
828 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 4, JULY 1999

A Recurrent Self-Organizing Neural
Fuzzy Inference Network

Chia-Feng Juang and Chin-Teng Lin,Member, IEEE

A recurrent self-organizing neural fuzzy inference network
(RSONFIN) is proposed in this paper. The RSONFIN is
inherently a recurrent multilayered connectionist network for
realizing the basic elements and functions ofdynamic fuzzy
inference, and may be considered to be constructed from a
series of dynamic fuzzy rules. The temporal relations embedded
in the network are built by adding some feedback connections
representing the memory elements to a feedforwardneural fuzzy
network. Each weight as well as node in the RSONFIN has
its own meaning and represents a special element in a fuzzy
rule. There are no hidden nodes (i.e., no membership functions
and fuzzy rules) initially in the RSONFIN. They are created
on-line via concurrent structure identification (the construction
of dynamic fuzzy if–then rules) and parameter identification (the
tuning of the free parameters of membership functions). The
structure learning together with the parameter learning forms
a fast learning algorithm for building a small, yet powerful,
dynamic neural fuzzy network. Two major characteristics of
the RSONFIN can thus be seen: 1) the recurrent property
of the RSONFIN makes it suitable for dealing with temporal
problems and 2) no predetermination, like the number of hidden
nodes, must be given, since the RSONFIN can find its optimal
structure and parameters automatically and quickly. Moreover,
to reduce the number of fuzzy rules generated, a flexible input
partition method, the aligned clustering-based algorithm, is
proposed. Various simulations on temporal problems are done
and performance comparisons with some existing recurrent
networks are also made. Efficiency of the RSONFIN is verified
from these results.

Index Terms—Context node, dynamic fuzzy inference, feed-
back term node, ordered derivative, projection-based correlation
measure.

I. INTRODUCTION

PROBLEM solving using neural fuzzy network approach is
becoming a popular research topic in these years [1]–[3].

Many characteristics of the neural fuzzy network contribute
to this phenomenon. Some of them are, as compared to the
general neural networks, faster convergence speed, and smaller
network size. Moreover, the neural fuzzy network approach
automates the design of fuzzy rules and makes the combina-
tional learning of numerical data as well as expert knowledge
expressed as fuzzy if–then rules possible. In contrast to the
pure neural network or fuzzy system, the neural fuzzy method
possesses both of their advantages; it brings the low-level
learning and computational power of neural networks into

Manuscript received January 13, 1998; revised November 23, 1998 and
February 15, 1999. This work was supported by the R.O.C. National Science
Council under Grant NSC87-2213-E-009-146.

The authors are with the Department of Electrical and Control Engineering,
National Chiao-Tung University, Hsinchu, Taiwan, R.O.C.

Publisher Item Identifier S 1045-9227(99)05486-7.

fuzzy systems, and provides the high-level human-like think-
ing and reasoning of fuzzy systems into neural networks [1],
[4], [5]. However, a major drawback of the existing neural
fuzzy networks is that their application domain is limited
to static problems due to their inherentfeedforwardnetwork
structure. Inefficiency occurs for temporal problems. Hence a
recurrent neural fuzzy network capable for solving temporal
problems is in need.

A recurrent neural network, which naturally involves dy-
namic elements in the form of feedback connections used
as internal memories, has been attracting great interest in
the past few years [6], [7]. Unlike the feedforward neural
network whose output is a function of its current inputs only
and is limited to static mapping, recurrent neural networks
perform dynamic mapping. Recurrent networks are needed for
problems where there exists at least one system state variable
which cannot be observed. Most of the existing recurrent
neural networks are obtained by adding trainable temporal
elements to feedforward neural networks (like multilayer per-
ceptron networks [6] and radial basis function networks [8],
[9]) to make the output history-sensitive. Like feedforward
neural networks, these networks function as black boxes; we
do not know the meaning of each weight and node in these
networks. Recently, the concept of incorporating fuzzy logic
into a recurrent network is proposed in some papers [10]–[17].
Since the neural fuzzy networks have so many advantages
over the feedforward neural networks as mentioned above,
it seems worth constructing a recurrent network based on a
neural fuzzy network. In this paper, we shall propose such
a recurrent neural fuzzy network. The proposed network will
possess the same advantages over the pure recurrent neural
networks, and extend the application domain of the normal
neural fuzzy networks to temporal problems.

The recurrent neural fuzzy network proposed in this paper is
called recurrent self-organizing neural fuzzy inference network
(RSONFIN). The RSONFIN expands the basic ability of a
neural fuzzy network to cope with temporal problems via the
inclusion of some internal memories, calledcontext elements.
In the perspective of fuzzy logic, these context elements
are expressed in the form of internal fuzzy reasoning. More
clearly, with these context elements, the network performs the
following reasoning:

Rule IF is and and is and

is

THEN is and is

and and is

1045–9227/99$10.00 1999 IEEE

JUANG AND LIN: RECURRENT SELF-ORGANIZING NEURAL FUZZY INFERENCE 829

where is the input variable, is the output variable, ,
, , and are fuzzy sets, is the internal variable,

and are fuzzy singletons, and and are the numbers
of input and internal variables, respectively. The dynamic
reasoning implies that the inference output is affected
by the internal variable , and the current internal output

is a function of previous output value ; i.e., the
internal variable itself forms the dynamic reasoning.

To reduce the network design effort, the automatic adap-
tation of the network topology is a tendency [18]–[22]. In
contrast to other neural fuzzy networks, where the network
structure is fixed and the rules should be assigned in ad-
vance, there are no rules initially in the RSONFIN; all of
them are constructed during on-line learning. Two learning
phases, the structure as well as parameter learning phases,
are used to accomplish this task. The structure learning phase
is responsible for the generation of fuzzy if–then rules as
well as the judgment of feedback configuration, and the
parameter learning phase for the tuning of free parameters
of each dynamic rule (such as the shapes and positions
of membership functions and the singleton values). In the
structure learning phase, since the way the input space is
partitioned strongly affects the number of rules generated,
an efficient partition scheme to reduce the number of rules
is required. Although many partition methods have been
proposed [1], some drawbacks still exist in these methods.
The grid-type partition method encounters the problem of
exponential growth of rules as the dimension of the input
space increases. A flexible partition method, the clustering-
based approach which clusters the input training vectors in
the input space, dose reduce the rule number, but increases
the number of fuzzy sets on each input dimension. For
these clustering-based methods [23]–[25], the number of fuzzy
sets on each input dimension is in general equal to the
number of fuzzy rules. This usually produces unnecessary
fuzzy sets as shown in Fig. 1(a). In this paper, an aligned-
clustering-based partition scheme is proposed. This scheme
partitions the input space in a flexible way and a fuzzy
measure scheme is performed on each input dimension to
eliminate the unnecessary terms during on-line learning. The
partitioned space is like the one shown in Fig. 1(b) indicating
that both the numbers of rules and membership functions are
reduced. For the consequent-part identification in structure
learning, a clustering-based scheme is proposed. Based on
this scheme the context elements are on-line generated, and
then the whole network is constructed. For parameter learning,
a recursive learning algorithm is developed based on the
ordered derivative scheme [37]. This algorithm can tune the
free parameters in the preconditions and consequents of fuzzy
rules, and weights of feedback connections simultaneously to
minimize an output error function. All of these processes are
done on-line, so the network can be used for normal operation
at any time as learning proceeds.

Overall, the advantages of the RSONFIN against other
recurrent network models [6]–[17] are summarized as follows:
1) Unlike other recurrent network models where the network
structure is a normal neural network and functions as a black
box, the RSONFIN is a fuzzy inference network. Each node

(a) (b)

Fig. 1. Fuzzy partitions of a two-dimensional input space: (a) cluster-
ing-based partitioning and (b) proposed aligned clustering-based partitioning.

and weight has its own meaning and functions as an element
in a fuzzy reasoning process. 2) For most recurrent network
models, the user has to specify the network structure in
advance. However, for the RSONFIN, no preassignment of
the network structure is required, since the RSONFIN can
on-line construct itself automatically. 3) As will be shown in
Section IV, the RSONFIN is characterized by small network
size and fast learning speed.

This paper is organized as follows. Section II describes
the structure and functions of the RSONFIN. The on-line
structure/parameter learning algorithm for the RSONFIN
is presented in Section III, which contains four parts: the
input–output space partitioning, fuzzy rule construction,
feedback structure identification, and parameter learning. In
Section IV, the RSONFIN is applied to solve several dynamic
problems including the time sequence prediction, nonlinear
infinite impulse response (IIR) [42] filtering, dynamic
identification, and dynamic plant control. Comparisons with
some existing recurrent neural networks and nonrecurrent
neural fuzzy networks are also made. Finally, conclusions are
summarized in the last section.

II. STRUCTURE OF THERSONFIN

In this section, the structure of the RSONFIN shown in
Fig. 2 is introduced. The RSONFIN consists of nodes, each of
which has some finite fan-in of connections from other nodes
and some fan-out of connections to other nodes. Basically, it is
a five-layered neural fuzzy network embedded with dynamic
feedback connections (the feedback layer in Fig. 2) that bring
the temporal processing ability into a feedforward neural
fuzzy network. To give a clear understanding of the network
structure, the function of the node in each layer is described
below. In the following descriptions, the symbol denotes
the th input of a node in the th layer; correspondingly, the
symbol denotes the node output in layer.

Layer 1: No computation is done in this layer. Each node
in this layer is called an input linguistic node and corresponds
to one input variable. The node only transmits input values to
the next layer directly. That is

(1)

Layer 2: Nodes in this layer are called input term nodes,
each of which corresponds to one linguistic label (small, large,
etc.) of an input variable. Each node in this layer calculates
the membership value specifying the degree to which an input

830 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 4, JULY 1999

Fig. 2. Structure of the proposed recurrent self-organizing neural fuzzy inference network (RSONFIN).

value belongs to a fuzzy set. A local membership function
is used in this layer. There are many qualified candidates
for the types of membership functions, such as triangular,
trapezoidal, or Gaussian membership functions. Here, a Gauss-
ian membership function is employed. The reason is that a
multidimensional Gaussian membership function can be easily
decomposed into the product of one-dimensional membership
functions. With this choice, the operation performed in this
layer is

(2)

where and are, respectively, the center and the width
of the Gaussian membership function of theth term of the
th input variable .

Layer 3: Nodes in this layer are called rule nodes. A rule
node represents one fuzzy logic rule and performs precondition
matching of a rule. The fan-in of a fuzzy node comes from
two sources: one from layer 2 and the other from the feedback
layer. The former represents the rule’s spatial firing degree,
and the latter the rule’s temporal firing degree. We use the
following AND operation on each rule node to integrate these
fan-in values

(3)

where , , , , ,
, , , and is the output of the feedback

term node which will be described in the feedback layer part
in this section. Obviously, the output of a rule node
represents the firing strength of its corresponding rule. The
fuzzy AND operation used in (3) is the algebraic product
in fuzzy theory [1]. The adoption of this operation is for
computational convenience, especially in deriving the learning
algorithm for the RSONFIN. Also this operation transforms a
set of one-dimensional Gaussian membership functions into
a multidimensional one as stated in the last paragraph [also
see (12)]. The algebraic product was also used in other neural
fuzzy networks [2], [25], [48] as the fuzzy AND operator.

Layer 4: This layer is called the consequent layer and
the nodes in this layer are called output term nodes. Each
output term node represents a multidimensional fuzzy set
(described by a multidimensional Gaussian function) obtained
during the clustering operation in structure learning phase.
Only the center of each Gaussian membership function is
delivered to the next layer for the local mean of maximum
(LMOM) defuzzification operation [26], so the width is used
for output clustering only. Of course, we may use other
types of defuzzification operation [e.g., the center of area
(COA) operation] where the width is used. Since the network
behavior has only a little change whether the width is used or
not, especially after our learning procedure, only the center
is propagated to the next layer according to the LMOM

JUANG AND LIN: RECURRENT SELF-ORGANIZING NEURAL FUZZY INFERENCE 831

defuzzification operation for simplicity. This simplification
also comes from the nature of the LMOM defuzzifier [26].

Different nodes in layer 3 may be connected to a same node
in this layer, meaning that the same consequent is specified for
different rules. The function of each output term node performs
the following fuzzy OR operation:

(4)

to integrate the fired rules which have the same consequent
part. The above fuzzy OR operation is a modified bounded
sum operation in fuzzy theory [1]. Again, its use is for
computational convenience. For the same reason, it was also
used in other neural fuzzy networks [26], [48]. Although the
use of simple summation as the fuzzy OR operation in (4)
would give values larger than one, which are strictly speaking
not fuzzy by definition, succeeding normalization in (5) makes
the summation contributing to each output term smaller than
or equal to one. Notice that the fuzzy OR operation in (4) may
cause subsequent defuzzifications to be lopsided toward those
output terms having many rules in normal fuzzy inference
systems. However, this lopsided effect can be reduced or
even avoided by designing proper learning scheme for a
neural fuzzy network. This problem has been attacked by our
learning algorithm derived in the next section. Especially, the
overlapping test in (9) can help to find the well-behaved fuzzy
rules which cause little lopsided effect.

Layer 5: Each node in this layer is called an output linguis-
tic node and corresponds to one output linguistic variable. This
layer performs the defuzzification operation. The nodes in this
layer together with the links attached to them accomplish this
task. The function performed in this layer is

(5)

where and , the link weight, is the center
of the membership function of theth term of the th output
linguistic variable.

Feedback Layer:This layer calculates the value of the in-
ternal variable and the firing strength of the internal variable
to its corresponding membership function, where the firing
strength contributes to the matching degree of a rule node in
layer 3. As shown in Fig. 2, two types of nodes are used in
this layer, the square node named ascontext nodeand the
circle node named asfeedback term node,where each context
node is associated with a feedback term node. The number
of context nodes (and thus the number of feedback term
nodes) are the same as that of output term nodes in layer 4.
Each context node and its associated feedback term node
corresponds to one output term node. The inputs to a context
node are from all the output term nodes, and the output of
its associated feedback term node is fed to the rule nodes
whose consequent is the output term node corresponded to
this context node. The context node functions as a defuzzifier

(6)

where the internal variable is interpreted as the inference
result of the hidden (internal) rule, and is the link weight
from the th node in layer 4 to the th internal variable.
The link weight, , represents a fuzzy singleton in the
consequent part of a rule, and also a fuzzy term of the
internal variable . For an internal variable, fuzzy singleton
instead of fuzzy membership function is used as its fuzzy
term; a fuzzy membership function on an internal variable
does not make much sense in the network due to the use of
LMOM defuzzification operation, where only the center of
the Gaussian membership function is used. This is different
from the situation for the input and output linguistic variables,
where the widths of fuzzy membership functions are used
for clustering the input and desired output training data.
In (6), the simple weighted-sum is calculated [27], [28].
Instead of using the weighted-sum of each rule’s outputs as
the inference result, the conventional average weighted-sum,

, can also be used [28], [29].
As to the feedback term node, unlike the case in the space

domain where a local membership function is used, a global
membership function is adopted on the universe of discourse
of the internal variable to simplify network structure and meet
the global property of the temporal history. Here, the global
property means that for a cluster in the space domain its history
path (memorized by the internal variables) can be anywhere in
the space at different time, so a global membership function,
which covers the universe of discourse of the internal variable,
is used to rank the influence degree each internal variable
contributes to a rule. In this paper, the membership function

is used for each internal variable. With
this choice, the feedback term node evaluates the output by

(7)

This output is connected to the rule nodes in layer 3, which
connect to the same output term node in layer 4. The outputs
of feedback term nodes contain the firing history of the fuzzy
rules.

With the aforementioned node functions in each layer, the
RSONFIN realizes the following dynamic fuzzy reasoning:

Rule IF is and and is

and is G

THEN is and is

and is and and

is

where is the input variable, is the output variable, ,
, , , and are fuzzy sets, is the internal variable,
and are fuzzy singletons, and and are the

numbers of input and internal variables, respectively. To give a
clear understanding of the dynamic reasoning, we decompose
the above fuzzy rule into two parts [10], the external rule and
the internal rule, both of which form a hierarchical relation.

832 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 4, JULY 1999

Fig. 3. Function block diagram of the RSONFIN unfolded with time.

The external rule realizes the following reasoning:

Rule IF is and and is and

is

THEN is and is

where the outputs are functions of the internal variables
acting as internal memories. The internal variables themselves
constitute a dynamic internal rule as

Rule IF is and and is and

is

THEN is and and

is

The hierarchical and temporal relationship between the internal
and external fuzzy rules can be easily recognized if we unfold
the RSONFIN in the time domain as shown in Fig. 3, where a
rule is fired by the outputs of rules which were fired one time
step ahead. This figure is obtained by copying the RSONFIN
at each time step, and then properly connecting the outputs of
a RSONFIN at time to the inputs of the next RSONFIN
at time , where all copies of the RSONFIN’s are identical one
another in network parameters and structure.

III. L EARNING ALGORITHMS FOR THERSONFIN

Two phases of learning, structure and parameter learning,
are used concurrently for constructing the RSONFIN. The
structure learning includes the preconditions, consequents, and

feedback structure identification of dynamic fuzzy if–then
rules. Here the precondition structure identification corre-
sponds to the input space partitioning and can be formulated as
a combinational optimization problem with the following two
objectives: to minimize the number of rules generated and to
minimize the number of fuzzy sets on the universe of discourse
of each input variable. The consequent structure identification
is to decide whether a new membership function should be
generated for the output variable based on clustering. As to the
feedback structure identification, the main task is to decide the
number of internal variables with its corresponding feedback
fuzzy terms and the connections of these terms to each rule.
For the parameter learning, based upon supervised learning, an
ordered derivative learning algorithm is derived to update the
free parameters in the RSONFIN. The RSONFIN can be used
for normal operation at any time during the learning process
without repeated training on the input–output patterns when
on-line operation is required. There is no rule (i.e., no node
in the network except the input–output linguistic nodes) in the
RSONFIN initially. They are created dynamically as learning
proceeds upon receiving on-line incoming training data by
performing the following learning processes simultaneously:

1) input–output space partitioning;
2) construction of fuzzy rules;
3) feedback structure identification;
4) parameter identification.

In the above, processes 1)–3) belong to the structure learning
phase and process 4) belongs to the parameter learning phase.
The details of these learning processes are described in the
rest of this section.

A. Input–Output Space Partitioning

The way the input space is partitioned determines the
number of rules. Even though the precondition part of a
rule in the RSONFIN includes the external inputs which
represent the spatial information and the internal variable
values which represent the temporal information, only the
spatial information is used for clustering due to its local
mapping property.

Geometrically, a rule corresponds to a cluster in the input
space with and representing the center and variance
of that cluster. For each incoming pattern, the strength a
rule is fired can be interpreted as the degree the incoming
pattern belongs to the corresponding cluster. For computational
efficiency, we can use the spatial firing strength derived in (3)
directly as this degree measure

(8)

where . In the above equation, the term
is, in fact, the distance between

and the center of cluster. Using this measure, we can
obtain the following criterion for the generation of a new
fuzzy rule. Let be the newly incoming pattern. Find

(9)

JUANG AND LIN: RECURRENT SELF-ORGANIZING NEURAL FUZZY INFERENCE 833

where is the number of existing rules at time. If
, then a new rule is generated, where is a

prespecified threshold that decays during the learning process.
Once a new rule is generated, the next step is to assign initial
centers and widths of the corresponding membership functions.
Since our goal is to minimize an objective function and the
centers and widths are all adjustable later in the parameter
learning phase, it is of little sense to spend much time on the
assignment of centers and widths for finding a perfect cluster.
Hence we can simply set

(10)

(11)

according to the first-nearest-neighbor heuristic [30], where
decides the overlap degree between two clusters. Similar

methods are used in [31] and [33] for the allocation of a
new radial basis unit. However, in [31], the degree measure
does not take the width into consideration. In [33], the
width of each unit is kept at a prespecified constant value, so
the allocation result is, in fact, the same as that in [31]. In
the RSONFIN, the width is taken into account in the degree
measure, so for a cluster with larger width (meaning a larger
region is covered), fewer rules will be generated in its vicinity
than a cluster with smaller width. This is a more reasonable
result. Another disadvantage of [31] is that another degree
measure, the Euclid distance, is required, which increases the
computation load.

After a rule is generated, the next step is to decompose
the multidimensional membership function formed in (10) and
(11) to the corresponding one-dimensional membership func-
tions for each input variable. For the Gaussian membership
function used in the RSONFIN, the task can be easily done as

(12)

where and are, respectively, the projected center
and width of the membership function in each dimension. To
reduce the number of fuzzy sets of each input variable and to
avoid the existence of redundant fuzzy sets, we should check
the similarities between them in each input dimension. Since
bell-shaped membership functions are used in the RSONFIN,
we use the formula of the similarity measure of two fuzzy sets
with bell-shaped membership functions derived previously in
[34]. The detailed algorithm for the input space partitioning
can be found in the Appendix.

For the output space partitioning, the same measure in
(9) is used. Since the criterion for the generation of a new
output cluster is related to the construction of a rule, we
shall describe it together with the rule construction process
in learning process B below.

B. Construction of Fuzzy Rules

As mentioned in learning process A, the generation of a new
input cluster corresponds to the generation of a new fuzzy
rule, with its precondition part constructed by the learning
algorithm in learning process A and the feedback structure

identification scheme to be described below in learning process
C. At the same time, we have to decide the consequent part
of the generated rule. Suppose a new input cluster is formed
after the presentation of the current input–output training pair
(,). The consequent part is constructed by the following
algorithm:

IF there are no output clusters,
do PART 1in Process A, with replaced by

ELSE
do

find ,
IF
connect input cluster to the existing
output cluster
ELSE
generate a new output cluster
connect input cluster to the newly
generated output cluster.
.

The algorithm is based on the fact that different precondi-
tions of different rules may be mapped to the same consequent
fuzzy set. Since only the center of each output membership
function is used for defuzzification, the consequent part of
each rule may simply be regarded as a singleton. Compared to
the general fuzzy rule-based models with singleton output [35],
where each rule has its own individual singleton value, fewer
parameters are needed in the consequent part of the RSONFIN,
especially for the case with a large number of rules.

C. Feedback Structure Identification

In learning process B, the number of generated clusters in
the consequent part is problem dependent. The number of
output clusters is large for complex problems and is small for
simple ones. Naturally, in the feedback layer, more internal
variables are required for more complex problems. Knowing
this relationship (i.e., the increment of internal variables as
well as output clusters for solving a more complex problem),
for simplicity, we simply set the number of internal variables
equal to the number of output clusters in the consequent part
(i.e., the number of output term nodes in layer 4). With this
setting, for each output cluster, the corresponding internal
variable is used to record the temporal history that should
participate in the precondition part of that output cluster. Hence
during the on-line learning, an internal variable (and thus a
context node) is created once an output cluster is created. The
fan-in of the context node comes from all the nodes in layer
4), with the link weight assigned with a small random value in
[1, 1] initially. This assignment is to make the initial value
of internal variable (i.e., input of the global membership
function) locate in the sensitive region of. Thus, a quick
parameter learning can be reached at the beginning. After
an internal variable is generated (meaning a context node is
created), the next step is to decide its effect on each rule node.
As mentioned in Section II, only a global membership function
is assigned to each internal variable and acts as the feedback
term node of the corresponding context node. Of course, we
can cover the universe of discourse of the internal variable by

834 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 4, JULY 1999

some local membership functions, but this makes the network
structure large and complex. When the firing degree of each
internal variable to its corresponding membership function is
calculated, we should next decide which rules the firing degree
is acted on. In other words, we should decide which rule nodes
in layer 3 a generated feedback term node should be connected
to. In general, each rule has its own corresponding internal
variable, which is to memorize the firing history of the rule.
But for the rules that have the same consequent part (i.e., being
connected to the same output term node), the same internal
variable is assigned to these rules. Thus each internal variable
can memorize the history that an output cluster is mapped by
its attached fuzzy rules. With this connection method (i.e., the
feedback term node is connected to the rule that maps to the
corresponding output cluster it memorizes), we can effectively
reduce the parameter number in the feedback layer.

D. Parameter Identification

After the network structure is adjusted according to the
current training pattern, the network then enters the parameter
identification phase to adjust the parameters of the network
optimally based on the same training pattern. Notice that
the following parameter learning is performed on the whole
network after structure learning, no matter whether the nodes
(links) are newly added or are existent originally. Since the
RSONFIN is a dynamic system with feedback connections,
the learning algorithm used in the feedforward radial basis
function networks [32] or adaptive fuzzy systems [36] cannot
be applied to it directly. Also, due to the on-line learning
property of the RSONFIN, the off-line learning algorithms for
the recurrent neural networks, like backpropagation through
time and time-dependent recurrent backpropagation [1], cannot
be applied here. Instead, the ordered derivative [37], which
is a partial derivative whose constant and varying terms are
defined using an ordered set of equations, is used to derive our
learning algorithm. The ordered set of equations are described
in Section II in each layer and are summarized in (14)–(17).
Considering the single-output case for clarity, our goal is to
minimize the error function

(13)

where is the desired output and is the current
output. For each training pattern, starting at the input nodes, a
forward pass is used to compute the activity levels of all the
nodes in the network to obtain the current output .
In the following, dependency on timewill be omitted unless
emphasis on temporal relationships is required.

Summarizing the node functions defined in Section II, the
function performed by the network is

(14)

(15)

where

(16)

and

(17)

With the above formula and the error function defined in
(13), we can derive the update rules for the free parameters
in the RSONFIN as follows.

• Update rule of (the center of the output membership
function).

The update rule of is

(18)

where

(19)

• Update rule of (the center of the membership func-
tion in the precondition part).

The update rule of is

(20)

The value of is computed by

(21)

where

(22)

(23)

(24)

JUANG AND LIN: RECURRENT SELF-ORGANIZING NEURAL FUZZY INFERENCE 835

where

if the membership function with center
is in the precondition part of rule

otherwise
(25)

and

The partial derivative is calculated as

(26)

where

if the membership function with center
is in the precondition part of the rule that
is connected to node in layer 4

otherwise.
(27)

• Update rule of (the width of the membership function
in the precondition part).

The update rule of is

(28)

where

(29)

The partial derivative is

(30)

where

if the membership function with width
is in the precondition part of rule

otherwise
(31)

and the partial derivative is

(32)

(33)

(34)

where

if the membership function with width
is in the precondition part of the rule that is
connected to node in layer 4

otherwise.
(35)

• Update rule of (the memory weight parameter in the
feedback layer).

The update rule of is

(36)

where

(37)

and

(38)

(39)

where

(40)

Hence, we have the following recursive form:

(41)

The values , , and are
equal to zero initially and are reset to zero after a period

836 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 4, JULY 1999

time to avoid the accumulation of too far away errors. Note
that two different learning constants are used in the above
equations— for the tuning of memory weight , and
for the remaining parameters. Except the memory weight
parameter which is assigned randomly initially, the other
parameters all have good initial values assigned during the
structure learning phase. Owning to this good initial assign-
ment, the convergence of these parameters is usually faster
than that of the weight parameter. To increase the learning
speed of temporal relationship (i.e., tuning of the weight
parameter), we may set the learning constant several
times larger than, so the convergence speed of all parameters
is about the same. The learning algorithm derived above is
used in the following examples. Notice that according to the
real time recurrent learning (RTRL) scheme [38], we can also
obtain the same parameter learning rules for the RSONFIN.
Of course, other existing on-line learning algorithms [39], [40]
for tuning the weights of recurrent neural networks can be
possibly adopted for tuning the RSONFIN, too.

IV. SIMULATIONS

To verify the performance of the RSONFIN for temporal
problems, several examples are presented in this section and
performance comparisons with some existing recurrent neural
networks as well as feedforward networks are also made. The
examples illustrated here include the problem of time-series
prediction, nonlinear IIR filtering, dynamic plant identification
and control. In the following simulations, the parameters

is set as 0.6 in the RSONFIN learning algorithm. The
number of training epochs chosen for the RSONFIN in each
example is determined based on the desired accuracy. In each
example, we first train the compared network(s) extensively
to get its (their) best performance (i.e., smallest convergence
error). We then use this error as the training goal for our
RSONFIN to achieve. Once the RSONFIN has been trained
to achieve the same accuracy as the compared network(s),
it is trained continuously for some more epochs to achieve
even higher accuracy. The number of these additional training
epochs is chosen heuristically; we stop the training any time
when the results have demonstrated that the RSONFIN can
achieve higher accuracy in fewer training epochs (time steps)
than the compared counterparts. In short, the training of
RSONFIN is stopped once its high learning efficiency has
been demonstrated.

A. Time Sequence Prediction

To clearly verify if the proposed RSONFIN can learn the
temporal relationship, a simple sequence prediction problem
used in [41] is used for test in the following example.

Example 1: The test bed used is shown in Fig. 4(a). This
is an “8” shape made up with a series of 12 points which
are to be presented to the network in a given order as shown.
The network is asked to predict the succeeding point for every
presented point. Obviously, this task cannot be accomplished
by a static network because the point at coordinate (0, 0)
has two successors: point 5 and point 11. The network must
decide the successor of (0, 0) based on its predecessor; if

the predecessor is 3, then the successor is 5, whereas if the
predecessor is 9, the successor is 11.

In applying the RSONFIN to this prediction problem, the
learning rates , , ,
and are chosen. The network contains only
two input linguistic nodes which are activated with the two-
dimensional coordinate of the current point, and two output
nodes whose values represent the two-dimension coordinate
of the predicted point. The training was run for only 1600
epochs. After training, six input clusters (rules) and four output
clusters are generated. The numbers of fuzzy sets on and

dimensions are 5 and 4, respectively. The number of
internal variables is equal to the number of output clusters,
4. Fig. 4(b) illustrates the distribution of training patterns
and the final assignment of fuzzy rules (i.e., distribution of
input membership functions) in the plain. Since
the region covered by a Gaussian membership function is
unbounded, in Fig. 4(b) and the succeeding similar figures in
this paper, the boundary of each ellipse represents a rule with
firing strength . The input data not covered by the ellipse
are the data with a maximum corresponding firing strength
less than but higher than . Hence these data are in
fact covered by the input clusters. The predicted values are
shown in Fig. 4(c). The learned one-dimensional membership
functions on , , , and are shown
in Fig. 5. To give a clear understanding of this performance,
comparison with the block-structured recurrent network [41]
on the same problem is made in Table I. This comparison
shows that fewer network parameters and learning epochs
are required for the RSONFIN, whereas a smaller error is
achieved. We also used a traditional (nonrecurrent) neural
fuzzy network to solve this time sequence prediction problem.
The number of parameters used in the feedforward neural
fuzzy network is the same as that in the RSONFIN. The
prediction result after training is shown in Fig. 4(d) verifying
that a feedforward neural fuzzy network fed with current
point as input only cannot do the prediction
successfully. To solve the problem with the feedforward neural
fuzzy network, we need to feed four points , ,

, and to it. With three rules, 36 parameters, and
1600 epochs of training, an accuracy of MSE was
achieved. Only when five rules (60 parameters in total) were
used, a better result (MSE) was achieved by the
feedforward neural fuzzy network.

B. Adaptive Noise Cancellation

Adaptive noise cancellation is concerned with the enhance-
ment of noise-corrupted signal and is based on the availability
of a primary input source and an auxiliary (reference) input
source located at the noise field which contains no or little
desired signal as shown in Fig. 6. In Fig. 6, the primary input
source contains the desired signal corrupted by a noise
signal , which is a filtered version of the noise source .
The auxiliary input source receives the noise source directly
and the measured value is used as input to an adaptive filter.

The principle of the adaptive noise cancellation techniques
is to adaptively process (by adjusting the filter’s weights) the

JUANG AND LIN: RECURRENT SELF-ORGANIZING NEURAL FUZZY INFERENCE 837

(a) (b)

(c) (d)

Fig. 4. (a) Test bed for the next sample prediction experiment in Example 1. (b) The input training patterns and the final assignment of rules. (c) Results of
prediction using the RSONFIN after 800 training epochs. (d) Results of prediction using the nonrecurrent neural fuzzy network after 800 training epochs.

reference noise to generate a replica of , and then
subtract the replica of from the primary input

to recover the desired signal . We denote
the replica of , i.e., the adaptive filter output, as process

. To show how the system works, we shall follow what is
derived in [42]. In [42], the assumptions that , , and

are stationary zero-mean processes, is uncorrelated
with and , and and are correlated, are
made. Also, the reference input source is situated in such a
position that it detects only the noise and not the signal .
Here, another constraint that process is uncorrelated with
process is added due to the use of nonlinear adaptive

filters. From Fig. 6, we have

(42)

By squaring and taking expectation on both sides, we can
obtain

(43)

Our objective is to minimize . Observing
(43), we can see that this objective is equivalent to minimizing

, and when
approaches zero, the remaining error is in fact the desired
signal , where represents the function of the nonlinear
adaptive filter.

838 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 4, JULY 1999

Fig. 5. The distribution of learned membership functions on thex1(k), x2(k), x1(k + 1), andx2(k + 1) dimensions in Example 1.

TABLE I
COMPARISONS OF THERSONFIN WITH EXISTING RECURRENT NETWORKS, WHERE THE ERROR IN EXAMPLES 3 AND 4 IS THE

MEAN SQUARE ERROR BETWEEN THE PLANT AND REFERENCEOUTPUTS OVER 1000 TIME STEPS OF THETEST SIGNAL

Fig. 6. Adaptive noise cancellation system in Example 2.

Traditionally, the design of an adaptive filter for the afore-
mentioned noise cancelling is based on a linear filter, which
may work well only for linear channel. If the channel is
nonlinear, a neural network can be used. In the following
example, we assume the channel is of nonlinear IIR type, and
thus a nonlinear recurrent filter is required.

Example 2: Consider the case where the primary input
signal is a sequence of Mandarin digits speech, and the noise

signals are from the NOISEX-92 database [52]. Assume that
the relation between noise source and corrupting noise

is a dynamic nonlinear function

(44)

Suppose the noise sourceis fed to the filter input directly.

JUANG AND LIN: RECURRENT SELF-ORGANIZING NEURAL FUZZY INFERENCE 839

(a)

(b)

(c)

(d)

Fig. 7. (a) The original speech signals(k). (b) The corrupted speech signalx(k). (c) The recovered speech signal by the feedforward fuzzy adaptive
filter. (d) The recovered speech signal by the RSONFIN.

The adaptive filter is implemented by the RSONFIN. Only
the currently received noise signal is used as the input
to the RSONFIN. The noise signal used is the noise on the
floor of a car factory. A word utterance, the digit “0,” is
recorded, and training is performed on this word in advance.
The initial parameters of the RSONFIN are set as ,

, , and . Ten epochs of training
are performed, and four input clusters (rules), and four output
clusters and internal variables are generated. Afterwards, other
speech signals are spoken, and the RSONFIN is on-line tuned
to recover the speech signal. The original speech signal
is shown in Fig. 7(a). The measured noisy speech signal
is shown in Fig. 7(b), where SNR dB. The recovered
signal during on-line filtering is shown in Fig. 7(d), where
SNR dB. The obtained dynamic fuzzy rules after on-line
learning are:

Rule 1) IF is and is , THEN
is and is and

is and is 0.21 and
is 1.07.

Rule 2) IF is and is , THEN
is and is and

is 1.23 and is 0.56 and
is .

Rule 3) IF is and is , THEN
is and is and

is 0.84 and is 0.54 and
is .

Rule 4) IF is and is , THEN
is and is

and is 1.02 and is 0.42 and
is

In the above rules, , , , and are the generated in-
ternal variables, represents a Gaussian membership
function with center and width , and is the global
membership function stated previously in Section II.

For comparison, a feedforward filter, the fuzzy adaptive
filter [43], with ten rules is applied to the same problem.
Different numbers of variables, including ,

, and

840 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 4, JULY 1999

, are used as inputs to the fuzzy adaptive filter for compar-
ison. The enhanced SNR’s by the fuzzy adaptive filter with
different orders of inputs are0.2, 0.5, and two, respectively.
Even with only one input and a smaller filter size (32 pa-
rameters in total), the RSONFIN performs better than the
feedforward fuzzy adaptive filter which needs 90 parameters
in total if four inputs are used. By further increasing the
input dimension of the fuzzy adaptive filter to cover more
delays of the input variables, we can obtain a better result.
The resulting network size is, however, quite large and this is
not an economic approach. The recovered speech by the fuzzy
adaptive filter with input
is shown in Fig. 7(c).

C. Dynamic Identification

The systems to be identified here are dynamic systems
whose outputs are functions of past inputs and past outputs
as well. This dynamic identification problem is more com-
plicated than the static one because the identification model
to be used (e.g., artificial neural network) should have some
internal memory. Although we can model the system with a
memoryless feedforward network by feeding all the necessary
past inputs and outputs of the system as explicit inputs to the
network, some drawbacks still exist with this method. One of
them is that the exact order of past values for feeding into the
network is unknown in practice. Other drawbacks and detailed
discussions can be found in [44] and [45].

The dynamic systems to be identified in the following
examples are from [46] and are also used in [45]. As shown
in [45], the main reason for using these dynamic systems is
that they provide fairly complex nonlinear functions and all
of them are known to be stable in the bounded input bounded
output (BIBO) [49] sense. Moreover, the use of these models
makes the comparison of the RSONFIN with the memory
neural network proposed in [45] easier.

Example 3—Single Input Single Output (SISO) [50] Identi-
fication: The plant to be identified in this example is guided
by the difference equation

(45)
where

(46)

Here the current output of the plant depends on three previous
outputs and two previous inputs. In [46], a feedforward neural
network with five input nodes for feeding the appropriate
past values of and is used. In our case, only two
values, and , are fed to the RSONFIN and the
output is determined. The identification system, a
series-parallel model [46], is shown in Fig. 8. In training the
RSONFIN, we use only 9000 time steps and, similar to the
inputs used in [45], the input is anindependent and identically
distributed(i.i.d.) uniform sequence over [2, 2] for about half
of the training time and a single sinusoid signal given by 1.05

for the remaining training time. In applying the
RSONFIN to this dynamic identification problem, the learning

Fig. 8. Series-parallel identification model with the RSONFIN in Example 3.
The current input into the plant and the most recent output of the plant are fed
into the network. The errore(k) is used for training the network parameters.

Fig. 9. The input training patterns and the final assignment of rules in
Example 3. The index in the center of each cluster denotes the output cluster
it maps to.

Fig. 10. The distribution of learned membership functions on they(k + 1)
dimension in Example 3.

rates , , , and
are chosen. After training, five input clusters (rules) and three
output clusters and internal variables are generated and the
numbers of fuzzy sets on and are four and five,
respectively. Fig. 9 illustrates the distribution of some of the
training patterns and the final assignment of the rules in the

plain. The distribution of the formed clusters in
the input–output spaces might not be perfect from the data
clustering point of view. This is due to the parameter learning
process which tunes the mean and width of each cluster at
each time step for minimizing the output error function. The
membership functions on the dimension are shown

JUANG AND LIN: RECURRENT SELF-ORGANIZING NEURAL FUZZY INFERENCE 841

Fig. 11. Outputs of the SISO plant (solid curve) and model RSONFIN (dotted curve) in Example 3.

in Fig. 10. The index in the center of each cluster shows the
output fuzzy set each rule maps to.

To see the identified result, the following input as used in
[45] is adopted for test

Fig. 11 shows the outputs of the plant (denoted as a solid
curve) and the RSONFIN (denoted as a dotted curve) for the
test input. Detailed performance comparison of the RSONFIN
and the memory neural network [45] for this identification task
is given in Table I. In [46], a feedforward neural network with
five inputs , , , , is applied
to the same problem. The numbers of parameters and training
steps used are 310 and 100 000, respectively. This feedforward
neural network achieved the accuracy of MSE , which
was close to the MSE value achieved by the RSONFIN, but
the former needed much more parameters and training time
steps than the latter.

Example 4—Multiple-Input–Multiple-Output (MIMO) [50]
Identification: The MIMO plant to be identified in this ex-
ample is the same as that used in [45] and [46]. This plant has
two inputs and two outputs, so there are four input nodes and
two output nodes in the RSONFIN. The plant is specified by

During the training phase, 11 000 time steps are used and the
input sequence is the same as that used in Example 3, where
about half of the training time the input is an i.i.d. uniform
sequence over [2, 2] and for the remaining training time, the
input is a single sinusoid signal given by . After
training, seven input clusters (rules), five output clusters, and
internal variables are generated. The numbers of fuzzy sets on

, , , and are 6, 5, 4, 6, respectively.
The identified results are shown Fig. 12. As in Example 3,
performance comparison of the RSONFIN and the memory
neural network for the same identification task is made in
Table I. Through the comparisons made in Examples 3 and
4, we find that the RSONFIN needs fewer training time steps
and network parameters, and achieves higher accuracy than
the memory neural network.

D. Plant Control

For the plant control problem here, we focus on the control
of dynamic plants. Two distinct neural control approaches,
the direct and indirect control, have been used to control a
plant adaptively [47]. The indirect control usually requires an
identified model for the plant and the design of the controller
is based on the backpropagation of the controlled output error
through the identified model to train the controller. It has
been pointed out in [45] that if the plant involves significant
delay, then this training method encounters difficulty when the
plant is identified with a feedforward neural network. For this
reason, the use of a recurrent identification model is suggested.
As to the direct control, we consider the direct inverse control,
which is applied when the controlled plant is reversible. To
learn the inverse of a dynamic plant we have to feed the
exact order of inputs to the controller if a feedforward neural
network is used, which may not be possible in practice. Hence
a recurrent network controller is suitable. In the following
example, we shall use the direct inverse control technique

842 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 4, JULY 1999

(a)

(b)

Fig. 12. Outputs of the MIMO plant (solid curve) and model RSONFIN (dotted curve) in Example 4. (a) The first outputyp1(k + 1). (b) The
second outputyp2(k + 1).

Fig. 13. Block diagram of direct inverse control with off-line learning by
the RSONFIN in Example 5.

based on the RSONFIN to control a dynamic plant which is
reversible.

Example 5: The controlled plant is the same as that used
in [45] and [46] and is given by

(47)
The reference model is a second order linear system given by

(48)

The block diagram for the off-line learning of the controller is
shown in Fig. 13. During off-line learning, 4000 time steps
are used and for half of these time steps the input is an
i.i.d. uniform sequence over [1, 1], and for the remaining
time steps the input is . By applying these
inputs to the plant, their corresponding outputs are obtained
and a set of training patterns ; can

Fig. 14. The input training patterns and the final assignment of rules in
Example 5. The index in the center of each cluster denotes the output cluster
it maps to.

thus be obtained. During training, the inputs to the RSONFIN
controller are and , and the desired output is
the injected input to the plant. The learning parameters

, , , and are
chosen. Seven input clusters, four output clusters, and internal
variables are generated. The numbers of generated fuzzy sets
on [or during control phase] and

JUANG AND LIN: RECURRENT SELF-ORGANIZING NEURAL FUZZY INFERENCE 843

Fig. 15. Block diagram of direct inverse control with on-line learning by the RSONFIN in Example 5.

Fig. 16. The reference output (solid curve) and the RSONFIN controlled output (dotted curve) in Example 5.

are 4 and 7, respectively. Fig. 14 illustrates the distribution of
some of the training patterns and the final assignment of fuzzy
rules in the plain. After off-line training,
the RSONFIN is operated as a direct controller as shown in
Fig. 15 with and being the inputs. During the
control phase, on-line learning is also performed as shown in
Fig. 15. To test the adaptive controller, as in [45], we use the
following reference input:

The controlled result is shown in Fig. 16. In [46], a different
control scheme is used, but for this control scheme much
information of the plant (like the order of the plant and the
plant type) must be known in advance, which might not be
known in practice. In [45], an indirect control configuration
is used to control the same plant using the memory neural

network. Since different control configurations are used, it’s
difficult to compare the performance of these two networks.
However, the controlled result of the RSONFIN appears to be
superior to that of the memory neural network in [45] for the
reversible plant.

V. CONCLUSIONS

An RSONFIN with on-line self-organizing learning capa-
bility is proposed in this paper. Basically, this network is
constructed by expanding the powerful ability of a neural
fuzzy network to deal with temporal problems. The RSONFIN
itself realizes dynamic fuzzy reasoning by creating recursive
fuzzy rules, which are generated automatically and optimally
during on-line operation via concurrent structure and param-
eter learning. The structure identification process proposed
in this paper can effectively reduce the rule number and
network size, and the derived order-derivative-based parameter
learning algorithm can optimally tune the parameters on both
the feedforward and feedback connections. The RSONFIN can
be used for normal operation at any time as learning proceeds
without any assignment of fuzzy rules in advance. Simulations

844 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 4, JULY 1999

in several temporal problems have demonstrated the high
learning efficiency of the RSONFIN. As a contrast, the role
played by the RSONFIN in the recurrent neural network
domain is parallel to the role played by the feedforward neural
fuzzy network in the feedforward neural network domain. The
former networks are good at dynamic mapping, while the
latter networks are for static mapping. Both of the RSONFIN
and the feedforward neural fuzzy network have the same
advantages (such as fast learning, small network size, being
easy to incorporate expert knowledge) over their pure neural
network counterparts.

APPENDIX

Let represent the Gaussian membership function
with center and width , and represent the fuzzy
measure of two fuzzy sets and . The whole algorithm for
the generation of new fuzzy rules as well as fuzzy sets for each
input variable is as follows. Suppose no rule exists initially.

IF is the first incoming pattern THEN do
PART 1. Generate a new rule,

with center , width
diag ,

where is a prespecified constant.
After decomposition, we have
one-dimensional membership functions,

with and .

ELSE for each newly incoming pattern, do
PART 2. find

IF
after a period of time
perform fuzzy measure and eliminate
unnecessary membership functions

ELSE

generate a new fuzzy rule, with
, diag

After decomposition, we have
, ,

.
Do the following fuzzy measure for each
input variable:

,
where is the number of partitions
of the th input variable.
IF ,
THEN adopt this new membership
function and set ,
ELSE set the projected membership
function as the closest one.

In the above algorithm, is a scalar similarity criterion; higher
similarity between two fuzzy sets is allowed for larger.

REFERENCES

[1] C. T. Lin and C. S. G. Lee,Neural Fuzzy Systems: A Neural-Fuzzy
Synergism to Intelligent Systems. Englewood CLiffs, NJ: Prentice-Hall,
May 1996.

[2] J. S. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,”
IEEE Trans. Syst., Man, Cybern.,vol. 23, pp. 665–685, May
1993.

[3] K. Tanaka, M. Sano, and H. Watanabe, “Modeling and control of carbon
monoxide concentration using a neuro-fuzzy technique,”IEEE Trans.
Fuzzy Syst.,vol. 3, pp. 271–279, Aug. 1995.

[4] B. Kosko,Neural Networks and Fuzzy Systems.Englewood Cliffs, NJ:
Prentice-Hall, 1992.

[5] C. T. Lin, Neural Fuzzy Control Systems with Structure and Parameter
Learning. Singapore: World, 1994.

[6] J. Hertz, A. Krogh, and R. G. Palmer,Introduction to the Theory of
Neural Computation. Reading, MA: Addison-Wesley, 1991, ch. 7.

[7] C. L. Giles, G. M. Kuhn, and R. J. Williams, “Dynamic recurrent neural
networks: Theory and applications,”IEEE Trans. Neural Networks,vol.
5, pp. 153–156, Mar. 1994.

[8] S. A. Billings and C. F. Fung, “Recurrent radial basis function networks
for adaptive noise cancellation,”Neural Networks,vol. 8, no. 2, pp.
273–290, 1995.

[9] T. Miyoshi, H. Ichihashi, S. Okamoto, and T. Hayakawa, “Learning
chaotic dynamics in recurrent RBF network,”IEEE ICNN, pp. 588–
593.

[10] V. Gorrini and H. Bersini, “Recurrent fuzzy systems,” inProc. IEEE
Int. Conf. Fuzzy Systems,1994, vol. 1, pp. 193–198.

[11] J. Grantner and M. Patyra, “Synthesis and analysis of fuzzy logic finite
state machine models,” inProc. IEEE Int. Conf. Fuzzy Syst.,1994, vol.
1, pp. 205–210.

[12] E. Khan and F. Unal, “Recurrent fuzzy logic using neural networks,”
Advances in Fuzzy Logic, Neural Network, and Genetic Algorithms,
T. Furuhashi, Ed.,Lecture Notes in Artificial Intelligence.Berlin,
Germany: Springer Verlag, 1995.

[13] E. B. Kosmatopoulos and M. A. Christodoulou, “Recurrent neural
networks for approximation of fuzzy dynamical systems,”Int. J. Intell.
Contr. Syst. (Special Issue Neural Networks Fuzzy Syst. Closed-Loop
Applicat.), vol. 1, no. 2, pp. 223–233, 1996.

[14] E. Kosmatopoulos and M. Christodoulou, “Structural properties of
gradient recurrent high-order neural networks,”IEEE Trans. Circuits
Syst.,1995.

[15] E. Kosmatopoulos, M. Polycarpou, M. Christodoulou, and P. Ioannou,
“High-order neural networks for identification of dynamic systems,”
IEEE Trans. Neural Networks,vol. 6, pp. 422–431, 1995.

[16] C. W. Omlin, K. K. Thornber, and C. L. Gilies, “Fuzzy finite state au-
tomata can be deterministically encoded into recurrent neural networks,”
IEEE Trans. Fuzzy Syst.,vol. 6, pp. 76–89, 1998.

[17] F. Unal and E. Khan, “A fuzzy finite state machine implementation
based on a neural fuzzy system,” inIEEE Int. Conf. Fuzzy Syst.,1994,
vol. 3, pp. 1749–1754.

[18] M. Mézard and J. P. Nadal, “Learning in feedforward layered networks:
The tiling algorithm.”J. Phys.,vol. 22, pp. 2191–2204, 1989.

[19] S. E. Fahlman and C. Lebiere, “The cascade-correlation learning ar-
chitecture,” inAdvances in Neural Information Processing Systems II,
D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990, pp.
524–532.

[20] T. C. Lee, Structure Level Adaptation for Artificial Neural Networks.
Boston, MA: Kluwer, 1991.

[21] G. Martinelli, F. M. Mascioli, and G. Bei, “Cascade neural network for
binary mapping,”IEEE Trans. Neural Networks,vol. 4, pp. 148–150,
1993.

[22] C. L. Giles, D. Chen, G. Z. Sun, H. H. Chen, Y. C. Lee, and M.
W. Goudreau, “Constructive learning of recurrent neural networks:
Limitations of recurrent cascade correlation and a simple solution,”
IEEE Trans. Neural Networks,vol. 6, pp. 829–836, 1995.

[23] C. J. Lin and C. T. Lin, “Reinforcement learning for ART-based fuzzy
adaptive learning control networks,”IEEE Trans. Neural Networks,vol.
7, pp. 709–731, May 1996.

[24] L. Wang and R. Langari, “Building Sugeno-type models using fuzzy
discretization and orthogonal parameter estimation techniques,”IEEE
Trans. Fuzzy Syst.,vol. 3, pp. 454–458, Nov. 1995.

[25] E. H. Ruspini, “Recent development in fuzzy clustering,” inFuzzy Set
and Possibility Theory. New York: North Holland, 1982, pp. 113–
147.

[26] H. R. Berenji and P. Khedkar, “Learning and tuning fuzzy logic
controllers through reinforcements,”IEEE Trans. Neural Networks,vol.
3, pp. 724–740, 1992.

JUANG AND LIN: RECURRENT SELF-ORGANIZING NEURAL FUZZY INFERENCE 845

[27] H. Takagi and I. Hayashi, “NN-driven fuzzy reasoning,”Int. J. Approx-
imate Reasoning,vol. 5, no. 3, pp. 191–212, 1991.

[28] J. S. Roger Jang and C. T. Sun, “Functional equivalence between
radial basis function networks and fuzzy inference system,”IEEE Trans.
Neural Networks,vol. 4, pp. 156–159, 1993.

[29] T. Takagi and M. Sugeno, “Derivation of fuzzy control rules from
human operator’s control actions,” inProc. IFAC Symp. Fuzzy Inform.,
Knowledge Representation, Decision Anal.,July 1983, pp. 55–60.

[30] C. T. Lin and C. S. G. Lee, “Neural-network-based fuzzy logic control
and decision system,”IEEE Trans. Comput.,vol. 40, pp. 1320–1336,
1991.

[31] J. Platt, “A resource allocating network for function interpolation,”
Neural Comput.,vol. 3, pp. 213–225, 1991.

[32] J. Moody and C. J. Darken, “Fast learning in networks of locally-tuned
processing units,”Neural Comput.,vol. 1, pp. 281–294, 1989.

[33] J. Nie and D. A. Linkens, “Learning control using fuzzified self-
organizing radial basis function network,”IEEE Trans. Fuzzy Syst.,vol.
40, pp. 280–287, Nov. 1993.

[34] C. T. Lin and C. S. G. Lee, “Reinforcement structure/parameter learning
for neural-network-based fuzzy logic control systems,”IEEE Trans.
Fuzzy Syst.,vol. 2, pp. 46–63, Feb. 1994.

[35] L. X. Wang and J. M. Mendel, “Fuzzy basis functions, universal
approximation, and orthogonal least-squares learning,”IEEE Trans.
Neural Networks,vol. 3, pp. 807–814, Sept. 1992.

[36] L. X. Wang, Adaptive Fuzzy Systems and Control.Englewood Cliffs,
NJ: Prentice-Hall, 1994.

[37] P. Werbos, “Beyond regression: New tools for prediction and analysis in
the behavior sciences,” Ph.D. dissertation, Harvard Univ., Cambridge,
MA, Aug. 1974.

[38] R. J. Williams and D. Zipser, “A learning algorithm for continually
running recurrent neural networks,”Neural Comput.,vol. 1, no. 2, pp.
270–280, 1989.

[39] B. A. Pearlmutter, “Gradient calculations for dynamic recurrent neu-
ral networks: A survey,”IEEE Trans. Neural Networks,vol. 6, pp.
1212–1228, 1995.

[40] S. W. Pich́e, “Steepest descent algorithms for neural-network controllers
and filters,” IEEE Trans. Neural Networks,vol. 5, pp. 198–212, 1994.

[41] S. Santini, A. D. Bimbo, and R. Jain, “Block-structured recurrent neural
networks,”Neural Networks,vol. 8, no. 1, pp. 135–147, 1995.

[42] B. Widrow and S. D. Stearns,Adaptive Signal Processing.Englewood
Cliffs, NJ: Prentice-Hall, 1985.

[43] L. X. Wang and J. M. Mendel, “Fuzzy adaptive filters with application
to nonlinear channel equalization,”IEEE Trans. Fuzzy Syst.,vol. 1, pp.
161–170, 1993.

[44] R. J. Williams, “Adaptive state representation and estimation using
recurrent connectionist networks,” inNeural Networks for Control,W.
T. Miller, R. S. Sutton, and P. J. Werbos, Eds. Cambridge, MA: MIT
Press, 1990.

[45] P. S. Sastry, G. Santharam, and K. P. Unnikrishnan, “Memory neural
networks for identification and control of dynamic systems,”IEEE
Trans. Neural Networks,vol. 5, pp. 306–319, 1994.

[46] K. S. Narendra and K. Parthasarathy, “Identification and control of dy-
namical systems using neural networks,”IEEE Trans. Neural Network,
vol. 1, pp. 4–27, 1990.

[47] K. S. Narendra and A. M. Annaswamy,Stable Adaptive Systems.
Englewood Cliffs, NJ: Prentice-Hall, 1989.

[48] S. S. Horikawa, T. Furuhashi, and Y. Uchikawa, “On fuzzy modeling
using fuzzy neural networks with the back-propagation algorithm,”IEEE
Trans. Neural Networks,vol. 3, pp. 801–806, 1992.

[49] F. M. Callier and C. A. Desoer,Linear System Theory.New York:
Springer-Verlag, 1992.

[50] C. L. Phillips and H. T. Nagle,Digital Control System. Englewood
Cliffs, NJ: Prentice-Hall, 1995.

[51] L. N. Teow and K. F. Loe, “An effective learning method for max–min
neural networks,” inProc. 15th Int. Joint Conf. Artificial Intell., NIL’97,
1997, pp. 1134–1139.

[52] A. Varga, H. J. M. Steeneken, M. Tomlinson, and D. Jones, “The
NOISEX-92 study on the effect of additive noise automatic speech
recognition,” Description of RSG.10 and Esprit SAM experiment and
database, DRA Speech Research Unit, Malvern, U.K.

Chia-Feng Juangreceived the B.S. degree in con-
trol engineering from the National Chiao-Tung Uni-
versity, Hsinchu, Taiwan, R.O.C., in 1993. He is
currently working toward the Ph.D. degree in the
Department of Electrical and Control Engineering
at the same university.

His current research interests are neural networks,
learning systems, fuzzy control, noisy speech recog-
nition, and signal processing.

Chin-Teng Lin (S’88–M’91) received the B.S. de-
gree in control engineering from the National Chiao-
Tung University, Hsinchu, Taiwan, R.O.C., in 1986
and the M.S.E.E. and Ph.D. degrees in electrical en-
gineering from Purdue University, West Lafayette,
IN, in 1989 and 1992, respectively.

Since August 1992, he has been with the College
of Electrical Engineering and Computer Science,
National Chiao-Tung University, Hsinchu, Taiwan,
R.O.C., where he is currently a Professor of Electri-
cal and Control Engineering. He also serves as the

Deputy Dean of the Research and Development Office of the National Chiao-
Tung University since 1998. His current research interests are fuzzy systems,
neural networks, intelligent control, human-machine interface, and video and
audio processing. He is the coauthor ofNeural Fuzzy Systems—A Neuro-Fuzzy
Synergism to Intelligent Systems(Englewood Cliffs, NJ: Prentice-Hall, 1996),
and the author ofNeural Fuzzy Control Systems with Structure and Parameter
Learning (Singapore: World, 1994). He has published more than 30 journal
papers in the areas of neural networks and fuzzy systems.

Dr. Lin is a member of Tau Beta Pi and Eta Kappa Nu. He is also a member
of the IEEE Computer Society, the IEEE Robotics and Automation Society,
and the IEEE Systems, Man, Cybernetics Society. He has been the Executive
Council Member of Chinese Fuzzy System Association (CFSA) since 1995,
and the Supervisor of Chinese Automation Association since 1998. He was the
Vice Chairman of IEEE Robotics and Automation Taipei Chapter in 1996 and
1997. He won the Outstanding Research Award granted by National Science
Council (NSC), Taiwan, in 1997, and the Outstanding Electrical Engineering
Professor Award granted by the Chinese Institute of Electrical Engineering
(CIEE) in 1997.

