
E�cient algorithms for reliability analysis of
distributed computing systems

Min-Sheng Lin a,*, Ming-Sang Chang b, Deng-Jyi Chen b

a Department of Information Management, Tamsui Oxford University College, 32, Chen-Li Rd.,

Tamsui, Taipei, 25103, Taiwan, ROC
b Institute of Computer Science and Information Engineering, National Chiao-Tung University,

Hsin Chu, 30050, Taiwan, ROC

Received 12 March 1998; received in revised form 23 October 1998; accepted 1 January 1999

Abstract

A distributed computing system is modeled as a collection of resources (e.g. pro-

cessing elements, data ®les and programs) interconnected via an arbitrary communi-

cation network and controlled by a distributed operating system. The distributed

program reliability in a distributed computing system is the probability of successful

execution of a program running on multiple processing elements and needs to retrieve

data ®les from other processing elements. This reliability varies according to (1) the

topology of the distributed computing system, (2) the reliability of the communication

edges, (3) the data ®les and programs distribution among processing elements and (4)

the data ®les required to execute a program. In addition, computing the reliability of

distributed computing systems is #P-complete even when the distributed computing

system is restricted to a series-parallel, a 2-tree, a tree, or a star structure. This paper

presents e�cient algorithms for computing the reliability of a distributed program

running on other restricted classes of networks. Ó 1999 Elsevier Science Inc. All rights

reserved.

Keywords: Distributed computing systems; Distributed program reliability; Computa-

tional complexity; Algorithms

Information Sciences 117 (1999) 89±106
www.elsevier.com/locate/ins

* Corresponding author. E-mail: mlin@jupiter.touc.edu.tw

0020-0255/99/$ ± see front matter Ó 1999 Elsevier Science Inc. All rights reserved.

PII: S 0 0 2 0 - 0 2 5 5 (9 9) 0 0 0 0 3 - 1

1. Introduction

A typical distributed computing system (DCS) consists of processing ele-
ments (nodes), communication links (links), memory units, data ®les, and
programs [1,2]. These resources are interconnected via a communication net-
work that dictates how information ¯ows between nodes. Programs residing on
some nodes can run using data ®les at other nodes.

A previous investigation [3], introduced distributed program reliability
(DPR) to evaluate the reliability of DCSs. Consider DCS in which the nodes
are perfectly reliable but the links can fail, s-independently of each other, with
known probabilities. Successfully executing a distributed program depends on
the node containing the program, other nodes that have required data ®les, and
the links between them being operational. DPR is thus de®ned as the proba-
bility that a program with distributed ®les can run successfully despite some
faults in the links. For example, consider the DCS in Fig. 1 which consists of
four nodes (processing elements) and ®ve edges (communication links). This
®gure also includes the available ®les at each processing element. Assume that
program f1 requires data ®les f2, f3, and f4 to complete its execution, and it is
running at node v1, which holds data ®les f2 and f3. Hence, it must access data
®le f4, which is stored in both nodes v2 and v4. Therefore, the DPR of the DCS
in Fig. 1 can be formulated as: DPR�Prob[(v1 and v2 are connected) or (v1 and
v4 are connected)].

Although several algorithms have been proposed for evaluation DPR [4,5],
none satisfy our desire for more e�cient algorithms. We hypothesize that
either the approaches examined are ine�ective, or that no e�cient algorithms
exist for our reliability problems. Lin and Chen [6] demonstrated, for the ®rst
time, that computing DPR is #P-hard even when the distributed computing
system is restricted to a series-parallel, a 2-tree, a tree, or a star structure. The
class of #P-complete problems was introduced by Valiant [7]. The class #P

Fig. 1. A simple DCS.

90 M.-S. Lin et al. / Information Sciences 117 (1999) 89±106

contains those problems that involve counting the accepting computations for
problems in NP; the class of #P-complete problems contains the hardest
problems in #P. As widely recognized, all known exact algorithms for these
problems have exponential time complexity, thereby making it unlikely that
e�cient (polynomial time) algorithms can be developed for this class of
problems. This complexity can be averted by considering only a restricted
class of DCS's. In light of above discussion, this paper presents a polyno-
mially-solvable case of DPR problem for star topologies in which data ®les
are restricted to a certain type of distribution. A linear time algorithm is also
proposed to verify whether or not a star DCS has this restricted class of ®le
distribution. Also proposed herein are two polynomial-time algorithms for
computing the DPR of a DCS with a linear and a circular structure, re-
spectively.

2. Assumptions, de®nitions and notation

Assumptions

· The nodes are perfect
· The edges are s-independent and either function or fail with known proba-

bilities.

De®nitions

· A star DCS Ds has the consecutive file distribution property if and only if its
nodes can be linearly ordered such that, for each distinct ®le fi, the nodes
containing ®le fd occur consecutively. More formally, a star DCS Ds has
the consecutive file distribution property if and only if there exists a permuta-
tion P� [p(1), p(2), . . ., p(n)] of numbers {1, 2, . . ., n} such that if ®le
fd 2 Ap�i� and fd 2 Ap�i�, then fd 2 Ap�k� for all k, i < k < j.

· A set C of edges of Ds is referred to as a file cut set if and only if all edges in
C fail which implies system failure.

· A ®le cut set C is referred to as minimal if there is no other ®le cut set C0 such
that C0 � C.

· A set I of edges for a linear DCS Dl is referred to as a file path set if and only
if all edges in I function which implies system functions.

· A ®le path set I is referred to as minimal if there is no other ®le path set I 0

such that I 0 � I .

Notation
(general)
D a Distributed Computing System (DCS)
n number of edges in D

M.-S. Lin et al. / Information Sciences 117 (1999) 89±106 91

ei edge i in D
vi node i in D
fi data ®le i
m number of distinct ®les in D
t total number of ®les in D
Ai the set of ®les available at node vi

pi probability that edge ei functions
qi probability that edge ei fails; º 1ÿ pi

E complement of event E

for star topology
Ds a star DCS with n + 1 nodes {s, v1, v2, . . ., vn} and n edges

{e1� (s,v1), e2� (s,v2), . . ., en� (s, vn)}
P º [p(1), p(2), . . ., p(n)] a permutation of numbers {1, 2, . . ., n}

such that if ®le fd 2 Ap�i� and fd 2 Ap�j�, then fd 2 Ap�k � for all k,
i < k < j

Cd the minimal ®le cut set for ®le fd if it consists of all edges (s, vi)
such that node vi contains ®le fd , i.e. Cd � {(s, vi) | fd 2 Ai}.
(Without loss of generality, we reorder the minimal ®le cut sets,
if necessary, by their minimal component, i.e. for two distinct
minimal ®le cut sets Ci and Cj, i < j if and only if
min{k | (s, vp�k �) 2 Ci} < min{k | (s, vp�k �) 2 Cj}.)

U ordered set of all minimal ®le cut sets according to their
minimal components

r number of minimal ®le cut sets in U
ai º min{k | ep�k � 2 Ci}, i.e. the index of the minimal component in

Ci

bi º max{k | ep�k � 2 Ci}, i.e. the index of the maximal component
in Ci

H(i, j) º{ep�i�, ep�i�1�, . . ., ep�j�}; 1 6 i 6 j 6 n (note that Ci º H(ai, bi))
X(i, j) event: all edges in H(i, j) fail
Wi º

Si
j�1 X �aj; bj� (note that the DPR of Ds can be expressed as

1ÿPr(Wr))
Fi event: the star DCS D0s fails in which it consists of i� 1 nodes s,

vp�1�, vp�2�, . . ., vp�i� and i edges ep�1�, ep�2�, . . ., ep�i�

for linear topology
Dl a linear DCS with n + 1 nodes {v0, v1, v2, . . ., vn} and n edges

{e1� (v0,v1), e2� (v1,v2), . . ., en� (vnÿ1,vn)}
Ii the minimal ®le path set which starts at edge ei

bi º max{k | ek 2 Ii} , i.e. , the index of the maximal component in
Ii

Yi event: all edges in Ii function

92 M.-S. Lin et al. / Information Sciences 117 (1999) 89±106

3. E�cient algorithms for computing DPR of DCS's

According to a previous investigation [6], computing DPR over a star DCS
is #P-complete, implying that polynomial algorithms unlikely exist for solving
them. However, e�cient algorithms possibly exist for computing DPR over
some restricted classes.

3.1. Star DCS's with a consecutive ®le distribution

In this section, we present a polynomial-time algorithm for computing the
DPR of a star DCS with a consecutive ®le distribution. Let Ds be a star DCS
and it have the consecutive ®le distribution property. Then, the minimal ®le cut
sets can be ordered by their minimal component, i.e. for two distinct minimal
®le cut sets Ci and Cj, i < j if and only if min{k | (s, vp�k �) 2 Ci}< min{k | (s,
vp�k�) 2 Cj}. By de®nition, Ds fails if and only if at least one event X(ai, bi),
1 6 i 6 r, occurs, where ai and bi are the indexes of the minimal and maximal
components in Ci, respectively. Clearly, if r� 1, the unreliability of Ds can be
easily obtained as Pr[W1]�Pr[X(a1, b1)]. Next consider the case with r P 2.
The unreliability of Ds with the ®rst i's ®le cut sets is

Pr �Wi � � Pr �Wiÿ1 [X �ai; bi��:
This expression can be decomposed using conditional probability as

Pr �Wi � � Pr �Wiÿ1� � Pr �Wiÿ1 \ X �ai; bi��: �1�
Consider the event Wiÿ1 \ X �ai; bi�, which implies
· E1: For each k, 1 6 k 6 iÿ 1, at least one edge e 2 H�ak; bk� � Ck functions

and
· E2: All edges 2 H�ai; bi� � Ci fail.
By event E2, event E1 can be rewritten as

Ui
Si

j�1 Yj (Notably, the DPR of Dl can be expressed as
1ÿPr(Un))

Rj event: there exists an operating event Yi between edges e1 and ej

for ring topology
Dr a ring DCS with n nodes {v1, v2, . . ., vn} and n edges

{e1� (v1, v2), e2� (v2,v3), . . ., enÿ1� (vnÿ1, vn), en� (vn, v1)}
D�r ei the DCS Dr with edge ei� (vi, vi�1) contracted so that nodes vi

and vi�1 are merged into a single node. This newly merged node
contains all data ®les that were previously in nodes vi and vi�1,
and

Dr ÿ ei the DCS Dr with edge ei deleted.

M.-S. Lin et al. / Information Sciences 117 (1999) 89±106 93

· E01: For each k, 1 6 k 6 iÿ 1, at least one edge e 2 fH�ak; bk� ÿ H�ai; bi�g
functions.
A fundamental di�culty in calculating Pr(E01) is that events in E01 are not, in

general, disjoint. However, we can de®ne events Sj's that are disjoint by

Sj � fE01occurs and edge ep�j�is the last good oneg; for aiÿ16 j6 ai ÿ 1:

Thus,

E01 \ E2 �
[aiÿ1

j�aiÿ1

�Sj \ E2�

and

Pr �Wiÿ1 \ X �ai; bi�� � Pr
[aiÿ1

j�aiÿ1

�Sj \ E2�
" #

: �2�

Since Sj's are disjoint events, we have

Pr
[aiÿ1

j�aiÿ1

�Sj \ E2�
" #

�
Xaiÿ1

j�aiÿ1

Pr�Sj \ E2�: �3�

The event Sj \ E2; aiÿ16 j6 ai ÿ 1, can be decomposed into three independent
events: {no ®le cut set fail between edges ep�1� and ep�jÿ1�}, {edge ep�j� func-
tions}, and {all edges between ep�j�1� and ep�bi� fail}. So

Pr�Sj \ E2� � �1ÿ Pr�Fjÿ1�� � pp�j� � Pr �X �j� 1; bi��: �4�
Therefore, according to Eqs. (1)±(4) , we have

Pr�Wi� � Pr�Wiÿ1� �
Xaiÿ1

j�aiÿ1

�1� ÿ Pr�Fjÿ1�� � pp�j� � Pr �X �j� 1; bi��
	
:

The following theorem can now be easily established.

Theorem 1. For 2 6 i 6 r:

Pr�Wi� � Pr�Wiÿ1� �
Xaiÿ1

j�aiÿ1

�1� ÿ Pr�Fjÿ1�� � pp�j� � Pr �X �j� 1; bi��
	
; �5�

with the boundary conditions: Pr�W1� � Pr �X �a1; b1��; and Pr�Fk� � 0 for
06 k < b1. �

Before applying Theorem 1, initially compute the values of Pr �X �j� 1; bi��
and Pr(Fjÿ1) for 26 i6 r and aiÿ16 j6 ai ÿ 1. By noting that ag < ah whenever
g < h, the recursive formula can be easily obtained as follows.

94 M.-S. Lin et al. / Information Sciences 117 (1999) 89±106

Pr �X �j� 1; bi��

�
1

qp�aiÿ1� � Pr �X �aiÿ1; biÿ1�� �
Qbi

k�biÿ1�1

qp�k� for j � aiÿ1;

1
qp�j�
� Pr �X �j; bi�� for aiÿ1 < j6 ai ÿ 1:

8><>: �6�

By starting with Pr �X �a1; b1�� �
Qb1

k�a1
qp�k�, we successively determine that

Pr �X �a1 � 1; b2��; Pr �X �a1 � 2; b2��; . . . ; Pr �X �a2; b2��;

Pr �X �a2 � 1; b3��; Pr �X �a2 � 3; b3��; . . . ; Pr �X �a3; b3��;

. . .

Pr �X �arÿ1 � 1; br��; Pr �X �arÿ1 � 2; br��; . . . ; and Pr �X �ar; br��:
To obtain the values of Pr(Fjÿ1) in Theorem 1, by de®nition, we have that

Pr�Fk� � Pr�Wiÿ1� for biÿ16 k6 bi ÿ 1;
0 for k6 b1 ÿ 1:

�
�7�

Hence, while computing Pr(Wi) by Theorem 1, we can also obtain Pr(Fk), for
biÿ1 6 k 6 biÿ1.

Next, the major algorithm-related strategies to compute the DPR of star
DCS's are outlined. Given a star DCS Ds and the ®le distribution Ai's for each
node. By assuming that Ds has the property of consecutive ®le distribution, let
P be a permutation of numbers f1; 2; . . . ; ng such that if ®le fd 2 Ap�i� and fd 2
Ap�j�, then fd 2 Ap�k� for all k, i < k < j. All ®le cut sets can be easily enumerated
from Ai's in the following manner: if node vi contains ®le fd , then ®le cut set Cd

contains edge ei. Subsequently, ai and bi values of Ci can be determined from
the permutation P such that ai�min{k| ep�k � 2 Ci} and bi�max{k| ep�k � 2 Ci}.
Then, remove the ®le cut sets which are not minimal and rearrange the re-
maining minimal ®le cut sets according to their ai's values. Finally, use The-
orem 1, Eqs. (6) and (7) to compute the DPR (� 1ÿPr[Wr]). The algorithm is
formally described as belows.

Algorithm Reliability_Star_DCS

Input: A star DCS Ds with n + 1 nodes {s, v1, v2, . . ., vn} and n edges
{(s,v1), (s,v2), . . ., (s,vn)}.
A permutation P� [p(1), p(2), . . ., p(n)] of numbers {1, 2, . . .,
n} such that if ®le fd 2 Ap�i�, fd 2Ap�j�, then fd 2 Ap�k � for all k,
i < k < j, where Ai represents the set of ®les available at node
vi.

Output : the DPR of Ds

M.-S. Lin et al. / Information Sciences 117 (1999) 89±106 95

begin

Step 1: // ®nd all ®le cut sets //
for i ¬ 1 to m do Ci ¬ B ; // initialization step; m is the number of dis-
tinct ®les //
for i ¬ 1 to n do

for each fd 2 Ai do Cd ¬ Cd [{ei}; // For convenience, let ei denote edge
(s, vi) //

Step 2: // set the values of ai and bi for 1 6 i 6 m //
for i ¬ 1 to m do

begin

ai ¬ min{k| ep�k � 2 Ci };
bi ¬ max{k| ep�k � 2 Ci };

end

Step 3: // ®nd all minimal ®le cut set //
U ¬ B;
for i ¬ 1 to m do U ¬ U [{Ci};
for 1 6 i, j 6 m do

if (ai P aj and bi 6 bj) then remove Cj from U; == which implies Ci Í
Cj //

Step 4: reorder the minimal ®le cut sets in U for two distinct minimal ®le cut
sets Ci and Cj, i < j if and only if ai < aj;
Step 5: // compute Pr �X �j� 1; bi��, for 2 6 i 6 r and aiÿ1 6 j 6 aiÿ 1, by
Eq. (6) //

Pr �X �a1; b1��
Qb1

k�a1
qp�k�;

for i ¬ 2 to r do // r is the number of minimal ®le cut sets in U //
begin

Pr[X(ai-1+1, bi)] ¬ 1=�qp�aiÿ1�� � Pr �X �aiÿ1; biÿ1�� �
Qbi

k�biÿ1�1 qp�k�;
for j ¬ ai-1+2 to aiÿ1do Pr[X(j + 1, bi)] ¬ 1=�qp�j�� � Pr �X �j; bi�� ;

end

Step 6: // Apply Theorem 1 and Eq. (7) to compute Pr(Wi) and Pr(Fj) //
Pr�W1� Pr �X �a1; b1��; // boundary condition //
for k ¬ 0 to b1ÿ1 do Pr(Fk) ¬ 0; == boundary condition //
for i ¬ 2 to r do

begin

for k ¬ bi-1 to biÿ1 do Pr(Fk) ¬ Pr(Wi-1);
Pr�Wi� Pr�Wiÿ1� �

Paiÿ1
j�aiÿ1

�1ÿ Pr�Fjÿ1�� � pp�j� � Pr �X �j� 1; bi��
� 	

;
end

Step 7: DPR ¬ 1ÿPr(Wr); Output(DPR);
end Reliability_Star_DCS

Complexity analysis
The time complexity of Algorithm Reliability_Star_DCS is analyzed as

follows. Step 1 performs O�m�Pn
i�1 Ap�i�
�� ��� � O�m� t� � O�t� time (since

96 M.-S. Lin et al. / Information Sciences 117 (1999) 89±106

m < t) to identify all ®le cut sets, where t denotes the total number of ®les in
Ds. Step 2 requires O�2 �Pm

i�1 Cij j� � O�t� time to set ai and bi, 1 6 i 6 m and
step 3 takes O(m2) time to obtain all minimal ®le cut sets. Step 4 requires the
reordering of all minimal ®le cut sets in a nondecreasing order of their index
of the minimal component. This ordering can be executed in O(rálog r) using
an e�cient sorting algorithm, where r denotes the number of minimal ®le cut
sets. In step 5, evaluating Pr[X(j + 1, bi)] by making use of Eq. (6) requires
that

O
Pr
i�2

��bi ÿ biÿ1� � 2�
� �

� O�br ÿ b1 � r� � O�n� r�; for j � aiÿ1;

O
Pr
i�2

�1�
� �

� O�r ÿ 1� � O�r�; for aiÿ16 j

6 ai ÿ 1:

8>>>><>>>>:
Hence, the total time to evaluate all Pr[X(j + 1, bi)] is therefore O(n + r).
In step 6, computing all Pr(Fk) takes O�Pr

i�2�bi ÿ biÿ1�� � O�br ÿ b1� � O�n�
time and computing all Pr(Wi) takes OfPr

i�2�1� �ai ÿ aiÿ1� � 3� � O�1�
3 � �ar ÿ a1�� � O�n� time. Therefore, the total time in step 6 is O(n). Clearly,
step 7 performs in constant time. Finally, the entire algorithm has time com-
plexity O[t + t + m2 + rálog r + (n + r) + n]. Since t 6 mán, and r 6 m, the com-
plexity of Algorithm Reliability_Star_DCS can be obtained as O�m2 � m � n�.

An illustrative example
To illustrate Algorithm Reliability_Star_DCS as stated above, consider the

star DCS in Fig. 2 in which there is a consecutive ®le distribution property and
the associative permutation P� [3, 6, 4, 2, 5, 1, 7]. (In Section 3.2, we will show

Fig. 2. A star DCS with the consecutive ®le distribution property.

M.-S. Lin et al. / Information Sciences 117 (1999) 89±106 97

how to identify the associative permutation when the star DCS has the con-
secutive ®le distribution property.) The overall procedure is as follows:

Step 1: The ®le cut sets are found to be

C1 � e2; e5;C2 � e1; e5; e7;C3 � e1; e2; e5;C4 � e3; e6;C5 � e2; e4; e5:

Step 2: According to the permutation

p�1� � 3; p�2� � 6; p�3� � 4; p�4� � 2; p�5� � 5; p�6� � 1; p�7� � 7

and the results of Step 1, we have

a1 � 4; b1 � 5; a2 � 5; b2 � 7; a3 � 4;

b3 � 6; a4 � 1; b4 � 2; a5 � 3; b5 � 5:

Step 3: Since C1 Ì C3 and C1 Ì C5, remove C3 and C5. Thus, the set of
minimal ®le cut sets is

U � C1;C2;C4:

Step 4: Reorder the minimal ®le cut sets in such a manner that for Ci and Cj,
i < j if and only if ai < aj, and we obtain

C1 � e3; e6; a1 � 1; b1 � 2;

C2 � e2; e5; a2 � 4; b2 � 5;

C3 � e1; e5; e7; a3 � 5; b3 � 7:

Step 5: By using Eq. (6), we have

Pr�X �1; 2�� � q3q6;Pr�X �2; 5�� � q6q4q2q5;

Pr�X �3; 5�� � q4q2q5;Pr�X �4; 5�� � q2q5; and Pr�X �5; 7�� � q5q1q7:

Step 6: We use Theorem 1 and Eq. (7) to compute Pr(Wi) and Pr(Fk) for
2 6 i 6 3 and biÿ 1 6 k 6 biÿ 1, and obtain

Pr�W1� � q3q6; Pr�F0� � Pr�F1� � 0 �boundary condition�

Step 7: Therefore, DPR is

i� 2: Pr�F2��Pr(F3)�Pr(F4)�Pr(W1)� q3q6,
Pr(W2)�Pr(W1) + [1ÿPr(F0)] á p3 á Pr �X �2; 5�� (j� 2)

+[1ÿPr(F1)] á p6 á Pr�X �3; 5�� (j� 3)
+[1ÿPr(F2)] á p4 á Pr�X �4; 5�� (j� 4)
� q3q6 + p3q6q4q2q5 + p6q4q2q5 + (1ÿ q3q6) á

p4q2q5

i� 3: Pr�F5��Pr(W2)
Pr(W3)�Pr(W2) + [1ÿPr(F3)] á p2 á Pr[X(5,7)] (j� 5)

� q3q6 + p3q6q4q2q5 + p6q4q2q5

+ (1ÿ q3q6) á p4q2q5 + (1ÿ q3q6) á p2q5q1q7

98 M.-S. Lin et al. / Information Sciences 117 (1999) 89±106

DPR � 1ÿ Pr�W3�
� 1ÿ fq3q6 � p3q6q4q2q5 � p6q4q2q5 � �1ÿ q3q6� � p4q2q5

� �1ÿ q3q6� � p2q5q1q7g:

3.2. A linear-time algorithm of testing for the consecutive ®le distribution
property in a star DCS

The previous section has presented a polynomial-time algorithm for com-
puting the DPR of a star DCS when it has the consecutive ®le distribution
property. In this section, we con®rm whether or not a star DCS has the con-
secutive ®le distribution property. The problem statement would be:

Input: A star DCS Ds with n + 1 nodes s, v1, v2, . . ., vn and ®le distributions
Ai, 1 6 i 6 n.

Output: A permutation P� [p(1), p(2), . . ., p(n)] of numbers {1; 2; . . . ; n}
such that if ®le fd 2Ap�i� and fd 2Ap�j�, then fd 2Ap�k � for all k, i < k < j.

Notably a solution does not always exist. To facilitate our search for the
®nding the correct ordering of P, we use a data structure of a PQ-tree pro-
posed by Booth and Leuker [8]. A PQ-tree is a rooted tree that has nodes of
two varieties: P-nodes and Q-nodes. A P-node is a node whose children can be
arbitrarily permuted. A Q-node is a node whose children are ordered or reverse
ordered. The frontier of a PQ-tree is the permutation of leaves from left to
right. Two PQ-trees are equivalent if and only if one can be transformed into
the other by applying a sequence of the following transformation rules.
· arbitrarily permute the children of a P-node,
· reverse the children of a Q-node.

By using PQ-tree data structure, we have the following algorithm.

Algorithm Check_Consecutive_File_Distribution

begin

T ¬ universal tree; // a single P-node connected to all the leaf nodes of
{1, 2, . . ., n} //
for j ¬ 1 to m do Aÿ1

j ¬ B; // m denotes the number of distinct ®les in Ds //
// Aÿ1

j is the set of indexes of nodes which contain the ®le fj //
for i ¬ 1 to n do

for each fj 2 Ai do Aÿ1
j ¬ {i};

Input : A star DCS Ds with n + 1 nodes s, v1, v2, . . ., vn, n edges e1, e2,
. . ., en, where ei� (s, vi) for 1 6 i 6 n, and ®le available set
Ai� {fj | for each fj stored in node vi} for 1 6 i 6 n.

Output : A permutation P� [p(1), p(2), . . ., p(n)] of numbers{1, 2, . . .,
n}such that if ®le fd 2 Ap�i� and fd 2Ap�j�, then fd 2 Ap�k � for
all k, i < k < j.

M.-S. Lin et al. / Information Sciences 117 (1999) 89±106 99

for j ¬ 1 to m do T ¬ REDUCE(T, Aÿ1
j);

if T is a null tree
then

print out ``Ds has no consecutive ®le distribution property'' ;
else

print out the frontier of T ;
end Check_Consecutive_File_Distribution

The routine REDUCE attempts to apply a set of eleven templates. Each
template consists of a pattern to be matched against the current PQ-tree and
the set Aÿ1

j and a replacement to be substituted for the pattern. The templates
are applied from the bottom to the top of the tree. Notably, the null tree may
be returned when no template is applied. For brevity, the details are omitted
herein. Details of the algorithm can be found in Booth and Leuker [8].

Complexity analysis
For Aÿ1

j , 1 6 j 6 m, it can be obtained in O�m�Pn
i�1 Aij j� steps. According

to [8], the loop of REDUCE routine can be computed in O�m� n�Pm
j�1 jAÿ1

j j�
steps. Furthermore, it is very easy to verify that

Pn
i�1 Aij j �

Pm
j�1 jAÿ1

j j � t (the
total number of ®les in Ds). Therefore, the time complexity for the above al-
gorithm is O(m + t) + O(m + n + t)� O(m + n + t).

An illustrative example
Consider the star DCS Ds shown in Fig. 2. Applying the above algorithm

lead to

Aÿ1
1 � f2; 5g;Aÿ1

2 � f1; 5; 7g;Aÿ1
3 � f1; 2; 5g;Aÿ1

4 � f3; 6g;Aÿ1
5 � f2; 4; 5g:

Fig. 3 displays the reduction steps. In an illustration of a PQ-tree, a P-node
is drawn as a circle and a Q-node as a rectangle. From this ®gure, we can
conclude that the star DCS Ds of Fig. 2 has the consecutive ®le distribution
property and one of the associative permutations is

P � �3; 6; 4; 2; 5; 1; 7�:

3.3. Linear DCS's

In this section, we extend the results in Section 3.1 for computing the DPR
of linear DCS's. Consider a linear DCS Dl with n + 1 nodes {v0, v1, v2, . . ., vn}
and n edges {e1� (v0, v1), e2� (v1, v2), . . ., en� (vnÿ1, vn)}. Let Ii be the minimal
®le path set which starts at edge ei. Notably, a linear DCS has the consecutive
®le distribution property resembling that of a star DCS such that for each
minimal ®le path set I if ei 2 I and ej 2 I then ek 2 I for all k, i < k < j. Fur-
thermore, by de®nition, the reliability of a linear DCS can be expressed as

100 M.-S. Lin et al. / Information Sciences 117 (1999) 89±106

Prob{at least one minimal ®le path set I whose all edges function} and the
unreliability of a star DCS with the consecutive ®le distribution property can
be expressed as Prob{at least one minimal ®le cut set C whose edges all
fail}.Owing to this duality, a simple relationship exists between a linear DCS
and a star DCS with the consecutive ®le distribution property. The relationship
is stated as follows.

According to the mirror image described in Table 1, if let Wi�Ui,
ai� p(i)� i, pi� qi, Pr(Fi)�Pr(Ri), and X(i, bi)�Yi, in Theorem 1, then the
following theorem can be readily obtained to compute the reliability of a linear
DCS Dl.

Theorem 2. For 2 6 i 6 n:

Pr�Ui� � Pr�Uiÿ1� � ��1ÿ Pr�Riÿ2�� � qiÿ1 � Pr�Yi�
with the boundary conditions Pr(U1)�Pr(Y1) and Pr�Rj� � 0 for j 6 b1. �

Fig. 3. The reduction steps by using a PQ-tree.

M.-S. Lin et al. / Information Sciences 117 (1999) 89±106 101

In addition, Pr(Yi) and Pr(Rj) can be easily obtained from Eq. (6) as follows.

Pr�Yi� �
1

piÿ1
� Pr�Yiÿ1� �

Qbi

j�biÿ1�1

pj for bi6 n;

0 for bi � 1;

8<: �8�

with the boundary condition Pr�Y1� �
Qb1

j�1 pj, and

Pr�Rj� � Pr�Ui� for bi6 j6 bi�1 ÿ 1;
0 for 06 j6b1 ÿ 1:

�
�9�

Next, the complete algorithm for computing the reliability of a linear DCS is
presented as follows.

Algorithm Reliability_Linear_DCS

begin

Step 1: // ®nd all bi's //
for i ¬ 1 to m do NFi ¬ 0 // NFi is the number of ®le fi between vh and vt

//
for each fi 2 A0 do NFi ¬ 1;
h ¬ 0; // h and k are two indexes moving among nodes //
for k ¬ 1 to n do

begin

for each ®le fi 2 Ak do NFi ¬ NFi + 1; // update the total number of ®le i
for node vk //
MFPS ¬ true; // if there is a minimal ®le path set between vh and vt, then
MFPS� true //
while MFPS do

begin
for i ¬ 1 to m do if NFi� 0 then MFPS ¬ false;

Input: A linear DCS Dl with n + 1 nodes {v0, v1, v2, . . ., vn} and n
edges {e1� (v0,v1), e2� (v1,v2), . . ., en� (vnÿ1, vn)}
Ai : the set of ®les available at node vi.

Output: the DPR of Dl

Table 1

The relationship between a linear DCS and a star DCS with the consecutive ®le distribution

Star DCS Ds with the consecutive ®le

distribution

M Linear DCS Dl

minimal ®le cut set C M minimal ®le path set I

qi º probability that edge ei fails M pi º probability that edge ei functions

[p(1), p(2), . . ., p(n)] a permutation such

that if ®le fd 2Ap� i� and fd 2Ap�j�, then

fd 2Ap�k � for all k, i < k < j

M [p(1), p(2), . . ., p(n)]� (1,2, . . ., n)

the unreliabilty of Ds M the reliability of Dl

102 M.-S. Lin et al. / Information Sciences 117 (1999) 89±106

// check if there exists a minimal ®le path set
if MFPS then

begin
for each ®le fi 2 Ah do NFi ¬ NFiÿ 1;
h ¬ h + 1;
bh ¬ k;
end

end

end

for i ¬ h to n do bi ¬ 1;
Step 2: // compute Pr(Yi) by Eq. (8) //

Pr�Y1�
Qb1

j�1 pj // boundary condition //
for i ¬ 1 to n do

begin

if bi 6 n then Pr�Yi� 1=�piÿ1� � Pr�Yiÿ1� �
Qbi

j�biÿ1�1 pj

else Pr(Yi) ¬ 0
end

Step 3: // Apply Theorem 2 and Eq. (9) to compute Pr(Ui) and Pr(Rj) //
for i ¬ 0 to b1ÿ 1 do Pr(Ri) ¬ 0; // boundary condition //

Pr(U1) ¬ Pr(Y1) ; // boundary condition //
for i ¬ b1 to b2 ÿ 1 do Pr(Ri) ¬ Pr(U1);
for i ¬ 2 to n do

begin

Pr�Ui� Pr�Uiÿ1� � ��1ÿ Pr�Riÿ2�� � qiÿ1 � Pr�Yi�;
for j ¬ bi to bi + 1 ÿ 1 do Pr(Rj) ¬ Pr(Ui);

end

Step 4: DPR ¬ Pr(Un); Output(DPR);
end Reliability_Linear_DCS

Complexity analysis
For step 1, the computational complexity of the procedure bi is O(n�m) since

the value of h in the inner while_loop monotonously increases and does not
exceed the value of k, i.e. the index of the outer for_loop. Computing Pr(Yi) in
step 2 is the similar operation as computing Pr[X(j, bi)] in step 5 of Algorithm
Reliability_Star_DCS. Thus, the complexity for step 2 is O(n + n)�O(n). Step
3, which is the same as step 6 of Algorithm Reliability_Star_DCS, can be
computed in O(n). Therefore, the algorithm Reliability_Linear_DCS takes
O(n�m) + O(n) + O(n)�O(n�m) time.

An illustrative example
Consider the linear DCS Dl in Fig. 4. Applying the algorithm Reliabili-

ty_Linear_DCS yields

M.-S. Lin et al. / Information Sciences 117 (1999) 89±106 103

Step 1:

b1 � 1; b2 � 2; b3 � 4; b5 � 1;

Step 2:

Pr�Y1� � p1; Pr�Y2� � p2 � p3 � p4;

Pr�Y3� � p3 � p4; fPr�Y4� � p4 � p5; Pr�Y5� � 0;

Step 3:

Pr�R0� � 0;

Pr�U1� � p1; Pr�R1� � Pr�R2� � Pr�R3� � Pr�U1� � p1;

Step 4: Therefore, DPR is Pr(U5)� p1 + q1áp2áp3áp4 + q1áq2áp3áp4 + q1áq3áp4áp5.

3.4. Ring DCS's

A ring DCS is a DCS with a circular communication link. Each node
connects two conjoining edges with two neighboring nodes. Assume that Dr is
a DCS with a ring structure. According to the well known factoring theorem
[7], the DPR of Dr is obtained as follows:

DPR�Dr� � pi �DPR�D�r ei� � qi �DPR�Dr ÿ ei�; �10�

i� 2: Pr(U3) Pr(U2)�Pr(U1)+[1ÿPr(R0)]áq1áPr(Y2)
� p1 + q1áp2áp3áp4

i� 3: Pr(U3) �Pr(U2) + [1ÿPr(R1)]áq2áPr(Y3)
� p1 + q1áp2áp3áp4 + q1áq2áp3áp4

Pr(R4) �Pr(U3)� p1 + q1áp2áp3áp4 + q1áq2áp3áp4

i� 4: Pr(U4) �Pr(U3)+[1ÿPr(R2)]áq3áPr(Y4)
� p1 + q1áp2áp3áp4 + q1áq2áp3áp4 + q1áq3áp4áp5

Pr(R5) �Pr(U4)� p1 + q1áp2áp3áp4 + q1áq2áp3áp4 + q1áq3áp4áp5

i� 5: Pr(U5) �Pr(U4) + [1ÿPr(R3)]áq4áPr(Y5)
�Pr(U4) // since Pr(Y5)� 0 //
� p1 + q1áp2áp3áp4 + q1áq2áp3áp4 + q1áq3áp4áp5

Fig. 4. A DCS with a linear structure.

104 M.-S. Lin et al. / Information Sciences 117 (1999) 89±106

where ei is an arbitrary edge of Dr. Since Dr ÿ ei is a DCS with a linear
structure with nÿ 1 edges, its reliability can be computed by the algorithm
Reliability_Linear_DCS in O(n�m) time. Notably, D�r ei remains a DCS with a
ring structure with nÿ 1 edges. The same analysis is then applied to D�r ei. By
recursively applying Eq. (10), we decompose the ring DCS Dr with n edges into,
in the worst case, n linear DCSs. Therefore, we have an O(n2�m) time algorithm
for computing the reliability of a DCS with a ring structure.

Algorithm Reliability_Ring_DCS(Dr)
Step 1: if there exists one node that holds all distinct data ®les then Return
(DPR ¬ 1);
Step 2: Select an arbitrary edge ei of Dr;
Step 3: Rell ¬ Reliability_Linear_DCS(Dr ÿ ei);
Step 4: Relr ¬ Reliability_Ring_DCS(D�r ei);
Step 5: Return(DRP ¬ piáRelr + qiáRell);

end Reliability_Ring_DCS

An illustrative example
Consider the DCS with a ring topology in Fig. 5. This is a simpli®cation of

the DCS in Fig. 4 with one edge e6 added between nodes v5 and v0. Applying
algorithm Reliability_Ring_DCS yields

DPR�Dr� � q6 �DPR�Dr ÿ e6� � p6 �DPR�D�r e6�
� q6 �DPR�Dr ÿ e6� � p6 � �q5DPR�D�r e6 ÿ e5�
� p5 �DPR�D�r e�6e5��:

Fig. 5. A DCS with a ring structure.

M.-S. Lin et al. / Information Sciences 117 (1999) 89±106 105

The fact that there exists one node in D�r e�6e5 that holds all distinct data ®les
{f1, f2, f3, f4}, so we have DPR�D�r e�6e5� � 1. The example in Section 3.3 ob-
viously reveals that DPR(Dr ÿ e6)�Pr�U5� and DPR�D�r e6 ÿ e5��Pr(U4).
Therefore, we have

DPR�Dr� � q6 � �p1 � q1 � p2 � p3 � p4 � q1 � q2 � p3 � p4 � q1 � q3 � p4 � p5�
� p6 � �q5 � �p1 � q1 � p2 � p3 � p4 � q1 � q2 � p3 � p4� � p5�:

4. Conclusions

This paper elucidates the distributed program reliability in various classes of
distributed computing systems. This reliability is computationally intractable
for arbitrarily distributed computing systems, even when it is restricted to the
class of star distributed computing systems. A particular solvable case for star
distributed computing systems is identi®ed, in which data ®les are distributed
with respect to a consecutive property. In addition, a polynomial-time algo-
rithm is developed for this case as well. Also proposed herein is a linear-time
algorithm to verify whether or not an arbitrary star distributed computing
system has this consecutive ®le distribution property. Furthermore, these re-
sults are applied towards star DCS's to obtain the reliability of linear and ring
DCS's in polynomial time. A future work should attempt to construct e�cient
algorithms for computing lower and upper bounds on the distributed program
reliability for arbitrarily distributed computing systems.

References

[1] P. Enslow, What is a distributed data processing system, Computer, vol. 11, Jan. 1978.

[2] J. Garcia-Molina, Reliability issues for fully replicated distributed database, IEEE Trans.

Computer 16 (1982) 34±42.

[3] A. Satyanarayana, J.N. Hagstrom, A new algorithm for the reliability analysis of multi-terminal

networks, IEEE Trans. on Reliability 30 (1981) 325±334.

[4] A. Kumar, S. Rai, D.P. Agrawal, On computer communication network reliability under

program execution constraints, IEEE JSAC 6 (1988) 1393±1399.

[5] V.K.P. Kumar, S. Hariri, C.S. Raghavendra, Distributed program reliability analysis, IEEE

Trans. Software Eng. 12 (1986) 42±50.

[6] M.S. Lin, D.J. Chen, The computational complexity of the reliability problem on distributed

systemsInformation Processing Letters 64 (1997) 143±147.

[7] L.G. Valiant, The complexity of enumeration and reliability problems, SIAM J. Computing 8

(1979) 410±421.

[8] K.S. Booth, G.S. Leuker, Testing for the consecutive ones property interval graphs and graph

planarity using PQ-tree algorithms, Journal of Computer System and Science 13 (1976) 335±

379.

106 M.-S. Lin et al. / Information Sciences 117 (1999) 89±106

