

Program tree

Program tree

Symbol table

...

Program-analysis toolset

Incremental
semantic analyzer

(Incremental) data-
flow analyzer

Syntax analyzer
(Incremental) code

generator

...

(Language-based)
text editor

Programming toolset

...

Debugger Message handler

Flow-based editor

Software-maintenance toolset

Program
restructuring tool

Ripple analyzerProgram slicer

...

Cross referencer

...

Class library
browser

Document viewer

Software-reuse toolset

Component
classification and

search Tool

VISUAL OBJECT-ORIENTED PROGRAMMING ENVIRONMENT 589

The program-analysis toolset consists of tools for handling and analyzing program
text during program development. These tools can be viewed as back-end tools and do not
interact with users directly. They are activated only during changes in internal program
representations, such as program trees and symbol tables. These tools can be further clas-
sified into two categories: incremental and non-incremental tools. Typical incremental
tools include the semantic analyzer, the data-flow analyzer, and even the code generator.
To ensure consistent and concurrent access to internal program representations, all the tools
in the VOOPE are prevented from operating directly on the representations. The only way
to access shared representations is through the program-database manager, which is used to
coordinate tool communication and maintain data consistency by interacting with the un-
derlying file system. A number of prototypical tools, whose names are shown in boldface in
Fig. 2, have been constructed in our VOOPE.

3. CONSTRUCTING A VOOPE USING OBJECT-
ORIENTED TECHNIQUES

3.1 A Class Hierarchy for Constructing the VOOPE Kernel

Fig. 3 shows a class hierarchy, based on the MVS architecture, for constructing the
kernel of our VOOPE. The Model, View, and Shape class hierarchies correspond to model,
view, and shape classes, respectively.

The Shape class hierarchy consists of two subclass hierarchies; one for node classes
and the other for link classes. Common attributes and generic graphics-handling methods
for these nodes and links are defined in classes Node and Link . Attributes defined in shape
classes are used to store the graphical layouts and related information, such as the dimen-
sions and coordinates of graphical components, while methods (defined in a shape class)
can be divided into the following two sets:

∑ Graphics-handling methods. Examples include drawing graphical layouts at spe-
cific locations.

∑ Event-handling methods. Examples include detecting and interpreting user-input
events.

The model, a representation of the application domain, contains attributes and opera-
tions for maintaining the application’s state and behavior. Attributes defined in model
classes are generally divided into two sets: one for the maintenance of internal program
representations and the other for the storage of language-dependent information, such as
source code, comments, and static semantics. Methods defined in model classes are gener-
ally used to perform syntactic and semantic analyses as well as language-dependent functions.
The view, which is used to handle the user interface, contains attributes and operations for
managing the application’s display and input-event interactions. Attributes defined in view
classes are used to store high-level presentation information, such as view dimensions,
while methods (defined in view classes) can be divided into the following two sets:

∑ View-management methods. Examples include calculating and retrieving view
dimensions.

∑ View-presentation methods. An example is presenting view layouts.

CHUNG-HUA HU AND FENG-JIAN WANG590

3.2 Graphical Representations for Object-Oriented Language Constructs

To help users depict flow information about object-oriented programs visually and
rapidly, it is desirable for the VOOPE to provide graphical representations, i.e., graphical
templates, for high-level language constructs. A set of graphical templates, as shown in Fig. 4,
has been designed to represent well-known language constructs using the syntax employed
in the C++ language subset. These graphical templates are used to represent the static

Fig. 3. The MVS class hierarchy.

CObjec t

TMVObjec t

Mode l V iew

S h a p e

N o d e Link

Rectang le

D iamond

El l ipse

Stra ightL ink

Bot tomToSideL ink

Sta tementV iew

Express ionV iew

Ass ignmentS tmntV iew

I fThenElseStmntV iew

Sta tementMode l

S tmnt

StmntL is t

Express ion

Ass ignmentStmnt

ShadowedRec t

S ideToSideL ink

S ideToTopL ink

: Concrete c lass

: Abstract c lass

Dec lara t ionModel

VarDeclL is t

VarDec l

Funct ion

IconView

StmntL is tV iew

I fThenStmntV iew

DoStmntV iew

ForStmntV iew

Funct ionView

VarDec lL is tV iew

VarDec lV iew

Struc turedStmnt

I fThenStmnt

I fThenElseStmnt

Wh i leS tmnt

DoStmn t

ForStmnt

S imp leStmnt

Select ionStmnt

Swi tchStmnt

I terat ionStmnt

S imp leStmntV iew

Struc turedStmntV iew

Swi tchStmntV iew

FuncHeader

FuncHeaderV iew

CompoundS tmn t

CompoundS tmn tV iew

Declara t ionView

StmntV iew

Selec t ionStmntV iew

I terat ionStmntView

FuncDec l

C lassHeader

ClassDec l

FuncDec lV iew

ClassHeaderV iew

ClassDec lV iew

Whi leS tmntV iew

VISUAL OBJECT-ORIENTED PROGRAMMING ENVIRONMENT 591

language features of object-oriented programs, such as class constructs, inheritance, and
structured statements. Object-oriented dynamic structures, such as object instantiation and
polymorphism, are not currently supported because these structures require that informa-
tion be provided by a runtime visualization tool [29, 30].

Three levels of access mechanisms, private, protected, and public, classify attributes
and methods defined in (C++) classes into three corresponding groups. Such a class con-
struct can be supported by a class template, as shown in Fig. 4, containing four diamond
nodes, where the first three diamond nodes, called “PriM ”, “ ProM ”, and “PubM”, are
used to “hook” three groups (i.e., private, protected, and public) of methods, and the last
diamond node, called “SubC”, hooks a list of class(es) derived from the class. Note that
this class template is used to represent tree-based class structures, i.e., single-inheritance
structures. Multiple-inheritance structures entail graph-based class structures. Fig. 5 shows
a graphical representation of multiple inheritance using four class templates.

 Fig. 4. Sample graphical templates for language constructs.

<Class-Header>

PriM

ProM

PubM

SubC

Class template

<Expression>

<Statement>

True

False

If-Then statement template

<Expression> False

<Statement>

True

While statement template

<Function-Header>

<Statement-List>

Function template

<Stement>

<Satement-List>

Statement-List template

<Expression>True

<Statement>

False

<Statement>

If-Then-Else statement template

<Statement>

True <Expression>

False

Do statement template

CHUNG-HUA HU AND FENG-JIAN WANG592

3.3 Manipulating Internal Object-Oriented Program Representations

As users construct object-oriented programs, our VOOPE employs two data structures,
symbol tables and program trees, to store these object-oriented programs internally and
incrementally. The symbol table, a hierarchical tree structure corresponding to the scope
rules of object-oriented languages, is used to store the scope and binding information of
identifiers. The program tree, an internal representation of the method, is used to store
language-dependent information, such as source code, comments, and other semantic at-
tributes in the corresponding tree nodes. These two data structures constitute the shared
programming information for all the tools in the VOOPE.

Maintaining internal program representations consistently is one important issue in
an integrated programming environment [16]. To allow different tools to have consistent
views of shared data structures, the program-database manager in our VOOPE performs
three functions. First, it manages internal program representations; that is, it is responsible
for constructing and maintaining symbol tables and program trees. Second, it can be viewed
as a message server for tool communication and coordination. Through the service rou-
tines provided by the program-database manager, the tools in the VOOPE are able to com-
municate with each other and access the internal program representations concurrently and
consistently. Third, it serves as an intermediator for storing and retrieving object-oriented
programs by interacting with the underlying file system. In the following, we describe the
three tasks supported by the program-database manager in more detail.

 Fig. 5. A graphical representation of multiple inheritance.

ZooAnimal

Pr iM

S u b C

P r o M

P u b M

Racoon

Pr iM

S u b C

P r o M

P u b M

Panda

Pr iM

S u b C

P r o M

P u b M

Bear

Pr iM

S u b C

P r o M

P u b M

VISUAL OBJECT-ORIENTED PROGRAMMING ENVIRONMENT 593

3.3.1 A manager of internal program representations

Analysis of program scope aids construction of feasible symbol tables. Here, at least
three kinds of program scope must be provided in an object-oriented language: the file
scope, class scope, and local scope. The file scope, within which global variables are
declared, is the outermost scope of a program. Each class in an object-oriented program
has a distinct class scope, in which method and attribute names are considered inside of the
class scope. Within a method, each compound statement (i.e., block) has an associated
local scope. The arguments of a method can be viewed as being within the local scope of
the outermost block of the method. To simplify discussion, the file scope is omitted here
because the use of global variables violates the principle of information-hiding of object-
oriented programs. Moreover, nested blocks may introduce a nested local scope, which is
not currently supported by our symbol table.

The symbol table, as shown on the right side of Fig. 6, comprises two kinds of table
objects, class-table and function-table objects, used to record the class and local scope
information. When the user defines a class, the program-database manager creates a class
table and attaches it to the symbol-table hierarchy. For a method defined in a class, the
program-database manager creates a distinct function table and attaches it to the class’s
class table. In our VOOPE, class and function tables are instances of classes ClassTable
and FuncTable, respectively. Table 1 lists some of the interfaces of classes ClassTable
and FuncTable.

Each class table maintains two attributes, called BaseClassTable and
DerivedClassTableList, to reference the class tables of base and derived classes,
respectively. These two attributes help the symbol table record inheritance relationships
among classes. Another attribute, called FuncTableList, is used to reference the function
tables for the methods defined in the class. Moreover, a class table also stores declaration
information of attributes and/or methods defined in the class. Each function table main-

Class Node: public Shape {

Public:

 Node(CString contentText);

 virtual void OnDraw(CDC* pDC);

};

class Link : public Shape {

};

class Rectangle: public Node {

};

class Diamond: public Node {

};

Fig. 6. Class interfaces and the associated symbol table.

Shape

Rectangle Diamond

Node Link

Node() OnDraw()

...

...

... ...

...

: Class table

Legend

: Function table

CHUNG-HUA HU AND FENG-JIAN WANG594

tains two attributes, called ArgumentList and LocalVariableList , to store declaration in-
formation of arguments and local variables (defined in a method), respectively. Note that
methods with the same names may be defined in a class; in this case, the method is said to
be overloaded [31]. An attribute called FuncSignature, which stores the method’s signature,
including the method name, the return type, and the type information of arguments, can be
used to resolve this kind of ambiguity.

When the user edits a method, a corresponding program tree, an internal representa-
tion of the method, is created and maintained by the program-database manager. Fig. 7
shows a sample program tree representing an if-then-else statement, and illustrates the as-
sociation relationships among model, view, and shape objects. The construction details of
program trees can be found in [24].

3.3.2 A message server for tool communication and coordination

Meyers listed a number of integration mechanisms applicable to modern software
development environments [16]. Typical integration mechanisms include shared file systems,
selective broadcasting, simple databases, view-oriented databases, and canonical repre-

Table 1. Class interfaces for supporting the construction of symbol tables (partial).

class FuncDecl: public DeclarationModel {
public:
 CString Return Type, ClassName, FuncName,
 AccessType;
 //The access type of a function can be either
 //“Private”, “Protectect”, “Public”, or “Global”
 CStringList ArgumentTypeList;

};
class VarDecl: public DeclarationModel {
public:
 CString VarType, className, VarName,
 AccessType;
 //The access type of variable can be either
 //“Local variable”,
 //“Parameter”, “Private”, “Protected”, or
 //“Public”
 FuncDecl *pfuncSignature;
 ...
};
Class ProgramDatabaseManager: public CObject {
public:
 CObList SymbolTable;
 //contains a list of ClassTable objects
 CObList Program Tree:
 //contains a list of Function objects
 ...
};

class ClassTable: public Cobject{
public:
ClassTable *pBaseClassTable;
CObList DerivedClassTableList;
 //contains a list of ClassTable objects
CObList FuncTableList:
 //contains a list of FuncTable objects
CString ClassName;
CObList PrivateAttributeLiast,

ProtectedAttributeList,
ProtectedAttributeList;

 //contains a list of VarDecl object
 CObList PrivateMethodList,
 ProtectedMethodList, PublicMethodList;
 //contains a list of funcDecl objects

};
class FuncTable: public CObject {
public:
 ClassTable *pClassTable;
 FuncDecl *pFuncSignature;
 CObList ArgumentList, LocalVariableList;
 //contains a list of VarDecl objects

};

VISUAL OBJECT-ORIENTED PROGRAMMING ENVIRONMENT 595

sentations (i.e., shared data structures). In such an environment, a constituent integration
mechanism is used for 1) communications between tools and 2) addition of new tools. Our
program-database manager, which provides the integration mechanism, is intended to pro-
vide infrastructure support for data, presentation, and control integration [32] among all
the tools in the VOOPE.

Data integration can be achieved easily because all tools access the internal program
representations through the program-database manager. Presentation integration means
that all front-end tools, which need to interact with users, have common and uniform user
interfaces. Presentation integration can also be achieved easily in our VOOPE because the
front-end tools use the same class hierarchy of view and shape objects to handle editing and
display tasks. Control integration concerns mechanisms that enable one tool to activate
other tools. In our VOOPE, the communication channels among the tools and the program-
database manager are typically message-driven, like the one proposed in [17], and the pro-
gram-database manager can be viewed as the message server. Therefore, a tool may be
activated when it receives a message from another tool through the program-database
manager.

3.3.3 An intermediator for storing and retrieving object-oriented programs

When the user edits object-oriented programs which contain a number of program
units, such as classes and methods, the programming activities most concerned are: 1) what
program units need be constructed, and 2) how they should be constructed. Storage man-
agement of these respective program units when interacting with the underlying file system
may be an extra burden for users. This work can be made semi-automatic with the help of

Fig. 7. Relationships among model, view, and shape objects.

Statement
model

Statement
v iew

Expression
view

IfThenElseStmnt
model

Statement
v iew

IfThenElseStmnt
view

Expression
model

Statement
model

<Expression>

<Statement> <Statement>

FalseTrue

: Object

: Object reference

Legend

: TMV

Dimaond
shape

Rectangle
shape

Rectangle
shape

SideToTopLink

SideToTopLink

BottomToSideLink

BottomToSideLink

Circle
shape

CHUNG-HUA HU AND FENG-JIAN WANG596

the program-database manager. To make the VOOPE act like a “fileless” environment
[23], the program-database manager maintains a program table to record related informa-
tion of program units, such as 1) types and names of program units, 2) the project name
these program units belong to, and 3) their respective storage locations. The association
relationship between a file and a program unit is generally one-to-many; i.e., a file may
contain more than one program unit.

To modify existing program units, all a user has to do is issue an editing command,
called “opening a program unit” with the unit name as a parameter, to the program-database
manager. Upon receiving the command, the program-database manager 1) opens the ap-
propriate file and locates the starting position where the program unit is stored; 2) loads the
context, including the source code associated with comments, of the program unit into
working memory; 3) transforms the context into the corresponding internal program
representation(s); and 4) invokes the programming tools to display the visual and/or textual
layouts of the internal program representations. Even if methods have the same names (i.e.,
are overloaded), the program-database manager can resolve the duplication by listing pos-
sible candidates for the user.

3.4 Tool Construction with the MVS Class Hierarchy

3.4.1 Design rationales

The MVS class hierarchy presented in this paper is basically an application frame-
work for tool construction through compositional reuse of software components, especially
graphical user interfaces. Our construction approach is to incorporate the tool’s functional-
ity into the programming environment by extending the MVS class hierarchy. When a tool
is to be introduced, the designer needs to study what functions the new tool will perform
and then examine the MVS class hierarchy to locate the attributes and methods in the cor-
responding classes that can be reused as well as the new class(es) and associated attributes/
methods that should be added. Reusing existing functions, such as those for the traversal of
program trees, can help reduce the effort needed to construct a new tool.

Tools in our VOOPE can be generally classified as front-end and back-end tools. For
those front-end tools that need to provide a variety of graphics-drawing facilities, shape
classes are reusable because they are application-independent while model and view classes
may be augmented with new functionalities. Moreover, front-end tools should maintain
consistency among multiple views [7, 16, 33]. Table 2 lists a number of methods for en-

Table 2. Class interfaces to support tool communication and coordination (partial).

class ProgramDatabaseManager: public CObject {
public:
 CObList RegisteredToolList;
 ...
 int Register(CObject *pTool);
 int Deregister(CObject *pTool);
 int ChangeFrom(CObject *pFromTool,...);
};

class FlowBasedEditor, LanguageBased TextEditor,
MessageHandler : public CScrollView {
public:
 int UpdateFrom(CObject *pFrom Tool,...);
 ...
};

VISUAL OBJECT-ORIENTED PROGRAMMING ENVIRONMENT 597

abling various front-end tools to coordinate their actions. Method Register() is used to add
tool-registration records to attribute RegisteredToolList while Deregister() removes them.
When a tool finishes modifying the internal program representations, it sends message
ChangeFrom(), which contains the modified data as parameters, to the program-database
manager. Upon receiving message ChangeFrom(), the program-database manager broad-
casts message UpdateFrom() to the tools registered in attribute ToolList to retrieve the
modified data for further processing.

Back-end tools, which do not interact with users directly, are activated by changes in
internal program representations or by commands from users. A back-end tool, such as a
semantic or data-flow analyzer, is constructed by 1) adding semantic attributes and evalu-
ation methods, which are used to implement the tool’s functionality, to the model classes in
the MVS class hierarchy, and 2) registering with the program-database manager using a
specific evaluation method, called an activation method, that will be triggered (by the
manager) to activate the tool’s services. Each of our back-end tools, in general, executes
with the node-evaluating and -marking process [34] operating on the program tree, while
the process is excuted via message-passing between model objects in the program tree.
When a model object receives a message, it evaluates the values of related semantic at-
tributes and then sends messages to its parent and/or child model objects if needed. During
the evaluation process, those language constructs, evaluated as outcomes, are indicated by
marking the corresponding model objects. Moreover, the user interfaces of new back-end
tools do not need to be constructed from scratch because existing view and shape objects,
supported in the MVS class hierarchy, can be used to display the analysis results.

The design and implementation details of most tools in our VOOPE, such as the
language-based text editor, message handler, incremental semantic analyzer, and data-flow
analyzer, can be found in [24, 35-37]. In the following, we give a short tool-construction
example to illustrate how a program slicer can be incorporated into our VOOPE.

3.4.2 A program slicer and its implementation

Program slicing, an automatic technique used to determine the statements which may
potentially affect or be affected by a variable at a given statement, aids program under-
standing by reducing the code a programmer must examine, and by presenting only a rel-
evant program subset of interest. Computation of program slices involves examining both
the data-flow and control-flow dependencies of a program. One typical approach [38, 39]
to computing program slices is to summarize and symbolize control-flow and data-flow
dependencies as edges of a directed graph, called a program dependence graph [40], in
which the vertices are the statements of a program. In this approach, a forward or backward
slice is computed by identifying the set of statements in the slice through forward or back-
ward transitive closure in this graph.

The most intuitive yet effective way to construct a program slicer is to reuse existing
data-flow analysis facilities, i.e., the attributes and methods of model classes, to compute
definition-use (DU) and use-definition (UD) chains [41], and to incorporate control-flow
analysis facilities into the slicer. The construction cost, compared with the effort needed
for the building-from-scratch approach, is reasonably low because the tool designer only
needs to concentrate on how to reuse the existing code and add some new functionalities to
the MVS class hierarchy. Another advantage is that our program slicer can work directly
on the program tree without the need to create and maintain redundant data structures, such
as program dependence graphs.

CHUNG-HUA HU AND FENG-JIAN WANG598

In our approach, a forward (or backward) slice is computed by reusing the function-
ality of the DU (or UD) analysis algorithm [35]) as a means of transitive closure. Specifically,
the functionality of an intraprocedural (i.e., intra-method) program slicer is systematically
handled using the following evaluation methods specified in the respective model classes,
as shown in Table 3: ComputeForwardSlice(), ComputeBackwardSlice(),
GetBranchExpressionsBackwardUp(), and GetBranchExpressionsBackward-Down(
). The first method is responsible for computing a forward slice with respect to a variable
defined, and the rest are responsible for computing a backward slice with respect to a vari-
able used. The term “forward” (or “backward”) shown in the method’ names denotes that
the computation sequence will basically follow (or reverse) the control flow of a program.
ComputeForwardSlice() and ComputeBackwardSlice() serve as two activation meth-
ods for init iat ing forward and backward sl icing, respectively. Methods
GetBranchExpressionsBackwardUp() and GetBranchExpressionsBackwardDown()
track and mark those expressions that may potentially affect the execution of a given state-
ment being sliced.

Table 4 shows a portion of the intraprocedural forward and backward slicing
algorithms. The forward slicing algorithm, in brief, invokes ComputeDUChain() transi-
tively to facilitate the forward slicing process. Likewise, the backward slicing algorithm is
highly associated with the functionality of the UD analysis algorithm. Fig. 8 shows an
example of computing a backward slice with respect to variable a after the user issues a
“show backward slice” command in the assignment statement “f = a”. Fig. 9 shows such a
message-passing flow based on the computation of UD chains.

Table 3. Model class interfaces for computing intraprocedural program slices (partial).

class Expression: public SimpleStmnt { class AssignmentStmnt: public SimpleStmnt {

public: public:

StringList UsedVariables; // reused attribute StringList DefinedVariable, UsedVariables;

//reused attributes

 void ComputeUDChain (...); // reused method void ComputeDUChain(...); // reused method

.... void ComputeUDChain(...); //reused method

void ComputeBackwardSlice(String variableName,

ModelList *pMarkedModels); void ComputeBackwardSlice(...);

void GetBranchExpressionsBackwardUp void ComputerForwardSlice(...);

(StatementModel *pFrom, void ComputerForwardSlice(...);

void GetBranchExpressionsBackwardUp void GetBranchExpressionsBackwardUp(...);

(StatementModel *pFrom, };

ModelList *pMarkedModels); class StmntList, IfThenElseStmnt, WhileStmnt....{

}; public:

 void GetBranchExpressionsBackwardUp(....);

 void GetBranchExpressionsBackwardDown(...);

 };

VISUAL OBJECT-ORIENTED PROGRAMMING ENVIRONMENT 599

Function AssignmentStmnt: ComputeForwardSlice

(variable Name, pMarked Models)

declare

variableName (IN variable): the name of a variable that

 is to be sliced

pMarkedModels(OUT variable): a list of model objects

 constituting a forward slice

pModel: a pointer to a SimpleStnmt object

varName: a variable’s name

begin

 ComputeDUChain(variableName, this, pMarkedModels)

/*Initiate a DU analysis w.r.t. variable ‘variableName’.

 After ComputeDUChain() completes ececution,

 pMarkedModels will collect a list of model objects

 constituting a DU chain.*/

 for each pModel pMarkedModels do

 If pModelÆObjectType=“AssignmentStmnt” or then

 for each varName Œ pModelÆDefinedVariables do

 pModelÆComputeDUChain(varName, this,

 pMarkedModels)

 od

 fi

 od

end

Table 4. Intraprocedural forward and backward slicing algorithms (partial).

Funct ionExpression: ComputeBackwardSl ice

(variableName, pMarkedModels)

declare

variableName(IN variable): the name of a variable that

 is to be sliced

pMarkedMOdels (OUT variable): a list of model objects

 constituting a backward slice

pModel: a pointer to a SimpleStmnt object

varName: a variable’s name

begin

 ComputeUDChain(variableName, this,

pMarkedModels)

 for each pModel Œ pMarkedModels do

 for each varName Œ pModelÆDefinedVariables do

 pModelÆComputeUDChain(varName, this,

 pMarkedModels)

 od

 pModelÆGetBranchExpressionsBackwardUp

(NULL, pMarkedModels)

 od

end

Fig. 8. A backward slice w.r.t. variable a in “f = a”.

CHUNG-HUA HU AND FENG-JIAN WANG600

Fig. 9. Computing a backward slice for Fig. 8.

4. PROGRAMMING ACTIVITIES IN OUR VOOPE

4.1 A Two-Phase Model for Object-Oriented Program Construction

In general, writing an object-oriented program consists of the following two phases
[42]:

1. Identifying the classes and defining their interfaces.
This phase is responsible for identifying classes, which are abstractions of the problem
domain, and their relationships, such as inheritance, aggregation, and association. Dur-
ing the class-identification process, class interfaces are defined. A class interface usu-
ally specifies the following information: 1) the class name, 2) the base class(es) of the
class, and 3) the definitions of attribute(s)/method(s) associated with their access
mechanisms, such as public, protected, and private. The class interfaces are usually
specified in header files, e.g., files called “*.h” in C++.

2. Implementing functional details of classes.

Assignment
Stmnt (f=a)

Funct ion

StmntList

I fThenElse
Stmnt

StmntList StmntList
Expression

(a<b)

StmntList
Assignment
Stmnt (a=c)

Whi leStmnt
Assignment

Stmnt
(d=a+e)

Expression
(a>f)

StmntList

Assignment
Stmnt (e=a)

StmntList

Assignment
Stmnt (a=d)

Assignment
Stmnt

(a=d+1)

Assignment
Stmnt (a=b)

I fThenElse
Stmnt

Expression
(a>1)

StmntList StmntList

Assignment
Stmnt (a=c)

Assignment
Stmnt (b=a)

Assignment
Stmnt (c=a)

Assignment
Stmnt

(a=a+1)

Legend

: Message ComputeBackwardSl ice()

: A UD chain

FuncHeader
(void ...(int a,

int b))

VISUAL OBJECT-ORIENTED PROGRAMMING ENVIRONMENT 601

Fig. 10. Defining method CalcContentTextDimension() of class CNode.

 Fig. 11. Defining attribute ContentText of class CNode.

After the first phase, the prototypical implementation of the classes may begin. In this
phase, methods defined in a class are implemented with respect to the implementation
language. For example, in the C++ language, class implementations are usually specified
in source files (i.e., “*.cpp”).

Figs. 10 and 11 show sample construction processes of class interfaces using two
programming tools, the flow-based editor and the language-based text editor. The editing
process supported by our editors is basically syntax-directed [13, 14]. For a placeholder of
structured statements, such as those shown in Fig. 4, the editor guides the user to replace it
with an instance of some structured statement. For a placeholder of “simple” language
constructs, such as assignment statements and expressions, the user can input program text
on it directly (i.e., in-place editing). In addition to the basic syntax-directed and in-place
editing facilities mentioned above, a number of useful facilities, such as zooming [18, 27,
43] and folding [44], are also supported by the editors. For example, the shadowed rect-
angles shown on the flow-based editing window denote that some program details are hid-
den by the user using the folding facilities. Moreover, as Fig. 12 shows, when the user

CHUNG-HUA HU AND FENG-JIAN WANG602

Syntax-directed editing guarantees that the program structure is syntactically correct.
In-place editing, however, may cause programming errors because users may input unpre-
dictable program text due to typing errors. This motivated us to design an assistant for in-
place editing, which can effectively minimize the occurrences of potential programming
errors in object-oriented programs.

4.2 An In-Place Editing Assistant

Consider the internal structure of an object-oriented program; several statement pat-
terns appear frequently in such a program. These statement patterns, which are listed below,
specify the flows of passing messages to objects:

Pattern 1. Message1(...) or Object1 = Message1(...)
Pattern 2. Object1.Message1(...) or Object2 = Object1.Message1(...)
Pattern 3. Object1.Object2.Message2(...) or Object3 = Object1.Object2.Message2(...)
...
Pattern n. Object1....Objectx.Messagex(...) or Objectn = Object1....Objectx.Messagex(...)

Let these statement patterns be called message-passing statements. Appendix A lists
the implementation details of a sample method and shows how the message-passing state-
ments are distributed in the corresponding program text. From the example in Appendix A,
it can be seen that these message-passing statements make object-oriented programs some-
what complex and hard to understand. We have designed an in-place editing assistant to
facilitate the construction of such statements. The main design issues for the editing assis-
tant involve: 1) How can the internal program information be systematically collected while
users are constructing object-oriented programs? 2) How can the editing assistant analyze
the information in order to provide useful programming assistance?

Fig. 12. An example of two-phase object-oriented program construction.

VISUAL OBJECT-ORIENTED PROGRAMMING ENVIRONMENT 603

The symbol table, which consists of class and function tables for storing binding
information of identifiers within various program scopes, provides valuable information
support for the editing assistant. For example, the declaration information of local vari-
ables and arguments of a method can be found in the corresponding function table whereas
the declaration information of attributes and methods of a class can be found in the corre-
sponding class table. From the viewpoint of object orientation, local variables, arguments,
and attributes are all treated as objects.

Before further discussion, an object-oriented program used to illustrate what the ed-
iting assistant does will be introduced. The program, including two header files,
“CLASSDEF1.H”and “CLASSDEF2.H”, and one source file, “PUBMETHODD. CPP”,
is presented in Appendix B. Fig. 13 shows the symbol table and program tree for these
programs. In Fig. 14, an example shows how the scope rules, and the scope-resolution
algorithm, adopted in contemporary object-oriented languages [10, 31], resolve an identi-
fier specified in method PubMethD() of class ClassD by traversing the symbol table.

Fig. 13. Internal program representations of object-oriented programs presented in Appendix B.

Fig. 14. An example of scope resolution for the symbol table shown in Fig. 13.

Program-database manager

ClassA

ClassB

ClassC

ClassD

ClassE

PubMethD() ProMethD() Pr iMethD()

...

...

... ...

ClassG

...

ClassF

...

... : Class table

Legend

: Function table

: Attribute SymbolTable

: Program-tree node

C lassD
PriAt t rD
ProAt t rD
PubAt t rD
Pr iMethD()
ProMethD()
PubMethD()

PubMethD()
Loca lVarD1
ArguD1
ArguD2

C lassC
PriAt t rC
ProAt t rC
PubAt t rC
Pr iMethC()
ProMethC()
PubMethC()

C lassA
PriAt t rA
ProAt t rA
PubAt t rA
Pr iMethA()
ProMethA()
PubMethA()

C lassB
PriAt t rB
ProAt t rB
PubAt t rB
Pr iMethB()
ProMethB()
PubMethB()

C lassE

......

C lassG

......

C lassF

......

......

: Class scope

Legend

: Local scope

: Fi le scope

: Enclosing scope

CHUNG-HUA HU AND FENG-JIAN WANG604

Message-passing statements usually consist of two main components: objects and
messages. To assist users in constructing such statements, the editing assistant may system-
atically traverse the symbol table by following the scope rules to collect the objects and
messages that are accessible. These objects and messages are referred to as available ob-
jects and available messages, respectively. The following design guidelines summarize
how the editing assistant collects these available objects and messages associated with an
example of specifying a message-passing statement in method M() of class C. To make the
editing assistant more applicable to object-oriented languages, such as Smalltalk and Java,
three specific C++ features involving friend, multiple inheritance, and nested classes have
not been included, and all derived classes are assumed to inherit their base classes via the
“public” access type (i.e., class DerivedClass : public BaseClass {};).
Guideline 1. If the object previously specified is declared as a type of class C (e.g., C* Obj

or C Obj), then the subsequent available objects are classified into four
categories: 1) local variable(s) of method M(), 2) argument(s) of method M
(), 3) private, protected, and public attribute(s) of class C, and 4) protected
and public attribute(s) of the base class(es) of class C. The base classes of
class C are those with class scopes enclosing the C class scope. For example,
the base classes of class E in Appendix B are classes B and A. On the other
hand, the subsequent available messages are classified into two categories:
1) private, protected, and public method(s) of class C, and 2) protected and
public method(s) of the base class(es) of class C.

Fig. 15. Selecting an available object.

Guideline 2. If the object previously specified is declared to be a type of class B, not class
C, then the subsequent available objects are classified into two categories: 1)
public attribute(s) of class B, and 2) public attribute(s) of the base class(es)
of class B. On the other hand, the subsequent available messages are classi-
fied into two categories: 1) public method(s) of class B, and 2) public method
(s) of the base class(es) of class B.

Fig. 15 shows the user-interface part of the editing assistant, which consists of three
panels: the available-object, available-message, and source-code panels. The available-
object panel lists four object items: object name, object type, visible scope, and access type.

VISUAL OBJECT-ORIENTED PROGRAMMING ENVIRONMENT 605

The visible scope is the scope within which an object is declared, while each object is
associated with one-of the following five access types: local variable, argument, private,
protected, and public. For example, the local variable LocalVarD1 of method PubMethD
() is declared to be an object pointer to class ClassE, and the available-object panel will
display the following object information:

Object Name Object Type Visible Scope Access Type
LocalVarD1 ClassE* ClassD::PubMethD(...) Local variable

The available-message panel lists five items associated with a method: method name,
return type, argument type, visible scope, and access type. The visible scope is the scope
within which a method is declared. There are four access types: private, protected, public,
and global, and a method is associated with one type. Overloaded methods can easily be
distinguished on this panel because the return and argument types of overloaded methods
are different. The source-code panel is used to show the program text of message-passing
statements. The user can directly input program text on the source-code panel or use a
pointing device (e.g., the mouse) to select the names of objects/messages on the available-
object/available-message panels. During the object (or message) selection process, the cor-
responding names are displayed on the source-code panel.

4.3 Some Examples Using the Editing Assistant

To clarify the guidelines mentioned above, a programming example based on the
sample programs given in Appendix B is used to show how the user specifies message-
passing statements in method PubMethD() of class ClassD. As Fig 16 shows, let the user
edit a message-passing statement which looks like “Object3 = Object1.Object2.Message2
(...)”. After the user selects an object called “PriAttrD ” with the object type ClassE*, the
editing assistant employs Guideline 2 to collect and display the associated available objects
and available messages, as shown in Fig. 16. Figs. 17 and 18 show similar editing activities.
In Fig. 19, the source-code panel shows a message-passing statement which is syntactically

Fig. 16. Selecting an available object.

CHUNG-HUA HU AND FENG-JIAN WANG606

and semantically correct. The member selection operator, “.” or “ ->”, is chosen automati-
cally by the editing assistant according to the type information of the object previously
specified. By interacting with the editing assistant, the user is free from having to type this
operator and, thus, can avoid making potential typing errors.

Although the editing assistant provides language-level assistance for specifying such
message-passing statements, the user still needs to take care of the cases in which an avail-
able object may be un-initialized (i.e., has no memory allocation). For example, the mes-
sage-passing statement shown in Fig. 19 contains the local variable LocalVarD1 as the
parameter of message PriAttrD->PubAttrE.PubMethF() . Any reference to the contents
of LocalVarD1 will incur a runtime error because LocalVarD1 is un-initialized as yet.

Fig. 18. Selecting an available object.

Fig. 17. Selecting an available message.

VISUAL OBJECT-ORIENTED PROGRAMMING ENVIRONMENT 607

5. RELATED WORK

Many studies on visual programming environments can be found in the literature [1,
2, 4, 46, 47]. On one hand, some of them work on object-oriented languages, and some
work on procedural or special-purpose languages. On the other hand, some of them are
based on visual syntax and some on textual syntax. This section mainly discusses a number
of visual environments that are able to construct object-oriented programs. To make more
consistent and objective comparisons of these existing VOOPEs [5, 7-9], we discuss in the
following the main features and mechanisms of these VOOPEs in terms of three criteria:
program construction, program visualization, and environment evolution. Program con-
struction is concerned with how the interaction facilities help users to effectively construct
object-oriented programs in a visual, textual, and/or incremental way. Program visualiza-
tion is concerned with how the VOOPE manages multiple and consistent views of (large)
programs. Environment evolution refers to how the VOOPE can be integrated with new
tool, and customized according to different users’ needs.

Visual C++ [9] provides an integrated environment for creating windows-based
applications, a framework to begin with, and tools which allow the user to customize his
applications. With program construction, Visual C++ is a purely textual, not visual, pro-
gramming environment. Nevertheless, Visual C++ provides a rich set of text-based, multi-
window editing facilities that enable experienced users to efficiently construct programs.
For example, it can highlight keywords and format code and parentheses by performing
lexical analysis on programs being edited. With program visualization, Visual C++ facili-
tates program understanding by displaying associated class hierarchies and call graphs, and
by providing a navigation facility to locate the definition and reference(s) of an identifier.
Consistency maintenance of multiple views is ensured by employing a update-notification

Fig. 19. Specifying a message-passing statement in method PubMethD() of class ClassD.

CHUNG-HUA HU AND FENG-JIAN WANG608

mechanism based on the document-view architecture. With environment evolution, a
Microsoft Foundation Classes (MFC) library [26], an object-oriented framework for Visual
C++, can be reused and extended in constructing other, new tools. The Visual C++ envi-
ronment itself also can be easily customized by enabling (or disabling) existing functions.

SPE (Snart Programming Environment) [7] is an integrated, yet extensible, environ-
ment for all phases of software development in the Snart language. With program
construction, SPE supports multiple visual and textual views, each of which can be used to
construct and visualize a program. Specifically, the user can create visual windows to
depict inheritance and aggregation relationships among classes and/or call graphs denoting
the calling relationships among methods. Textual windows are mainly used to work on
program details, such as method implementations and class interfaces. This means that
SPE is unable to construct program details in a visual way. Moreover, SPE provides simple
editing assistance, such as undo and redo facilities, for program construction. With pro-
gram visualization, SPE employs a mechanism called update records to automatically main-
tain consistency among multiple views of a program. A navigation facility equipped with
hyperlinks helps the user navigate through various views. With environment evolution,
MViews [48], a generic object-oriented framework, provides basic support for customizing
a multiple-view based programming environment and for constructing and integrating new
tools. SPE and GERNO, a visual debugger for Snart programs, are specialization examples
of MViews.

MCPE (Multitasking C++ based Programming Environment) [8] is an integrated
programming environment for programming in C++. The main goal of MCPE is to solve
two problems: response degression (i.e., an increasing execution delay when more tools
have been included in an environment) and poor extensibility (i.e., difficulties in adding
new tools to an environment). With program construction, MCPE can contain a number
tools, such as a flow editor and a syntax-directed editor, to perform visual and textual
programming. According to its present implementations, programming activities are still
done textually, so MCPE may be better classified as a visual environment, not as a visual
programming environment. With program visualization, MCPE supports multiple views
and employs shared data structures to maintain consistency among these views. With
environment evolution, the MCPE framework simplifies the addition of new tools by using
a similar model-view-controller architecture [49] and an event notification scheme.

Prograph [5] is a general purpose, object-oriented, visual programming language and
environment. The Prograph language combines both object-oriented and data-flow para-
digms while the integrated environment consists of a graphical editor, an interpreter, and an
application builder. With program construction, all programming activities are done visu-
ally by connecting graphical shapes with a mouse. Specifically, methods are implemented
by drawing the associated data-flow diagrams. It should be noted that these drawings are
the code; there is no corresponding textual representation. Moreover, the editor provides
context sensitive interpretations of mouse clicks, so that only appropriate actions are
performed, thereby preventing the construction of any syntactically incorrect programs.
With program visualization, Prograph supports multiple views by creating an edit window
for each major component of a program. With environment evolution, a rich class library,
called Application Building Classes, may become available to construct and integrate new
tools in the Prograph environment.

VISUAL OBJECT-ORIENTED PROGRAMMING ENVIRONMENT 609

6. CONCLUSIONS AND FUTURE WORK

Compared with the above VOOPEs, the features and deficiencies of our VOOPE can
be summarized as follows. With program construction, our VOOPE provides visual and
textual editors that can be invoked on demand to construct and visualize object-oriented
programs in any level of detail. For example, a two-phase programming model equipped
with syntax-directed editing facilities has been designed to help construct class interfaces
and method implementations. However, syntax-directed editing is often criticized in that it
puts more restrictions on (experienced) users [43, 50]. To alleviate this difficulty, our
VOOPE provides an in-place editing assistant that writes some program statements directly
without the need to expand templates further. This editing assistant is quite general and is
thought to be widely applicable to most object-oriented languages. A syntax analyzer asso-
ciated with an incremental semantic analyzer can deal with incomplete program fragments
so as to locate possible errors during programming. Our current semantic analyzer pro-
vides some primitive functions for checking naming and type errors, such as undeclared/
redeclared identifiers and type incompatibility.

With program visualization, a program-database manager maintains multiple and con-
sistent views by providing a channel, similar to the update-notification mechanism, for tool
communication and coordination. Our VOOPE also provides zooming and folding facili-
ties to effectively display large programs. With environment evolution, the MVS class
hierarchy can potentially be reused to construct new tools for an existing VOOPE or an
integrated visual programming environment supporting more than one language. Our cur-
rent programming methodology with respect to tool construction and integration is still
imperative, i.e., it requires manual detailing of source code to the MVS class hierarchy.
This methodology may require more effort than the environment-generation approaches
[51].

Usability analysis [52] can be employed to make the VOOPE more practical and
robust. We plan to perform usability analysis on the current VOOPE, including analysis of
friendliness and user acceptance, for users with various levels of programming experience.
Their comments will be the basis for revising the current version. We also plan to construct
a syntax-recognizing editor [19] that may be preferred by experienced users. On the other
hand, some object-oriented language features also make object-oriented programs some-
what difficult to understand and debug. One of our future projects is to construct an incre-
mental code generator and a dynamic visualization tool for examining the dynamic (i.e.,
runtime) structures of object-oriented programs, so that “incremetality” and “interactivity”
can be fully applied to various phases of program development, including coding, compiling,
and debugging.

CHUNG-HUA HU AND FENG-JIAN WANG610

APPENDIX

A. Message-passing statements located in a sample C++ program.

Int StatementModel::LoadPTStructure(CDC *pDC, int modelID, IPTFormat *IPTArray)

{

 CString sourceCode;

 Rect oldViewDimension;

 Point midTop;

 int result;

 sourceCode = *(IPTArray[modelID].sourceCode);

 SetSourceCode(sourceCode); //Pattern 1: Message1(...)

 if (!sourceCode.IsEmpty()){ //Pattern 2: Object1.Message1(...)

 if (pCurrentView->pDefaultView !=NLL){ //Pattern 2: Object->Message1(...)

 pCurrentView->SetViewContent(sourceCode); //Pattern 2: Object2 = Object1->Message1(...)

 midTop = pCurrentView-> Get Mid Top P6 (); //Pattern 2: Object1->Message1(...)

 pCurrentView->PlaceView(pDC, midTop); pCurrentview, oldviewdimension);

 pCurrentView->pParentView->ChildViewChanged(pDC, //Pattern 3: Object1->Object2->Message2(...)

 }

 }

 SetComment(*IPTArray[modelID].comment)); //Pattern 1: Message1(...)

 result = Parse(pDC); //Pattern 1: Object = Message1(...)

 return result;

}

B. Sample object-oriented programs.

/CLASSDEF1.H

 Include ‘CLASSDEF2.H’

class ClassA {

private:

 int PriAttrA;

 int PriMethA(float, char*);

protected:

 float ProAttrA;

 float ProMethA(int, char*);

public:

 char* PubAttrA;

 char* PubMethA(Int, flaot);

};

class ClassB: public ClassA{

private:

 float PriAttrB;

 float PriMethB(int, char*);

};

class ClassD; //forward decl.

class ClassC: public ClassB{

private:

 char* PriAttrC;

 char* PriMethC(int, float);

protected:

 ClassD* ProAttrC;

 int ProMethC(float, char*);

public:

 float PubAttrC;

 float PubMethC(int, char*);

};

class ClassE: public ClassB{

private:

 int PriAttrE;

};

class ClassD: public ClassC

private:

 ClassE* PriAttrD;

 float PriMethD(int, char*);

protected:

 char*ProAttrD;

 char*ProMethD(int. float);

public:

 int PubAttrD;

 int PubMethD(float, char*);

};

//PUBMETHOOD.CPP

 #include ‘CLASSDEF1.H’

 int ClassD::PubMethd(

 float ArguD1, char* ArguD2)

{.....}

//CLASS DEF2.H

class ClassA, ClassE;

 class ClassF{

private:

 int PriAttrF;

 int PriMethF(float, char*);

protected;

 float ProAttrF;

 float ProMethF(int, char*);

public:

 char* PubAttrF;

 ClassA* PubMethF(ClassE*);

};

class ClassG: public ClassF{

private:

 float PriMethG(Int, char*);

};

VISUAL OBJECT-ORIENTED PROGRAMMING ENVIRONMENT 611

REFERENCES

1. Visual Programming, N. C. Shu (ed.), Van Nostrand Reinhold, 1988.
2. Principles of Visual Programming Language Systems, S. K. Chang (ed.), Prentice-

Hall, 1990.
3. A. Ambler and M. M. Burnett, “Influence of visual technology on the evolution of

language environments,” IEEE Computer, Vol. 22, No. 10, 1989, pp. 9-22.
4. Visual Object-Oriented Programming: Concepts and Environments, M. M. Burnett, A.

Goldberg and T. Lewis (eds.), Prentice-Hall, 1994.
5. P. T. Cox, F. R. Giles and T. Pietrzykowski, “Prograph: a step towards liberating pro-

gramming from textual conditioning,” in Proceedings of IEEE Workshop on Visual
Programming, 1989, pp. 150-156.

6. W. Citrin, M. Doherty and B. Zorn, “The design of a completely visual object-oriented
programming language,” in Visual Object-Oriented Programming: Concepts and
Environments, M. M. Burnett, A. Goldberg and T. Lewis (eds.), Prentice-Hall, 1994,
pp. 67-93.

7. J. C. Grundy, et al., “Connecting the pieces,” in Visual Object-Oriented Programming:
Concepts and Environments, M. M. Burnett, A. Goldberg and T. Lewis (eds.), Prentice-
Hall, 1994, pp. 229-252.

8. P. C. Wu and F. J. Wang, “Framework of a multitasking C++ based programming
environment MCPE,” Journal of Systems Integration, Vol. 2, No. 1, 1992, pp. 181-203.

9. Kruglinski, D. J., Inside Visual C++, 4th edition, Microsoft press, 1997.
10. A. Goldberg, Smalltalk-80: The Interactive Programming Environment, Addison-

Wesley, 1983.
11. A. N. Habermann and D. Notkin, “Gandalf: software development environments,” IEEE

Transactions on Software Engineering, Vol. SE-12, No. 12, 1986, pp. 1117-1127.
12. Interactive Programming Environments, D. R. Barstow, H. E. Shrobe and E. Sandewall

(eds.), McGraw-Hill, 1984.
13. T. Teitelbaum and T. Reps, “The Cornell program synthesizer: a syntax-directed pro-

gramming environment,” Communications of the ACM, Vol. 24, No. 9, 1981, pp. 563-
573.

14. R. Medina-Mora and P. H. Feiler, “An incremental programming environment,” IEEE
Transactions on Software Engineering, Vol. 7, No. 5, 1981, pp. 472-481.

15. B. Shneiderman, “Direct manipulation: a step beyond programming languages,” IEEE
Computer, Vol. 16, No. 8, 1983, pp. 57-68.

16. S. Meyers, “Difficulties in integrating multiview development systems,” IEEE Software,
Vol. 8, No. 1, 1991, pp. 49-57.

17. S. P. Reiss, “Connecting tools using message passing in the Field program develop-
ment environment,” IEEE Software, Vol. 7, No. 4, 1990, pp. 57-66.

18. K. Halewood and M. R. Woodward, “A uniform graphical view of the program con-
struction process: GRIPSE,” International Journal of Man-Machine Studies, Vol. 38,
No. 5, 1993, pp. 805-837.

19. R. A. Ballance, S. L. Graham and M. L. Van De Vanter, “The pan language-based
editing system,” ACM Transactions on Software Engineering and Methodology, Vol. 1,
No. 1, 1992, pp. 95-127.

20. T. Tenma, et al., “A system for generating language-oriented editors,” IEEE Transac-

CHUNG-HUA HU AND FENG-JIAN WANG612

tions on Software Engineering, Vol. 14, No. 8, 1988, pp. 1098-1109.
21. C. Rich and R. C. Waters, The Programmer’s Apprentice, ACM press, 1990.
22. G. E. Kaiser, P. H. Feiler and S. S. Popovich, “Intelligent assistance for software devel-

opment and maintenance,” IEEE Software, Vol. 5, No. 3, 1988, pp. 40-49.
23. G. E. Kaiser and P. H. Feiler, “Intelligent assistance without artificial intelligence,”

Thirty-second IEEE Computer Society International Conference, 1987, pp. 236-241.
24. C. H. Hu and F. J. Wang, “Constructing an integrated visual programming environment,

” Software - Practice and Experience, to appear, 1998.
25. C. H. Hu and F. J. Wang, “Constructing flow-based editors with a model-view-shape

architecture,” in Proceedings of the International Conference on Distributed System,
Software Engineering, and Database System, 1996, pp. 391-397.

26. Microsoft Foundation Class Library Reference, Microsoft Press, 1997.
27. W. Citrin, R. Hall and B. Zorn, “Addressing the scalability problem in visual programming,”

Technical Report, CU-CS-768-95, Department of Computer Science, University of
Colorado, Boulder, 1995.

28. K. J. Lieberherr, I. Silva-Lepe and C. Xiao, “Adaptive object-oriented programming
using graph-based customization,” Communications of the ACM, Vol. 37, No. 5, 1994,
pp. 94-101.

29. K. Koskimies and H. Mossenbock, “Scene: Using scenario diagrams and active text for
illustrating object-oriented programs,” in Proceedings of International Conference on
Software Engineering, 1996, pp. 366-375.

30. W. De Pauw, D. Kimelman and J. Vlissides, “Modeling object-oriented program
execution,” in Proceedings of European Conference on object-orient Programming ’94,
1994, pp. 163-182.

31. B. Stroustrup, The C++ Programming Language, 2nd edition, Addison-Wesley, 1991.
32. I. Sommerville, Software Engineering, 5th edition, Addison-Wesley, 1996.
33. S. P. Reiss, “PECAN: program development systems that support multiple views,”

IEEE Transactions on Software Engineering, Vol. 11, No. 3, 1985, pp. 276-285.
34. A. M. Sloane and J. Holdsworth, “Beyond traditional program slicing,” in Proceedings

of the 1996 International Symposium on Software Testing and Analysis, 1996, pp.180-
186.

35. C. H. Hu, F. J. Wang and W. C. Chu, “Incorporating flow analysis into a flow-based
editor,” in Proceedings of the National Computer Symposium, 1997, pp. D53-D60.

36. H. C. Liao, M. F. Chen and F. J. Wang, “A domain-independent software reuse frame-
work based on a hierarchical thesaurus,” revised and submitted to Software - Practice
and Experience, 1997.

37. C. H. Hu, F. J. Wang and J. C. Wang, “Constructing a language-based editor with
object-oriented techniques,” Journal of Information Science and Engineering, Vol. 11,
No. 4, 1995, pp. 1-25.

38. M. Weiser, “Program slicing,” IEEE Transactions on Software Engineering, Vol. 10,
No. 4, 1984, pp. 352-357.

39. S. Horwitz, T. Reps and D. Binkley, “Interprocedural slicing using dependence graphs,
” ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, 1990,
pp. 26-60.

40. J. Ferrante, K. Ottenstein and J. Warren, “The program dependence graph and its use in
optimization,” ACM Transactions on Programming Languages and Systems, Vol. 9,
No. 5, 1987, pp. 319-349.

VISUAL OBJECT-ORIENTED PROGRAMMING ENVIRONMENT 613

41. A. V. Aho, R. Sethi and J. D. Ullman, Compilers: Principles, Techniques, and Tools,
Addison-Wesley, 1986.

42. S. B. Lippman, C++ Primer, 2nd edition, Addison-Wesley, 1990.
43. J. Welsh, B. Broom and D. Kiong, “A design rationale for a language-based editor,”

Software - Practice and Experience, Vol. 21, No. 9, 1991, pp. 923-947.
44. H. Mossenbock and K. Koskimies, “Active text for structuring and understanding source

code,” Software - Practice and Experience, Vol. 26, No. 7, 1996, pp. 833-850.
45. C. H. Hu and F. J. Wang, “Implementing multi-layered editing facilities in a flow-based

editor,” in Proceedings of the 7th Workshop on Object-Oriented Techniques and
Applications, Taiwan, 1996, pp. 388-396.

46. Visual Programming Environments: Applications and Issues, E. Glinert (ed.), IEEE CS
Press, 1990.

47. Visual Programming Environments: Paradigms and Systems, E. Glinert (ed.), IEEE CS
Press, 1990.

48. J. C. Grundy and J. G. Hosking, “Constructing multi-view editing environments using
MViews,” in Proceedings of 1993 IEEE Symposium on Visual Languages, 1993, pp.
220-224.

49. G. E. Krasner and S. T. Rope, “A cookbook for using the model-view-controller user
interface paradigm in Smalltalk-80,” Journal of Object-Oriented Programming, Vol. 1,
No. 3, 1988, pp. 26-49.

50. S. Minor, “Interacting with structure-oriented editors,” International Journal of Man-
Machine Studies, Vol. 37, No. 10, 1992, pp. 399-418.

51. G. Costagliola, et al., “Automatic generation of visual programming environments,”
IEEE Computer, Vol. 28, No. 3, 1995, pp. 56-66.

52.T. R. G. Green and M. Petre, “Usability analysis of visual programming environments:
a ‘cognitive dimensions’ framework,” Journal of Visual Languages and Computing,
Vol. 7, No. 2, 1996, pp. 131-174.

Chung-Hua Hu (-J¥òµØ) received his B.S., M.S. and Ph. D.
degrees in computer science and information engineering from Na-
tional Chiao Tung University, Taiwan, R.O.C., in 1992, 1994, and
1998. He is currently an associate researcher working at Chunghwa
Telecommunication Laboratories. His research interests include
software engineering, object-oriented techniques, visual
programming, and network management.

CHUNG-HUA HU AND FENG-JIAN WANG614

Feng-Jian Wang (¤ýÂ×°í) graduated from National Taiwan
University, Taiwan, R.O.C., in 1980. He received his M.S. and Ph.
D. degrees in E.E.C.S. from Northwestern University, U.S.A., in
1986 and 1988. He is currently a professor in the Department of
Computer Science and Information Engineering, National Chiao
Tung University. His research interests include software
engineering, compiler construction, object-oriented techniques, and
distributed system software.

