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SUMMARY
Process capability indicesCp, Cpk andCpm have been used in manufacturing industries to provide a quantitative
measure of process potential and performance. The formulae for these indices are easy to understand and
straightforward to apply. However, since sample data must be collected in order to calculate these indices, a great
degree of uncertainty may be introduced into capability assessments owing to sampling errors. Currently, most
practitioners simply look at the value of the index calculated from the sample data and then make a conclusion on
whether the given process meets the capability (quality) requirement. This approach is not reliable, since sampling
errors are ignored. Cheng (Qual. Engng., 7,239–259 (1994)) has developed a procedure involving estimators ofCp
andCpm for practitioners to use to determine whether a process meets the capability requirement or not. However,
no procedure forCpk was given, because difficulties were encountered in calculating the sampling distribution
of the estimator ofCpk. In this paper we use a newly proposed estimator ofCpk to develop a procedure for
practitioners to use so that decisions made in assessing process capability are more reliable. Copyright 1999
John Wiley & Sons, Ltd.

KEY WORDS: process capability indices; non-centralt distribution; critical values; power of the test;α risk;
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INTRODUCTION

Understanding processes and quantifying process
performance are essential for any successful quality
improvement initiative. The relationship between the
actual process performance and the specification limits
or tolerance may be quantified using appropriate
process capability indices. Three capability indices
commonly used in manufacturing industries areCp,
Cpk and Cpm. These indices, providing numerical
measures of whether a production process meets
predetermined specification limits, have been defined
as

Cp = USL − LSL

3σ

Cpk = min

{
USL − µ

3σ
,
µ − LSL

3σ

}

Cpm = USL − LSL

3
√

σ 2 + (µ − T )2

∗Correspondence to: W. L. Pearn, Department of Industrial
Engineering and Management, National Chiao Tung University,
1001 Ta Hsueh Road, Hsinchu, Taiwan 30050, Republic of China.

where USL is the upper specification limit, LSL
is the lower specification limit,µ is the process
mean,σ is the process standard deviation (overall
process variability) andT is the target value. The
formulae for these indices are easy to understand
and straightforward to apply. However, in order
to calculate these indices, sample data must be
collected. Therefore a great degree of uncertainty may
be introduced into capability assessments owing to
sampling errors. Currently, most practitioners simply
look at the value of the estimators calculated from the
sample data and then make a conclusion on whether
the given process meets the capability (quality)
requirement or not. This approach is highly unreliable,
since sampling errors have been ignored. Chen [1] has
developed a procedure (using estimators ofCp and
Cpm) for practitioners to use to determine if a process
satisfies the targeted quality condition. However, no
procedure forCpk was given, because difficulties were
encountered in calculating the sampling distribution of
the estimator ofCpk. In this paper we use an estimator
of Cpk proposed by Pearn and Chen [2] to develop
a simple procedure for practitioners to use so that
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decisions made in assessing process capability are
more reliable.

ESTIMATION OFCpk

Three estimators have been proposed to estimate the
Cpk value, namely (a) Bissell’s estimatorĈ ′

pk [3], (b)

the natural estimator̂Cpk [4] and (c) the Bayesian-
like estimatorĈ ′′

pk [2]. Bissell’s estimator assumes
the knowledge ofP(µ ≥ m) = 0 or 1, where
m = (USL + LSL)/2. If µ ≥ m, then Ĉ ′

pk =
(USL − X̄)/3S; otherwise,Ĉ ′

pk = (X̄ − LSL)/3S.
Kotz et al.[4] investigated a different estimator ofCpk

which is defined aŝCpk = min{(USL − X̄)/3S, (X̄ −
LSL)/3S}, whereX̄ = (

∑n
i=1 Xi )/n andS = {(n −

1)−1∑n
i=1(Xi − X̄)2}1/2 are conventional estimators

of µ and σ which may be obtained from a stable
process. Both estimatorŝC ′

pk andĈpk are biased, but

Kotz et al. [4] showed that the variance of̂Cpk is
smaller than that of Bissell’s estimator.

Pearn and Chen [2] considered a Bayesian-like
estimatorĈ ′′

pk to relax Bissell’s assumption on the

process mean. The evaluation of the estimatorĈ ′′
pk

only requires the knowledge ofP(µ ≥ m) = p
or P(µ < m) = 1 − p, where 0 ≤ p ≤ 1,
which may be obtained from historical information on
a stable process. Clearly, ifP(µ ≥ m) = 0 or 1, then
the estimatorĈ ′′

pk reduces to Bissell’s estimator. The

estimator is defined aŝC ′′
pk = {d −(X̄ −m)IA(µ)}/3S,

whereIA(µ) = 1 if µ ∈ A, IA(µ) = −1 if µ 6∈ A,
andA = {µ|µ ≥ m}.

Pearn and Chen [2] showed that under the
assumption of normality the distribution of the
estimator 3n1/2Ĉ ′′

pk is tn−1(δ), a non-centralt with
n −1 degrees of freedom and non-centrality parameter
δ = 3n1/2Cpk. The probability density function can be
expressed as

f (x)

= 3n1/2

2n/20

(
n − 1

2

)
(π(n − 1)]1/2

∫ ∞

0
y(n−2)/2

×exp

(
− y + 9n[xy1/2(n − 1)−1/2 − Cpk]2

2

)
dy

Pearn and Chen [2] also showed that by adding
the well-known correction factorbf to the estimator
Ĉ ′′

pk, wherebf = [2/(n − 1)]1/20[(n − 1)/2]{0[(n −
2)/2]}−1, an unbiased estimator̃Cpk = bfĈ ′′

pk can be

obtained. They also showed that the variance ofC̃pk

Table 1. Quality conditions andCpk values

Quality condition Cpk value

Inadequate Cpk < 1.00
Capable 1.00 ≤ Cpk < 1.33
Satisfactory 1.33 ≤ Cpk < 1.50
Excellent 1.50 ≤ Cpk < 2.00
Super 2.00 ≤ Cpk

is smaller than those of̂C ′
pk and Ĉpk. Therefore in

this paper we will use the unbiased estimatorC̃pk to
develop a simple procedure, similar to those described
in References [1] and [5], for the indexCpk.

TEST HYPOTHESIS

A process is called ‘inadequate’ ifCpk < 1.00:
this indicates that the process is not adequate with
respect to the production tolerances; either the process
variation (σ 2) needs to be reduced or the process
mean (µ) needs to be shifted closer to the target
value. A process is called ‘capable’ if 1.00 ≤
Cpk < 1.33: this indicates that caution needs to be
taken regarding the process distribution; some process
control is required. A process is called ‘satisfactory’ if
1.33 ≤ Cpk < 1.50: this indicates that the process
quality is satisfactory; material substitution may be
allowed and no stringent quality control is required. A
process is called ‘excellent’ if 1.50 ≤ Cpk < 2.00.
Finally, a process is called ‘super’ ifCpk ≥ 2.00.
Table1 summarizes the five quality conditions and the
correspondingCpk values.

To determine whether a given process meets the
capability requirement and runs under the desired
quality condition, we can consider the following
statistical test hypothesis. The process meets the
capability (quality) requirement ifCpk > C, and fails
to meet the capability requirement ifCpk ≤ C:

H0 : Cpk ≤ C

H1 : Cpk > C

The critical valueC0 is determined by

p{C̃pk > C0|Cpk = C} = α

p{bfĈ
′′
pk > C0|Cpk = C} = α

p

{
Ĉ ′′

pk >
C0

bf

∣∣∣∣Cpk = C

}
= α

p

{
3n1/2Ĉ ′′

pk >
3n1/2C0

bf

∣∣∣∣∣Cpk = C

}
= α
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p

{
tn−1(δc) >

3n1/2C0

bf

}
= α

whereδc = 3n1/2C. Hence we have

3n1/2C0

bf
= tn−1,α(δc)

wheretn−1,α(δc) is the upperα is the upperα quantile
of thetn−1(δc) distribution, or

C0 = bf

3n1/2
tn−1,α(δc)

The power of the test can be computed as

π(Cpk) = p{C̃pk > C0|Cpk}
= p{bfĈ

′′
pk > C0|Cpk}

= p

{
Ĉ ′′

pk >
C0

bf

∣∣∣∣Cpk

}

= p

{
3n1/2Ĉ ′′

pk >
3n1/2C0

bf

∣∣∣∣∣Cpk

}

= p

{
tn−1(δ) >

3n1/2C0

bf

}

whereδ = 3n1/2Cpk.

MAKING DECISIONS

Tables2(a)–2(d)display critical valuesC0 for C =
1.00, 1.33, 1.50 and 2.00 respectively with sample
sizesn = 10(5)250 andα risk = 0.01, 0.025 and
0.05. The computer program (using SAS) generating
the tables is available from the authors. To determine if
the process meets the capability (quality) requirement,
we first determineC and theα risk. Then we calculate
the value of the estimator̃Cpk from the sample. From
the appropriate table we find the critical valueC0
based onα risk, C and sample sizen. If the estimated
value C̃pk is greater than the critical valueC0, then
we conclude that the process meets the capability
(quality) requirement. Otherwise, we do not have
sufficient information to conclude that the process
meets the present capability requirement.

The procedure

1. Determine the value ofC (normally chosen
from Table 1), the desired quality condition,
and the α risk (normally set to 0.01, 0.025
or 0.05), the chance of incorrectly accepting
an incapable process (which does not meet the
quality requirement) as a capable process (which
meets the quality requirement).

Table 2(a). Critical valuesC0 for C = 1.00, n = 10(5)250 and
α = 0.01, 0.025, 0.05

n α = 0.01 α = 0.025 α = 0.05

10 1.957 1.175 1.541
15 1.686 1.529 1.411
20 1.556 1.436 1.343
25 1.477 1.377 1.299
30 1.422 1.337 1.269
35 1.383 1.306 1.246
40 1.352 1.283 1.228
45 1.327 1.264 1.213
50 1.307 1.248 1.201
55 1.290 1.235 1.190
60 1.275 1.223 1.181
65 1.262 1.213 1.174
70 1.251 1.205 1.167
75 1.241 1.197 1.161
80 1.233 1.190 1.155
85 1.225 1.184 1.150
90 1.217 1.178 1.145
95 1.211 1.173 1.141

100 1.205 1.168 1.137
105 1.199 1.163 1.134
110 1.194 1.159 1.131
115 1.189 1.155 1.127
120 1.185 1.152 1.125
125 1.181 1.148 1.122
130 1.177 1.145 1.119
135 1.173 1.142 1.117
140 1.170 1.140 1.115
145 1.166 1.137 1.113
150 1.163 1.135 1.111
155 1.160 1.132 1.109
160 1.157 1.130 1.107
165 1.155 1.128 1.105
170 1.152 1.126 1.104
175 1.150 1.124 1.102
180 1.148 1.122 1.100
185 1.145 1.120 1.099
190 1.143 1.118 1.098
195 1.141 1.117 1.096
200 1.139 1.115 1.095
205 1.138 1.114 1.094
210 1.136 1.112 1.093
215 1.134 1.111 1.092
220 1.132 1.110 1.090
225 1.131 1.108 1.098
230 1.129 1.107 1.088
235 1.128 1.106 1.087
240 1.126 1.105 1.086
245 1.125 1.103 1.086
250 1.124 1.102 1.085
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Table 2(b). Critical valuesC0 for C = 1.33, n = 10(5)250 and
α = 0.01, 0.025, 0.05

n α = 0.01 α = 0.025 α = 0.05

10 2.569 2.255 2.208
15 2.216 2.012 1.859
20 2.046 1.891 1.771
25 1.943 1.815 1.714
30 1.873 1.762 1.675
35 1.822 1.723 1.645
40 1.782 1.693 1.622
45 1.750 1.668 1.603
50 1.724 1.648 1.587
55 1.702 1.631 1.574
60 1.683 1.616 1.562
65 1.666 1.604 1.552
70 1.652 1.592 1.543
75 1.639 1.582 1.535
80 1.628 1.573 1.528
85 1.618 1.565 1.522
90 1.608 1.558 1.516
95 1.600 1.551 1.511

100 1.592 1.545 1.506
105 1.585 1.539 1.501
110 1.578 1.534 1.497
115 1.572 1.529 1.493
120 1.567 1.524 1.489
125 1.561 1.520 1.486
130 1.556 1.516 1.483
135 1.551 1.512 1.480
140 1.547 1.509 1.477
145 1.543 1.505 1.474
150 1.539 1.502 1.471
155 1.535 1.499 1.469
160 1.532 1.496 1.467
165 1.528 1.493 1.465
170 1.525 1.491 1.462
175 1.522 1.488 1.460
180 1.519 1.486 1.458
185 1.516 1.484 1.457
190 1.513 1.481 1.455
195 1.511 1.479 1.453
200 1.508 1.477 1.452
205 1.506 1.475 1.450
210 1.504 1.474 1.448
215 1.501 1.472 1.447
220 1.499 1.470 1.446
225 1.497 1.468 1.444
230 1.495 1.467 1.443
235 1.493 1.465 1.442
240 1.492 1.464 1.440
245 1.490 1.462 1.439
250 1.488 1.461 1.438

Table 2(c). Critical valuesC0 for C = 1.50, n = 10(5)250 and
α = 0.01, 0.025, 0.05

n α = 0.01 α = 0.025 α = 0.05

10 2.887 2.535 2.281
15 2.490 2.263 2.091
20 2.300 2.126 1.992
25 2.185 2.041 1.929
30 2.106 1.983 1.885
35 2.049 1.939 1.852
40 2.004 1.905 1.826
45 1.969 1.878 1.804
50 1.939 1.855 1.787
55 1.915 1.836 1.772
60 1.894 1.819 1.759
65 1.875 1.805 1.748
70 1.859 1.793 1.738
75 1.845 1.781 1.729
80 1.832 1.771 1.721
85 1.821 1.762 1.714
90 1.811 1.754 1.707
95 1.801 1.746 1.701

100 1.792 1.740 1.696
105 1.784 1.733 1.691
110 1.777 1.727 1.686
115 1.770 1.722 1.682
120 1.764 1.717 1.678
125 1.758 1.712 1.674
130 1.752 1.707 1.670
135 1.747 1.703 1.667
140 1.742 1.699 1.664
145 1.737 1.695 1.661
150 1.733 1.692 1.658
155 1.729 1.688 1.655
160 1.725 1.685 1.652
165 1.721 1.682 1.650
170 1.717 1.679 1.648
175 1.714 1.677 1.645
180 1.711 1.674 1.643
185 1.708 1.671 1.641
190 1.705 1.669 1.639
195 1.702 1.667 1.637
200 1.699 1.664 1.635
205 1.696 1.662 1.634
210 1.694 1.660 1.632
215 1.691 1.658 1.630
220 1.689 1.656 1.629
225 1.687 1.654 1.627
230 1.684 1.653 1.626
235 1.682 1.651 1.625
240 1.680 1.649 1.623
245 1.678 1.647 1.622
250 1.676 1.646 1.621
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Table 2(d). Critical valuesC0 for C = 2.00, n = 10(5)250 and
α = 0.01, 0.025, 0.05

n α = 0.01 α = 0.025 α = 0.05

10 3.826 3.361 3.026
15 3.302 3.002 2.776
20 3.050 2.821 2.645
25 2.899 2.710 2.562
30 2.795 2.633 2.504
35 2.270 2.575 2.461
40 2.661 2.531 2.426
45 2.614 2.495 2.399
50 2.576 2.465 2.376
55 2.543 2.440 2.356
60 2.516 2.418 2.339
65 2.492 2.399 2.324
70 2.471 2.383 2.311
75 2.452 2.368 2.300
80 2.435 2.355 2.289
85 2.420 2.343 2.289
90 2.407 2.332 2.271
95 2.394 2.323 2.264

100 2.383 2.313 2.256
105 2.372 2.305 2.250
110 2.363 2.297 2.243
115 2.354 2.290 2.238
120 2.345 2.283 2.232
125 2.337 2.277 2.227
130 2.330 2.271 2.223
135 2.323 2.266 2.218
140 2.317 2.261 2.214
145 2.311 2.256 2.210
150 2.305 2.251 2.206
155 2.299 2.247 2.203
160 2.294 2.242 2.199
165 2.289 2.238 2.196
170 2.284 2.235 2.193
175 2.280 2.231 2.190
180 2.276 2.227 2.187
185 2.272 2.224 2.185
190 2.268 2.221 2.182
195 2.264 2.218 2.180
200 2.260 2.215 2.177
205 2.257 2.212 2.175
210 2.253 2.209 2.173
215 2.250 2.207 2.171
220 2.247 2.204 2.169
225 2.244 2.202 2.167
230 2.241 2.199 2.165
235 2.238 2.197 2.163
240 2.236 2.195 2.161
245 2.233 2.193 2.159
250 2.230 2.191 2.158

Figure 1. OC curves forC = 1.00, α = 0.01 andn = 10(40)250
(top to bottom in plot)

2. Calculate the value of the estimatorC̃pk from the
sample.

3. Check Tables2(a)–2(d)to find the corresponding
C0 based onα, C and sample sizen

4. Conclude that the process meets the capability
requirement ifC̃pk is greater thanC0. Otherwise,
we do not have enough information to conclude
that the process meets the capability requirement.

To accelerate the calculations of the estimatorC̃pk,
we have provided values of the correction factorbf
for various sample sizesn = 10(5)250 (see Table3).
Figure1 plots the OC curves(β = 1 − π(Cpk) versus
Cpk value) for the quality conditions withC set to
1.00,α risk = 0.01 and sample sizesn = 10(40)250.

AN EXAMPLE

Consider the following example taken frombopro,
a manufacturer and supplier in Taiwan exporting
high-end audio speaker components including rubber
edge, Pulux edge, Kevlar cone, honeycomb and many
others. The production specifications for a particular
model of Pulux edge are the following: USL= 5.95,
LSL = 5.65, T = 5.80. The quality requirement
was defined as ‘Satisfactory’ (Cpk > 1.33). A total
of 90 observations were collected which are displayed
in Table4.

To determine whether the process is ‘Satisfactory’,
we first calculated = (USL − LSL)/2 = 0.15,m =
(USL + LSL)/2 = 5.80, sample mean̄X = 5.830
and sample standard deviationS = 0.023. To calculate
the value of the estimator̃Cpk, we need to determine
the value ofIA(µ), which requires the knowledge of
P(µ ≥ m) or P(µ < m). The historical information
of the process shows thatP(µ ≥ m) = 0.75. Thus

Copyright 1999 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int.15: 321–326 (1999)



326 W. L. PEARN AND K. S. CHEN

Table 3. Values ofbf for various sample sizesn

n bf n bf n bf n bf n bf n bf n bf

10 0.914 45 0.983 80 0.990 115 0.993 150 0.995 185 0.996 220 0.997
15 0.945 50 0.985 85 0.991 120 0.994 155 0.995 190 0.996 225 0.997
20 0.960 55 0.986 90 0.992 125 0.994 160 0.995 195 0.996 230 0.997
25 0.968 60 0.987 95 0.992 130 0.994 165 0.995 200 0.996 235 0.997
30 0.974 65 0.988 100 0.992 135 0.994 170 0.996 205 0.996 240 0.997
35 0.978 70 0.989 105 0.993 140 0.995 175 0.996 210 0.996 245 0.997
40 0.981 75 0.990 110 0.993 145 0.995 180 0.996 215 0.996 250 0.997

Table 4. Collected sample data (90 observations)

5.88 5.83 5.84 5.80 5.89 5.81 5.84 5.83 5.82 5.83
5.81 5.82 5.85 5.81 5.81 5.81 5.84 5.82 5.80 5.84
5.86 5.87 5.82 5.87 5.80 5.81 5.85 5.84 5.83 5.86
5.81 5.81 5.82 5.83 5.85 5.80 5.86 5.82 5.86 5.83
5.80 5.77 5.82 5.85 5.84 5.82 5.85 5.81 5.86 5.79
5.84 5.83 5.80 5.83 5.81 5.83 5.81 5.85 5.83 5.88
5.82 5.87 5.80 5.82 5.83 5.81 5.84 5.79 5.85 5.85
5.84 5.84 5.80 5.82 5.84 5.85 5.86 5.81 5.81 5.85
5.86 5.81 5.81 5.83 5.85 5.85 5.82 5.83 5.86 5.81

we can determine the value ofIA(µ) = 1 or−1 using
available random number tables.

Suppose the generated two-digit random number is
65, then we haveIA(µ) = 1. Checking the value of
bf from Table3, we obtainbf = 0.992. ThusC̃pk =
bfĈ ′′

pk = bf(d − X̄ + m)/3S = 1.890. Assume theα
risk is 0.05. We find the critical valueC0 = 1.516 from
Table2(b) based onC = 1.33,α = 0.05 and sample
sizen = 90. SinceC̃pk is greater than the critical value
C0, we conclude that the process is ‘Satisfactory’.
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