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A Recurrent Self-Organizing Neural
Fuzzy Inference Network

Chia-Feng Juang and Chin-Teng LiMember, IEEE

A recurrent self-organizing neural fuzzy inference network fuzzy systems, and provides the high-level human-like think-
(RSONFIN) is proposed in this paper. The RSONFIN is jng and reasoning of fuzzy systems into neural networks [1],
inherently a recurrent multilayered connectionist network for [4], [5]. However, a major drawback of the existing neural
realizing the basic elements and functions ofdynamic fuzzy f ' K N h hei lication d in is limited
inference, and may be considered to be constructed from a uzzy _networ S Is that their _aPp ication domain is limite
series of dynamic fuzzy rules. The temporal relations embedded tO static problems due to their inherefieedforwardnetwork

in the network are built by adding some feedback connections structure. Inefficiency occurs for temporal problems. Hence a
representing the memory elements to a feedforwardheural fuzzy  recurrent neural fuzzy network capable for solving temporal
network. Each weight as well as node in the RSONFIN has problems is in need.

its own meaning and represents a special element in a fuzzy A recurrent neural network, which naturally involves dy-
rule. There are no hidden nodes (i.e., no membership functions ) - ’ y ; y
and fuzzy rules) initially in the RSONFIN. They are created Namic elements in the form of feedback connections used
on-line via concurrent structure identification (the construction as internal memories, has been attracting great interest in
of dynamic fuzzy if-then rules) and parameter identification (the the past few years [6], [7]. Unlike the feedforward neural
tuning of the free parameters of membership functions). The panyork whose output is a function of its current inputs only

structure learning together with the parameter learning forms d is limited to stati . t | network
a fast learning algorithm for building a small, yet powerful, ana i1s imited to stalic mapping, recurrent neural networks

dynamic neural fuzzy network. Two major characteristics of Perform dynamic mapping. Recurrent networks are needed for
the RSONFIN can thus be seen: 1) the recurrent property problems where there exists at least one system state variable
of the RSONFIN makes it suitable for dealing with temporal which cannot be observed. Most of the existing recurrent
problems and 2) no predetermination, like the number of hidden e,r5 networks are obtained by adding trainable temporal
nodes, must be given, since the RSONFIN can find its optimal . .
structure and parameters automatically and quickly. Moreover, elements to feedforward neurgl netwprks (l'l_(e multilayer per-
to reduce the number of fuzzy rules generated, a flexible input Ceptron networks [6] and radial basis function networks [8],
partition method, the aligned clustering-based algorithm, is [9]) to make the output history-sensitive. Like feedforward
pf%posefz- Various simulations on F;mporal prok_)lcte_ms are dom;: neural networks, these networks function as black boxes; we
an errormance comparisons wi some existin recurren H H H
netvvoprks are also madg. Efficiency of the RSONFII\EIJ is verified do not know the meaning of each V.Velght anq nade in the-se
from these results. networks. Recently, the concept of incorporating fuzzy logic
into a recurrent network is proposed in some papers [10]-[17].
Since the neural fuzzy networks have so many advantages
over the feedforward neural networks as mentioned above,
it seems worth constructing a recurrent network based on a
neural fuzzy network. In this paper, we shall propose such
. INTRODUCTION a recurrent neural fuzzy netwarkhe proposed network will
ROBLEM So|ving using neural fuzzy network approach iPOSSESS the same advantages over the pure recurrent neural
becoming a popular research topic in these years [1]-[Betworks, and extend the application domain of the normal
Many characteristics of the neural fuzzy network contribufgeural fuzzy networks to temporal problems.
to this phenomenon. Some of them are, as compared to thd he recurrent neural fuzzy network proposed in this paper is
general neural networks, faster convergence speed, and sm&gdlied recurrent self-organizing neural fuzzy inference network
network size. Moreover, the neural fuzzy network approadRSONFIN). The RSONFIN expands the basic ability of a
automates the design of fuzzy rules and makes the combifgural fuzzy network to cope with temporal problems via the
tional learning of numerical data as well as expert knowleddclusion of some internal memories, calledntext elements
expressed as fuzzy if-then rules possible. In contrast to tilethe perspective of fuzzy logic, these context elements
pure neural network or fuzzy system, the neural fuzzy meth@éde expressed in the form of internal fuzzy reasoning. More
possesses both of their advantages; it brings the low-le@garly, with these context elements, the network performs the
learning and computational power of neural networks inf@llowing reasoning:

Index Terms—Context node, dynamic fuzzy inference, feed-
back term node, ordered derivative, projection-based correlation
measure.
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wherez; is the input variabley; is the output variabled;,

A, G, andB;; are fuzzy setsh; is the internal variabley ;

andw,,; are fuzzy singletons, and andm are the numbers D D
of input and internal variables, respectively. The dynamic

reasoning implies that the inference outpuft+1) is affected Eﬂ] D EE]D

by the internal variablé:;(¢), and the current internal output
h:(t+1) is a function of previous output valug(t); i.e., the m _Lm
internal variableh, itself forms the dynamic reasoning.

To reduce the network design effort, the automatic adap- @ (b)
tation of the network topology is a tendency [18]-[22]. IrFig. 1. Fuzzy partitions of a two-dimensional input space: (a) cluster-
contrast to other neural fuzzy networks, where the netwolflg-based partitioning and (b) proposed aligned clustering-based partitioning.
structure is fixed and the rules should be assigned in ad-

vance, there are no rules initially in the RSONFIN; all ofng weight has its own meaning and functions as an element
them are constructed during on-line learning. Two learning 3 fuzzy reasoning process. 2) For most recurrent network
phases, the structure as well as parameter learning phaggsdels, the user has to specify the network structure in
are used to accomplish this task. The structure learning phaggance. However, for the RSONFIN, no preassignment of
is responsible for the generation of fuzzy if-then rules afe network structure is required, since the RSONFIN can
well as the judgment of feedback configuration, and thgh-line construct itself automatically. 3) As will be shown in
parameter learning phase for the tuning of free paramet&fsction IV, the RSONFIN is characterized by small network
of each dynamic rule (such as the shapes and positigfige and fast learning speed.

of membership functions and the singleton values). In theThis paper is organized as follows. Section Il describes
structure learning phase, since the way the input spacetig structure and functions of the RSONFIN. The on-line
partitioned strongly affects the number of rules generategtycture/parameter learning algorithm for the RSONFIN
an efficient partition scheme to reduce the number of rulgs presented in Section Ill, which contains four parts: the
is required. Although many partition methods have begAput—output space partitioning, fuzzy rule construction,
proposed [1], some drawbacks still exist in these methodgedback structure identification, and parameter learning. In
The grid-type partition method encounters the problem fection IV, the RSONFIN is applied to solve several dynamic
exponential growth of rules as the dimension of the inpywroblems including the time sequence prediction, nonlinear
space increases. A flexible partition method, the clusteringifinite impulse response (IIR) [42] filtering, dynamic
based approach which clusters the input training vectors jifentification, and dynamic plant control. Comparisons with
the input space, dose reduce the rule number, but increaggme existing recurrent neural networks and nonrecurrent

the number of fuzzy sets on each input dimension. F@eural fuzzy networks are also made. Finally, conclusions are
these clustering-based methods [23]-[25], the number of fuzgymmarized in the last section.

sets on each input dimension is in general equal to the
number of fuzzy rules. This usually produces unnecessary I
fuzzy sets as shown in Fig. 1(a). In this paper, an aligned- . ) ,
clustering-based partition scheme is proposed. This schemd? this section, the structure of the RSONFIN shown in
partitions the input space in a flexible way and a fuzz?'g; 2is mtroduce.d.. The RSONFIN con§|sts of nodes, each of
measure scheme is performed on each input dimensiongich has some finite fan-m_of connections from oth_er nod_e_s
eliminate the unnecessary terms during on-line learning. TABY Some fan-out of connections to other nodes. Basically, it is
partitioned space is like the one shown in Fig. 1(b) indicatirfg ve-layered neural fuzzy network embedded with dynamic
that both the numbers of rules and membership functions ?gdback connections (the fe‘??'ba_‘?k layer in Fig. 2) that bring
reduced. For the consequent-part identification in structJf? témporal processing ability into a feedforward neural
learning, a clustering-based scheme is proposed. Based 7Y network. To give a clear understanding of the network
this scheme the context elements are on-line generated, SKHCtUre, the function of the node in each Iayekr) is described
then the whole network is constructed. For parameter learnif§!/ow- In the following descriptions, the symhef denotes
a recursive learning algorithm is developed based on tHi ith input of a node in théth layer; correspondingly, the
ordered derivative scheme [37]. This algorithm can tune t§¥mbola(*) denotes the node output in layer
free parameters in the preconditions and consequents of fuzzy@Y€r 1: No computation is done in this layer. Each node
rules, and weights of feedback connections simultaneously/fothis layer is called an input linguistic node and corresponds
minimize an output error function. All of these processes af@ One input variable. The node only transmits input values to
done on-line, so the network can be used for normal operatitls Next layer directly. That is
at any time as learning proceeds. oD — O 1)
Overall, the advantages of the RSONFIN against other ¢
recurrent network models [6]-[17] are summarized as follows: Layer 2: Nodes in this layer are called input term nodes,
1) Unlike other recurrent network models where the netwodach of which corresponds to one linguistic label (small, large,
structure is a normal neural network and functions as a blaetc.) of an input variable. Each node in this layer calculates
box, the RSONFIN is a fuzzy inference network. Each nodae membership value specifying the degree to which an input

. STRUCTURE OF THERSONFIN
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Fig. 2. Structure of the proposed recurrent self-organizing neural fuzzy inference network (RSONFIN).
value belongs to a fuzzy set. A local membership functiomhere D; = diag(1/0;1, 1/0, -+, 1/owm), m; = (ma,
is used in this layer. There are many qualified candidatess, ---, mi,)?, and a(® is the output of the feedback

for the types of membership functions, such as triangulaerm node which will be described in the feedback layer part
trapezoidal, or Gaussian membership functions. Here, a Gauasthis section. Obviously, the output® of a rule node
ian membership function is employed. The reason is thatr@presents the firing strength of its corresponding rule. The
multidimensional Gaussian membership function can be eadiliyzy AND operation used in (3) is the algebraic product
decomposed into the product of one-dimensional membershipfuzzy theory [1]. The adoption of this operation is for
functions. With this choice, the operation performed in thisomputational convenience, especially in deriving the learning
layer is algorithm for the RSONFIN. Also this operation transforms a
) 2 set of one-dimensional Gaussian membership functions into
@) _ (u7 - mij) a multidimensional one as stated in the last paragraph [also
e =ePy T 2 @) see (12)]. The algebraic product was also used in other neural
Y fuzzy networks [2], [25], [48] as the fuzzy AND operator.
Layer 4: This layer is called the consequent layer and
e nodes in this layer are called output term nodes. Each
output term node represents a multidimensional fuzzy set
Layer 3: Nodes in this layer are called rule nodes. A rulédescribed by a multidimensional Gaussian function) obtained

node represents one fuzzy logic rule and performs preconditi fir'ng the clustering operation n structure Iea_lrnlng p.hasc.e.
matching of a rule. The fan-in of a fuzzy node comes fro nly the center of each Gaussian membership function is

two sources: one from layer 2 and the other from the feedba ﬁllvered to the next layer for the local mean of maximum

layer. The former represents the rule’s spatial firing degrdeMOM) defuzzification operation [26], so the width is used
and the latter the rule’s temporal firing degree. We use tHy ©Output clustering only. Of course, we may use other

following AND operation on each rule node to integrate thed¥P€s ©of defuzzification operation [e.g., the center of area
fan-in values (COA) operation] where the width is used. Since the network

N behavior has only a little change whether the width is used or
a® =a9 ] u® = ¢® . PG IDi-m)](3) ot especially after our learning procedure, only the center
i is propagated to the next layer according to the LMOM

wherem;; andg;; are, respectively, the center and the Widﬂt‘h
of the Gaussian membership function of tftb term of the
ith input variablez;.
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defuzzification operation for simplicity. This simplificationwhere the internal variablg; is interpreted as the inference

also comes from the nature of the LMOM defuzzifier [26]. result of the hidden (internal) rule, and;; is the link weight
Different nodes in layer 3 may be connected to a same nddem the ith node in layer 4 to thejth internal variable.

in this layer, meaning that the same consequent is specifiedTore link weight, w;;, represents a fuzzy singleton in the

different rules. The function of each output term node perforneensequent part of a rule, and also a fuzzy term of the

the following fuzzy OR operation: internal variablen;. For an internal variable, fuzzy singleton
(4) (4) instead of fuzzy membership function is used as its fuzzy
A E u; 4 ) . . ; .
— term; a fuzzy membership function on an internal variable

. . . does not make much sense in the network due to the use of
to integrate the fired rules which have the same consequeion defuzzification operation, where only the center of

part. The above fuzzy OR operation is a modified boundggds Gaussian membership function is used. This is different

sum operation in fuzzy theory [1]. Again, its use is fOfom the situation for the input and output linguistic variables,
computational convenience. For the same reason, it was re the widths of fuzzy membership functions are used

used in other neural fuzzy networks [26], [48]. Although thg, cjystering the input and desired output training data.

use of simple summation as the fuzzy OR operation in (§} () the simple weighted-sum is calculated [27], [28].
would give values larger than one, which are strictly speakifgsiead of using the weighted-sum of each rule’s outputs as

not fuzzy by definition, succeeding normalization in (5) makege inference result, the conventional average weighted-sum,

the summation contributing to each output term smaller th%n (4) (4)
. Lo i =>.a; wy/>. . a , can also be used [28], [29].
or equal to one. Notice that the fuzzy OR operation in (4) may’AS % the fejed/tgck term node, unlike the case in the space

cause subsequent defuzzifications to be lopsided toward thag ain where a local membership function is used, a global

OUt?Ut terrgs havmgtr:rjar:y ”.J(ljesd mﬁnort'mal fugzy ":jferegcr%embership function is adopted on the universe of discourse
systems. However, this lopsided elfect can be reduced Qli,q jnarpal variable to simplify network structure and meet

even avoided by designing proper learning scheme f°rtr?e global property of the temporal history. Here, the global

neura_ll fuzzy qetwork. .Th|s _problem has be_:en attackgd by operty means that for a cluster in the space domain its history
learning glgorlthm derived in the ngxt section. Especially, t th (memorized by the internal variables) can be anywhere in
overlapping test in (9) can help to find the well-behaved fuz Ye space at different time, so a global membership function,

rules which cause little lopsided effect. which covers the universe of discourse of the internal variable,

Layer 5: Each node in this layer is called an output I'ngu'sfs used to rank the influence degree each internal variable

tic node and corresponds to one output linguistic variable. T'Eﬁntributes to a rule. In this paper, the membership function

e et i e 1ok et o e oo 2 = 1/(L £ ) is used for each el vaiabl. Wit
ayer together wi € links attached 1o thém accompis is choice, the feedback term node evaluates the output by
task. The function performed in this layer is

Zugo)ﬁlﬁ ) 1
Yi = at® = 722—(0) (5) “ 14 e’ (7)
u;

3 ‘ This output is connected to the rule nodes in layer 3, which
where u” = a{¥ and;, the link weight, is the center connect to the same output term node in layer 4. The outputs
of the membership function of thegh term of thejth output of feedback term nodes contain the firing history of the fuzzy
linguistic variable. rules.

Feedback Layer:This layer calculates the value of the in- With the aforementioned node functions in each layer, the
ternal variableh; and the firing strength of the internal variableRSONFIN realizes the following dynamic fuzzy reasoning:
to its corresponding membership function, where the firing
strength contributes to the matching degree of a rule node in ) ) )
layer 3. As shown in Fig. 2, two types of nodes are used in Ruleé: IF z1(t)is Ay and --- anda,,(t) is A
this layer, the square node named amsitext nodeand the andh;(t) is G
circle node named dgedback term nodeyvhere each context THEN y1(t + 1) is By andya(t + 1) is Bz
node is associated with a feedback term node. The number
of context nodes (and thus the number of feedback term )
nodes) are the same as that of output term nodes in layer 4. IS Wi
Each context node and its associated feedback term node
corresponds to one output term node. The inputs to a contwﬂerexi is the input variabley; is the output variabled;,,
pode are from all the output term npdes, and the output gEW G, B;1, andB;» are fuzzy setsh; is the internal variable,
its associated feedback term node is fed to the rule nodes

h is th > and w,,; are fuzzy singletons, and and m are the
whose consequent is the output term node corresponded, {0y hers of input and internal variables, respectively. To give a

this context node. The context node functions as a defuzzif'@éar understanding of the dynamic reasoning, we decompose
hy = Z aE‘L)wﬁ (6) the above fuzzy rule into two parts [10], the external rule and
i the internal rule, both of which form a hierarchical relation.

andhq(t+ 1) iswy; and - -+ andh,,(t + 1)
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. feedback structure identification of dynamic fuzzy if-then
. rules. Here the precondition structure identification corre-
v yd(t+1) sponds_to the input space _partitioning an_d can be formulated as
a combinational optimization problem with the following two
objectives: to minimize the number of rules generated and to
/ h(”l)ﬁ minimize the number of fuzzy sets on the universe of discourse
Consequent Consequent of each input variable. The consequent structure identification
(internal rule) (external rule) is to decide whether a new membership function should be
t generated for the output variable based on clustering. As to the
feedback structure identification, the main task is to decide the
Precondition d number of internal variables with its corresponding feedback
y® Y(@®  fuzzy terms and the connections of these terms to each rule.
For the parameter learning, based upon supervised learning, an
h(‘)ﬁ X(t) ordered derivative learning algorithm is derived to update the
Consequent Consequent free parameters in the RSONFIN. The RSONFIN can be used
(internal rule) (external rule) for normal operation at any time during the learning process
H without repeated training on the input—output patterns when
t-1 on-line operation is required. There is no rule (i.e., no node

in the network except the input—output linguistic nodes) in the
RSONFIN initially. They are created dynamically as learning
ﬁ proceeds upon receiving on-line incoming training data by
\ | performing the following learning processes simultaneously:
X(-1) 1) input—output space partitioning;
2) construction of fuzzy rules;
3) feedback structure identification;
. 4) parameter identification.

) In the above, processes 1)-3) belong to the structure learning
The details of these learning processes are described in the

The external rule realizes the following reasoning: rest of this section.
Rulei: IF x1(t) is A;; and --- andz,(¢) is 4;, and

hi(t) is G . , . .
. . The way the input space is partitioned determines the
THEN 1(t +1) is B andyz(t + 1) is By number of rules. Even though the precondition part of a
where the outputs are functions of the internal variablegle in the RSONFIN includes the external inputs which
acting as internal memories. The internal variables themselvepresent the spatial information and the internal variable
constitute a dynamic internal rule as values which represent the temporal information, only the
spatial information is used for clustering due to its local
mapping property.
hi(t) is G Geometrically, a rule corresponds to a cluster in the input
THEN hi(t + 1) is wy; and --- andh,, (¢ + 1) space withm; and D; representing the center and variance
of that cluster. For each incoming pattexn the strength a
rule is fired can be interpreted as the degree the incoming
The hierarchical and temporal relationship between the interfittern belongs to the corresponding cluster. For computational
and external fuzzy rules can be easily recognized if we unfoddficiency, we can use the spatial firing strength derived in (3)
the RSONFIN in the time domain as shown in Fig. 3, wheredirectly as this degree measure
rule is fired by the outputs of rules which were fired one time
step ahead. This figure is obtained by copying the RSONFIN Fi(x) = H u§3> — o~ [Di(x=m)]" [D; (x—m;)] (8)
at each time step, and then properly connecting the outputs of i
a RSONFIN at time — 1 to the inputs of the next RSONFIN ‘
at timet¢, where all copies of the RSONFIN's are identical on&here F* € [0, 1]. In the above equation, the term

Precondition

h(-1)

A. Input—Output Space Partitioning

Rulei: IF x1(t)is A;; and --- andz,(t) is A, and

is Wi -

another in network parameters and structure. [Di(x — my)]* [Di(x — my)] is, in fact, the distance between
x and the center of cluster. Using this measure, we can
. L EARNING ALGORITHMS FOR THERSONFIN obtain the following criterion for the generation of a new

i _fuzzy rule. Letx(t) be the newly incoming pattern. Find
Two phases of learning, structure and parameter learning,

are used concurrently for constructing the RSONFIN. The J=arg max FJ(x) 9)
structure learning includes the preconditions, consequents, and 1<j<e(®)



JUANG AND LIN: RECURRENT SELF-ORGANIZING NEURAL FUZZY INFERENCE 833

wherec(t) is the number of existing rules at timtelf £/ < identification scheme to be described below in learning process
Fin(t), then a new rule is generated, whétg (t) € (0, 1)isa C. At the same time, we have to decide the consequent part
prespecified threshold that decays during the learning procesfsthe generated rule. Suppose a new input cluster is formed
Once a new rule is generated, the next step is to assign initifler the presentation of the current input—output training pair
centers and widths of the corresponding membership functiofs, d). The consequent part is constructed by the following
Since our goal is to minimize an objective function and thalgorithm:

centers and widths are all adjustable later in the parameter | there are no output clusters,

learning phase, it is of little sense to spend much time on the 4o { PART 1in Process A, withx replaced byd }
assignment of centers and widths for finding a perfect cluster. g g

Hence we can simply set do {

find J = arg max; F(d),

M(c(t)41) 3i1 (10) E 7Y > Fout(t)
Dieiy1) = ¥l -diag(1/1n(F'y---1/In(F7)) (11) connect input clustet(t + 1) to the existing
output clusters
according to the first-nearest-neighbor heuristic [30], where ELSE
B > 0 decides the overlap degree between two clusters. Similar generate a new output cluster
methods are used in [31] and [33] for the allocation of a connect input clustes(¢ + 1) to the newly
new radial basis unit. However, in [31], the degree measure generated output cluster.
does not take the widtD into consideration. In [33], the 1.

width of each unit is kept at a prespecified constant value, so , , . :
the allocation result is, in fact, the same as that in [31]. In The algorithm is based on the fact that different precondi-

the RSONFIN, the width is taken into account in the degré@ns of different rules may be mapped to the same consequent

measure, so for a cluster with larger width (meaning a largi?2Y Set. Since only the center of each output membership
region is covered), fewer rules will be generated in its vicinitfNction is used for defuzzification, the consequent part of
than a cluster with smaller width. This is a more reasonatf@ch rule may simply be regarded as a singleton. Compared to
result. Another disadvantage of [31] is that another degri general fuzzy rule-based models with singleton output [35],
measure, the Euclid distance, is required, which increases fHaere each rule has |ts_own individual singleton value, fewer
computation load. parameters are needed in the consequent part of the RSONFIN,

After a rule is generated, the next step is to decompogaPecially for the case with a large number of rules.
the multidimensional membership function formed in (10) and o
(11) to the corresponding one-dimensional membership furfe: Feedback Structure Identification
tions for each input variable. For the Gaussian membershipin learning process B, the number of generated clusters in
function used in the RSONFIN, the task can be easily donetag consequent part is problem dependent. The number of
output clusters is large for complex problems and is small for
) 12) simple ones. Naturally, in the feedback layer, more internal

)2
o~ [Di(x—m)] T [D; (x—my)] _ H exp _ (&5 = mij)
; variables are required for more complex problems. Knowing

2
T3
h d velv th . q this relationship (i.e., the increment of internal variables as
w dere.gzg ?nh i arg, rigpefctlvej y, the pLOJg,\.cte Centelye|l as output clusters for solving a more complex problem),
and width of the membership function in each dimension. -'f8r simplicity, we simply set the number of internal variables

redl_Jce the n_umber of fuzzy sets of each input variable andep ual to the number of output clusters in the consequent part
avoid the existence of redundant fuzzy sets, we should ch £X the number of output term nodes in layer 4). With this

the similarities between them in each input dimension. Sin Etting, for each output cluster, the corresponding internal

bell-shaped membership functions are used in the RSONFW\JriabIe is used to record the temporal history that should

W_ehuEe Ifhehforrr:jula of tk?e sr|1r_nll<f’:1rlty _meas(;Jre_ OfdtWO fu_zzy Ise rticipate in the precondition part of that output cluster. Hence
with befl-shaped membersnip functions derived previously ring the on-line learning, an internal variable (and thus a

[34]'bTh? de;a!ledhalgorlthm d_for the input space partitioning, et node) is created once an output cluster is created. The
can be found in the Appendix. fan-in of the context node comes from all the nodes in layer

ngr thedoustput spr:ace .pa.rt|t|ofn|ngh the same me?sure 451, with the link weight assigned with a small random value in
(9) is used. Since the criterion for the generation of a n =1, 1] initially. This assignment is to make the initial value

output clus'ter 1S related toithe construction of a rule, §t internal variablef; (i.e., input of the global membership
;hall de_scrlbe it together with the rule construction Process: ction @) locate in the sensitive region &f. Thus, a quick
in learning process B below. parameter learning can be reached at the beginning. After
an internal variable is generated (meaning a context node is
created), the next step is to decide its effect on each rule node.
As mentioned in learning process A, the generation of a neds mentioned in Section II, only a global membership function
input cluster corresponds to the generation of a new fuzig/assigned to each internal variable and acts as the feedback
rule, with its precondition part constructed by the learnintgerm node of the corresponding context node. Of course, we
algorithm in learning process A and the feedback structucan cover the universe of discourse of the internal variable by

B. Construction of Fuzzy Rules
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some local membership functions, but this makes the network = Z a§f> H uf‘;)
structure large and complex. When the firing degree of each k i
internal variable to its corresponding membership function is © i(t) — ma, 2
calculated, we should next decide which rules the firing degree = Z ay, eXp{— Z <—> } (15)
is acted on. In other words, we should decide which rule nodes k ik

in layer 3 a generated feedback term node should be connegig@re

to. In general, each rule has its own corresponding internal ©) 1

variable, which is to memorize the firing history of the rule. L " (16)
But for the rules that have the same consequent part (i.e., being

connected to the same output term node), the same interf

variable is assigned to these rules. Thus each internal variable hi(t) = Z wuag@ (t—1)

can memorize the history that an output cluster is mapped by 7

its attached fuzzy rules. With this connection method (i.e., the _ Z wkéa(ﬁ) (t—1)

feedback term node is connected to the rule that maps to the 7 ¢

corresponding output cluster it memorizes), we can effectively )
reduce the parameter number in the feedback layer. Cexpd — Z <xj(t -1 - mjé)

gje

%

17)

J
D. Parameter ldentification ) ) ) )
With the above formula and the error function defined in

After the network structure is adjusted according to th@3) we can derive the update rules for the free parameters
current training pattern, the network then enters the paramejehio RSONFEIN as follows.

identification phase to adjust the parameters of the network N .
optimally based on the same training pattern. Notice that” zaizgen)rule ofin;; (the center of the output membership
the following parameter learning is performed on the whole ' o

network after structure learning, no matter whether the nodes' "€ update rule ofi;; is

(links) are newly added or are existent originally. Since the . . OtE

RSONFIN is a dynamic system with feedback connections, mgi(t+1) = mmyi(t) =1 s (t+1) (18)
the learning algorithm used in the feedforward radial basis o

function networks [32] or adaptive fuzzy systems [36] cannd{nere

be applied to it directly. Also, due to the on-line learning 9+g 4 ul®
property of the RSONFIN, the off-line learning algorithms for 5,7, - (t+1) =(yt+1)—y(t+1) 5 ek (19)
the recurrent neural networks, like backpropagation through —

time and time-dependent recurrent backpropagation [1], cannot

be applied here. Instead, the ordered derivative [37], which, Update rule of,, (the center of the membership func-
is a partial derivative whose constant and varying terms are o1 in the precondition part).

defined using an ordered set of equations, is used to derive o
learning algorithm. The ordered set of equations are describe
in Section Il in each layer and are summarized in (14)—(17). Otk
Considering the single-output case for clarity, our goal is to Mpg(t+1) = mypqg(t) — 1 o
minimize the error function

he update rule ofn,, is

(t+1). (20)

P4

The value of(8T E/dm,,)(t + 1) is computed by

Et+1)=2(y;(t+1) — 4t +1))? 13 Ot E
(t+1)= 3o+ D) -9+ (13) DB () e ) 4 1) Y
wherey{(t+1) is the desired output ang(¢+1) is the current " ® b
output. For each training pattern, starting at the input nodes, a ) dy;(t+1) 0% ay (t) (21)
forward pass is used to compute the activity levels of all the 8a§f’) () Omypg

nodes in the network to obtain the current outpyft + 1).

In the following, dependency on timewill be omitted unless where

emphasis on temporal relationships is required. Qyi(t+1) _ i —yi(t+1) (22)
Summarizing the node functions defined in Section Il, theaaf’)(t) Zaf’) (t)

function performed by the network is &

. otal® (t) ot zi(t) — ma \
R B ©) . _ Lilb) — Mik
Z Wi i Imyq IMpq e 27: < Tik )

yi(t+1) =— (14) (23)

0
i ' 8+a§f) (6) x (t) —m
ug ) = Z af)u(t) I, * O
k

(24)
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where and the partial derivativé*a\” /0o, is
1, if the membership function with centeu,,, gtal® th,
5= is in the precondition part of rulg a—k (t) =y (1) (1 - aiﬁ)(t)) a—k (t) (32)
0, otherwise o o
3 (25) — CL;CG) (t) (1 _ a(G) (t))
and 9ta (6)
: Whe (t — Dpe(t — 1) (33)
B x;(t) — mi 2 {%: [ amm
Hi = €Xpy — Z - . 6)
: ik + et — Day (= 1)
A 2,
The partial derivative)*a.” /dm,, is calculated as g et 12)) Mya) -6] } (34)
Tt
ota® dh
G =a? (1 - P )5 0 where T
Mpg Mpq 1, if the membership function with widthr,,
=¥t )(1 e (t)) . is in the precondition part of the rule that is
b= connected to nodé in layer 4
a+a§6) (t — Dpe(t — 1) 0, otherwise
. Wke t— Dpe(t — , wise.
2 G (35)
(6)
t—1 t—1
e Jag( ) » Update rule ofw,, (the memory weight parameter in the
9 ap(t — 12) — Mpq g (26) feedback layer).
Tpe The update rule ofv,, is
OF
where Wpg(t 4+ 1) = wpg(t) — Mo Do (t+1) (36)

1, if the membership function with centet,, "

is in the precondition part of the rule that where

is connected to nodéin layer 4 oF
(t+1) =(y;(t+1) — g4t + 1))
0, otherwise. e Qwpq ! ! zk:
Ayt +1) 9 a) , @)
» Update rule ofr,,, (the width of the membership function 8a§€3)(t) Owpq
in the precondition part). and
The update rule ob,, is 5+a® ot ) PYO!
OF o, :W(i) “‘): e L)
opg(t+ 1) = ope(t) — 7 e (t+1) (28) P P o P
rg =a(® (1 - af))—aw SRy (39)
where re
OF where
o+ D) =((t+1) —yft+1) Y O, )
bg L Z wkga( ) t - 1
(3) awpq awpq
+
90,7 () 9pa = aD(t — 1)y + z we
a Wpq
The partial derivatived*a(® /dc,, is (= D) pelt — 1). (40)
3 i H .
8*@2) _ 3+a£) et a( ) 2 (zp(t) — mm)Q 5 Hence, we have the following recursive form:
dopq dopq ‘ ook o+al®
k —,© () (s _
) g O=alO(1-a00) ¢ - Dy
+.(6)
where + 2 ke P B (¢~ D)pue(t — 1)] . (41)
1, if the membership function with widthr,, ¢ pa
6= { is in the precondition part of rulé Bl The valuesdta(® /om, 01a® /0o, and 9ta'® /ow are
0, otherwise equal to zero initially and are reset to zero after a period
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time to avoid the accumulation of too far away errors. Notine predecessor is 3, then the successor is 5, whereas if the
that two different learning constants are used in the abopeedecessor is 9, the successor is 11.

equations—s,, for the tuning of memory weightv, and In applying the RSONFIN to this prediction problem, the
for the remaining parameters. Except the memory weigletarning ratesy = n, = 0.075, Fy, = 0.1, p = 0.75,
parameters which is assigned randomly initially, the otherand F',,, = 0.1 are chosen. The network contains only
parameters all have good initial values assigned during ttveo input linguistic nodes which are activated with the two-
structure learning phase. Owning to this good initial assigdimensional coordinate of the current point, and two output
ment, the convergence of these parameters is usually fastedes whose values represent the two-dimension coordinate
than that of the weight parameter. To increase the learning of the predicted point. The training was run for only 1600
speed of temporal relationship (i.e., tuning of the weighgpochs. After training, six input clusters (rules) and four output
parameterw), we may set the learning constamt several clusters are generated. The numbers of fuzzy sets ¢t and
times larger tham, so the convergence speed of all parameters(k) dimensions are 5 and 4, respectively. The number of
is about the same. The learning algorithm derived aboveiigernal variables is equal to the number of output clusters,
used in the following examples. Notice that according to the Fig. 4(b) illustrates the distribution of training patterns
real time recurrent learning (RTRL) scheme [38], we can alsmd the final assignment of fuzzy rules (i.e., distribution of
obtain the same parameter learning rules for the RSONFINput membership functions) in the, (%), x2(%)] plain. Since

Of course, other existing on-line learning algorithms [39], [4Ghe region covered by a Gaussian membership function is
for tuning the weights of recurrent neural networks can hebounded, in Fig. 4(b) and the succeeding similar figures in

possibly adopted for tuning the RSONFIN, too. this paper, the boundary of each ellipse represents a rule with
firing strengthl/e. The input data not covered by the ellipse
IV. SIMULATIONS are the data with a maximum corresponding firing strength

] less thanl/e but higher thanF',,. Hence these data are in

To verify the performance of the RSONFIN for temporaf,qt covered by the input clusters. The predicted values are
problems, several examples are presented in this section @abwn in Fig. 4(c). The learned one-dimensional membership
performance comparisons with some existing recurrent neughctions ong; (k), »(k), 21 (k+1), andzs(k-+1) are shown
networks as well as feedforward networks are also made. Tijerig 5. To give a clear understanding of this performance,
examples illustrated here include the problem of time-serig§mnarison with the block-structured recurrent network [41]
prediction, nonlinear IIR filtering, dynamic plant identificatiory, the same problem is made in Table I. This comparison
and control. In the following simulations, the parameter§,ows that fewer network parameters and learning epochs

p is set as 0.6 in the RSONFIN learning algorithm. The.e required for the RSONFIN, whereas a smaller error is
number of training epochs chosen for the RSONFIN in eaciipieyved. We also used a traditional (nonrecurrent) neural

example is determined based on the desired accuracy. In y network to solve this time sequence prediction problem.

example, we first train the compared network(s) extensivep,e " number of parameters used in the feedforward neural
to get its (their) best pe.rformance (i.e., sma!lest CONVErgengs,y network is the same as that in the RSONFIN. The
error). We then use this error as the training goal for oWregiction result after training is shown in Fig. 4(d) verifying
RSONFIN to achieve. Once the RSONFIN has been traingth; 5 feedforward neural fuzzy network fed with current
_to_achle_zve the same accuracy as the compared netwo_rk&)im [z1(k), z2(k)] as input only cannot do the prediction

it is trained continuously for some more epochs to achiewg ccessfully. To solve the problem with the feedforward neural
even higher accuracy. The number of these additional tl’alnlﬂ&Zy network, we need to feed four points(k—1), z(k—1),

epochs is chosen heuristically; we stop the training any tin%el:(k), and z»(k) to it. With three rules, 36 parameters, and
when the results have demonstrated that the RSONFIN 0 epochs of training, an accuracy of MSE0.163 was
achieve higher accuracy in fewer training epochs (time step)ieved. Only when five rules (60 parameters in total) were

than the compared counterparts. In short, the training l%ed, a better result (MSE= 0.02) was achieved by the
RSONFIN is stopped once its high learning efficiency hasegforward neural fuzzy network.

been demonstrated.

A. Time Sequence Prediction B. Adaptive Noise Cancellation

To clearly verify if the proposed RSONFIN can learn the Adaptive noise cancellation is concerned with the enhance-
temporal relationship, a simple sequence prediction problament of noise-corrupted signal and is based on the availability
used in [41] is used for test in the following example. of a primary input source and an auxiliary (reference) input

Example 1: The test bed used is shown in Fig. 4(a). Thisource located at the noise field which contains no or little
is an “8" shape made up with a series of 12 points whiattesired signal as shown in Fig. 6. In Fig. 6, the primary input
are to be presented to the network in a given order as showaurce contains the desired sigsék) corrupted by a noise
The network is asked to predict the succeeding point for evesignaln(k), which is a filtered version of the noise souf¢é).
presented point. Obviously, this task cannot be accomplishEde auxiliary input source receives the noise source directly
by a static network because the point at coordinate (0, &d the measured value is used as input to an adaptive filter.
has two successors: point 5 and point 11. The network musfThe principle of the adaptive noise cancellation techniques
decide the successor of (0, 0) based on its predecessorisifo adaptively process (by adjusting the filter's weights) the
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Fig. 4. (a) Test bed for the next sample prediction experiment in Example 1. (b) The input training patterns and the final assignment of rules ¢f) Result
prediction using the RSONFIN after 800 training epochs. (d) Results of prediction using the nonrecurrent neural fuzzy network after 800 tidising epo

reference noise(k) to generate a replica of(k), and then filters. From Fig. 6, we have
subtract the replica ofi(k) from the primary inputz(k) = e(k) = s(k) + n(k) — y(k) (42)
s(k) + n(k) to recover the desired signa(k). We denote _ _ _ ' _
the replica ofn(k), i.e., the adaptive filter output, as procesBy squaring and taking expectation on both sides, we can
y(k). To show how the system works, we shall follow what i§Pt&in
derived in [42]. In [42], the assumptions thgtk), n(k), and E[e2(k)] = E[s*(k)] + E[(n(k) — y(k))?]. (43)
-(k) are stationary zero-mean process€g,) is uncorrelated o L )
7(. ) y P Sté) Our objective is to minimizeE[(n(k) — y(k))?]. Observing
with n(k) and »(k), and n(k) and »(k) are correlated, are N : Y

, o ) (43), we can see that this objective is equivalent to minimizing
made. Also, the reference input source is situated in SUC[E?CQ(k)] and whenE[(n(k) —y(k))2] = E[(n(k)— f(r(k))?]
position that it detects only the noise and not the sigii&).  approaches zero, the remaining er¢k) is in fact the desired
Here, another constraint that procegs) is uncorrelated with signals(k), wheref(-) represents the function of the nonlinear
processs(k) is added due to the use of nonlinear adaptivadaptive filter.
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Fig. 5. The distribution of learned membership functions onathék), v»(k), x1(k 4+ 1), anda»(k 4+ 1) dimensions in Example 1.

TABLE |
CoMPARISONS OF THERSONFIN wiTH EXISTING RECURRENT NETWORKS, WHERE THE ERROR IN EXAMPLES 3 AND 4 IS THE
MEAN SQUARE ERROR BETWEEN THE PLANT AND REFERENCE OUTPUTS OVER 1000 TIME STEPS OF THETEST SIGNAL

Examples Example 1 Example 3 Example 4
block-structured memory neural memory neural
Network structure | RSONFIN | recurrent network [41] | RSONFIN | network (6:1) {45] | RSONFIN | network (6:1) [45]
Network parameter 38 48 30 81 7 131
1600 20000 9000 62000 11000 77000
Training time epochs epochs time steps time steps time steps time steps
yp1=0.0124 yp1=0.0186
Mean square error l 0.0272 0.0467 0.0441 0.0752 Yp2=0.0197 Yp2=0.0327 j
Si sourcc ..., ST TToTTTmmTTTTTTTTS recovered
signal sourcc ) : ! output
() *,  Drimaryinput E :
nonlinear , / : ek
channel ' y (k) |
(0 | \ Adaptive X
noisc source reference 1 Filter :
input ! 7 e (k) !

____________________

adaptive noise canccller

Fig. 6. Adaptive noise cancellation system in Example 2.

Traditionally, the design of an adaptive filter for the aforesignals are from the NOISEX-92 database [52]. Assume that
mentioned noise cancelling is based on a linear filter, whithe relation between noise sourgé:) and corrupting noise
may work well only for linear channel. If the channel isw(k) is a dynamic nonlinear function
nonlinear, a neural network can _be used._ In the foIIowingn(k) =0.25n(k — 1) + 0.1n(k — 2)
example, W? assume the ch.anngl is of .nonllnear IIR type, and +0.08r(k — 5Yn(k — 2) + 0.57(k — 4)
thus a nonlinear recurrent filter is required. y

Example 2: Consider the case where the primary input +0.1r(k = 5)" +03r(k = 5) = 0.2r(k = 6). (44)
signal is a sequence of Mandarin digits speech, and the nd&gpose the noise sourees fed to the filter input directly.
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Fig. 7. (a) The original speech signs{k). (b) The corrupted speech signajk). (c) The recovered speech signal by the feedforward fuzzy adaptive
filter. (d) The recovered speech signal by the RSONFIN.

The adaptive filter is implemented by the RSONFIN. Only Rule 2) IFr(k) is 11(0.53, 0.75) and ho(k) is G, THEN

the currently received noise signa(k) is used as the input y(k) is 11(0.74, 0.13) and Ay (k + 1) is —0.39 and
to the RSONFIN. The noise signal used is the noise on the ho(k+1)is 1.23 anchs(k+1) is 0.56 anchy(k+1)
floor of a car factory. A word utterance, the digit “0,” is is —1.47.

recorded, and training is performed on this word in advance.Rule 3) IF (k) is x(0.68, 0.07) and h3(k) is G, THEN
The initial parameters of the RSONFIN are setfas = 0.35, y(k) is 14(0.66, 0.35) andhy(k + 1) is —0.54 and
Fow = 0.8, 7 = 0.03, andn, = 67. Ten epochs of training ho(k+1)is 0.84 anchs(k+1) is 0.54 andha(k+1)
are performed, and four input clusters (rules), and four output is —1.08.

clusters and internal variables are generated. Afterwards, otheRule 4) 1F»(k) is 1(—0.22, 1.38) and hy(k) is G, THEN
speech signals are spoken, and the RSONFIN is on-line tuned y(k) is u(—0.85, 0.35) and hy(k + 1) is —0.68
to recover the speech signal. The original speech sigfial and ho(k + 1) is 1.02 andhs(k + 1) is 0.42 and
is shown in Fig. 7(a). The measured noisy speech sigial ha(k 4+ 1) is —0.32.

is shown in Fig. 7(b), where SNR —0.6 dB. The recovered |n the above rulesh, ks, ks, andh, are the generated in-

signal during on-line filtering is shown in Fig. 7(d), whergernal variablesy(m;, o;) represents a Gaussian membership
SNR= 4.5 dB. The obtained dynamic fuzzy rules after on-lingunction with centerm; and widtho;, and G is the global
learning are: membership function stated previously in Section II.
Rule 1) IF#(k) is 1(—0.26, 0.45) and hq (k) is G, THEN For comparison, a feedforward filter, the fuzzy adaptive
y(k) is 11(0.05, 0.3) and hy(k 4+ 1) is —0.45 and filter [43], with ten rules is applied to the same problem.
ha(k 4+ 1) is —0.47 and hg(k + 1) is 0.21 and Different numbers of variables, including:(k), »(k — 1)],
ha(k 4+ 1) is 1.07. [r(k), r(k=1), r(k—2)], and[r(k), r(k—1), r(k—2), r(k—
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3)], are used as inputs to the fuzzy adaptive filter for compar-
ison. The enhanced SNR’s by the fuzzy adaptive filter with Plant
different orders of inputs are0.2, 0.5, and two, respectively.
Even with only one input and a smaller filter size (32 pa- " - e ()
rameters in total), the RSONFIN performs better than the——] L

¥, ()

feedforward fuzzy adaptive filter which needs 90 parameters 2k D
in total if four inputs are used. By further increasing the =
input dimension of the fuzzy adaptive filter to cover more _ | RSONFIN -
delays of the input variables, we can obtain a better result. o ¥ (0
The resulting network size is, however, quite large and this is

not an economic approach. The recovered speech by the fuggys. series-parallel identification model with the RSONFIN in Example 3.
adaptive filter with inputr(k), r(k — 1), 7(k — 2), v(k — 3)]  The current input into the plant and the most recent output of the plant are fed

is shown in Fig. 7(C). into the network. The errog(k) is used for training the network parameters.
C. Dynamic Identification N r r v v

The systems to be identified here are dynamic systems 2t 1
whose outputs are functions of past inputs and past outputs e
as well. This dynamic identification problem is more com- ey Y
plicated than the static one because the identification model ! ' 2 % g ]
to be used (e.g., artificial neural network) should have some }'.‘ ’,«?)ﬁ?‘
internal memory. Although we can model the system with a~ 4 rE S TR
memoryless feedforward network by feeding all the necessari or :}‘,'.,';“-' ---- Tt Y )
past inputs and outputs of the system as explicit inputs to the ;‘" 2 ;
network, some drawbacks still exist with this method. One of al é’__ o |
them is that the exact order of past values for feeding into the 3 N .
network is unknown in practice. Other drawbacks and detailed s P

discussions can be found in [44] and [45]. P i
The dynamic systems to be identified in the following
examples are from [46] and are also used in [45]. As shown
in [45], the main reason for using these dynamic systems is 3 R R R .
that they provide fairly complex nonlinear functions and all 3 -2 -1 0 1 2 3
of them are known to be stable in the bounded input bounded
output (BIBO) [49] sense. Moreover, the use of these modelg. 9. The input training patterns and the final assignment of rules in
makes the comparison of the RSONFIN with the memofgxample 3. The index in the center of each cluster denotes the output cluster
neural network proposed in [45] easier. it maps to.
Example 3—Single Input Single Output (SISO) [50] Identi-
fication: The plant to be identified in this example is guided? T
by the difference equation

Up(k + 1) = fyp(k), yp(k — 1), yp(k — 2), w(k), u(k — 1))
(45) 03 2 -4 0
where y(k+1)

0.5

L1X2T3X5 (353 - 1) + 24 46 Fig. 10. The distribution of learned membership functions onytie+ 1)
2 2 : ( ) dimension in Example 3
14235+ x5 ple 3.

f(9717 L2, 3, T4, 375) =

Here the current output of the plant depends on three previous _ _

outputs and two previous inputs. In [46], a feedforward neurdt€S7 = 1w = 0.055, p = 0.8, Fiy = 0.2, and oy = 0.3
network with five input nodes for feeding the appropriaté® chosen. After tra|.n|ng, five |n.put clusters (rules) and three
past values ofy, and v is used. In our case, only twooutput clusters and internal variables are generated and the
values, y,(k) and u(k), are fed to the RSONFIN and thenumbers of fuzzy sets on(k) and y(k) are four and five,
outputy,(k + 1) is determined. The identification system, &espectively. Fig. 9 illustrates the distribution of some of the
series-parallel model [46], is shown in Fig. 8. In training th&aining patterns and the final assignment of the rules in the
RSONFIN, we use only 9000 time steps and, similar to tHe(k), y(k)] plain. The distribution of the formed clusters in
inputs used in [45], the input is andependent and identically the input—output spaces might not be perfect from the data
distributed(i.i.d.) uniform sequence over{2, 2] for about half clustering point of view. This is due to the parameter learning
of the training time and a single sinusoid signal given by 1.g¥ocess which tunes the mean and width of each cluster at
sin(mk/45) for the remaining training time. In applying theeach time step for minimizing the output error function. The
RSONFIN to this dynamic identification problem, the learningnembership functions on thgk 4+ 1) dimension are shown
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Fig. 11. Outputs of the SISO plant (solid curve) and model RSONFIN (dotted curve) in Example 3.

in Fig. 10. The index in the center of each cluster shows tiuring the training phase, 11 000 time steps are used and the

output fuzzy set each rule maps to. input sequence is the same as that used in Example 3, where
To see the identified result, the following input as used i@about half of the training time the input is an i.i.d. uniform
[45] is adopted for test sequence over{2, 2] and for the remaining training time, the
input is a single sinusoid signal given kin(7k/45). After
w(k) = sin(wk/25) k < 250 training, seven input clusters (rules), five output clusters, and
=1.0, 250 < k < 500 internal variables are generated. The numbers of fuzzy sets on
s . u1(k), y1(k), ua(k), and (k) are 6, 5, 4, 6, respectively.
=-10 500 = k < 750 Th(e )ideniifi)ed re(zsznts are gh)own Fig. 12. As in Example 3,
=0.3 sin(7k/25) + 0.1 sin(7k/32) performance comparison of the RSONFIN and the memory
+ 0.6 sin(wk/10) 750 < k < 1000. neural network for the same identification task is made in

Table I. Through the comparisons made in Examples 3 and
Fig. 11 shows the outputs of the plant (denoted as a softdwe find that the RSONFIN needs fewer training time steps
curve) and the RSONFIN (denoted as a dotted curve) for tBBd network parameters, and achieves higher accuracy than
test input. Detailed performance comparison of the RSONFIRe memory neural network.
and the memory neural network [45] for this identification task
is given in Table 1. In [46], a feedforward neural network withh  pjant Control

five inputsy, (), yp (k= 1), y,(k—2), u(k), u(k—1) is applied gor the plant control problem here, we focus on the control

to the same problem. The numbers of parameters and traini A o
steps used are 310 and 100 000, respectively. This feedforwg;}ddynamlc pla_nts_. Two distinct neural control approaches,
the direct and indirect control, have been used to control a

neural network achieved the accuracy of MSHEB.049, which . I .

was close to the MSE value achieved by the RSONFIN bR nt adaptively [47]. The indirect control usually requires an
' ntified model for the plant and the design of the controller

is

the former needed much more parameters and training ti 4 on the back i f th trolled outout
steps than the latter. ased on the backpropagation of the controlled output error

Example 4—Multiple-Input—Multiple-Output (MIMO) [50] tbhrough .tr][e d'de?t!f'eism;)hdil _ftc;htraT t?? colntrollgr. I]E ha?
Identification: The MIMO plant to be identified in this ex- elen pttrJ]In eth.Ol: |'n'[ ] tarl] Id N par; |n\:jqﬁ\(eslt5|gnr: |catrr1]
ample is the same as that used in [45] and [46]. This plant h g2y, (en this training method encounters dificully when the

two inputs and two outputs, so there are four input nodes a &nt is identified with a feedforward neural network. For this

two output nodes in the RSONFIN. The plant is specified b ason, thg use of a recurrent |d¢nt|f|cat|op model Is suggested.
s to the direct control, we consider the direct inverse control,

which is applied when the controlled plant is reversible. To

ypr(k+1) =05 (k) +ug(k — 1)]’ learn the inverse of a dynamic plant we have to feed the

1+ 952(/%‘) exact order of inputs to the controller if a feedforward neural
Y (K)ypa () network is used, which may not pe po_ssible in practice. Hgnce

Yp2(k +1) =05 | 252+ ug(k — 1)]. a recurrent network controller is suitable. In the following
L+ up () example, we shall use the direct inverse control technique
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Fig. 12. Outputs of the MIMO plant (solid curve) and model RSONFIN (dotted curve) in Example 4. (a) The first gyigét+ 1). (b) The
second outputyp2(k + 1).

_ b ke D) - . . . . . .
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Fig. 13. Block diagram of direct inverse control with off-line learning by 05
the RSONFIN in Example 5.

based on the RSONFIN to control a dynamic plant which is T ]

reversible.
Example 5: The controlled plant is the same as that used -5+ .
in [45] and [46] and is given by -1’.5 1 Y o 03 1 llj
Ey,(k—1 k)+2.5
up(k+1) = 0.35 Up(Kyp(k = D(up(K) +2:5) | o) ym(k+1)

L+ y2(k) +y2(k—1)
(47) Fig. 14. The input training patterns and the final assignment of rules in

The reference model is a second order linear system given Eg?mple 5. The index in the center of each cluster denotes the output cluster
it Mmaps to.

Ym(k +1) = 0.6y, (k) + 0.2y, (k — 1) + 0.1r(k).  (48)

The block diagram for the off-line learning of the controller §hus be obtained. During training, the inputs to the RSONFIN
shown in Fig. 13. During off-line learning, 4000 time step§ontroller arey,,(k) andy,(k + 1), and the desired output is
are used and for half of these time steps the input is ¥ injected inputu(k) to the plant. The learning parameters
i.i.d. uniform sequence over{l, 1], and for the remaining 7 = 7w = 0.025, p = 0.8, F'iy = 0.25, and Floy; = 0.8 are

time steps the input is(k) = sin(7k/45). By applying these chosen. Seven input clusters, four output clusters, and internal
inputs to the plant, their corresponding outputs are obtainedriables are generated. The numbers of generated fuzzy sets
and a set of training patterng,(k), v,(k + 1); u(k)) can ony,(k + 1) [or y..(k + 1) during control phase] ang,(k)
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Fig. 15. Block diagram of direct inverse control with on-line learning by the RSONFIN in Example 5.
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Fig. 16. The reference output (solid curve) and the RSONFIN controlled output (dotted curve) in Example 5.

are 4 and 7, respectively. Fig. 14 illustrates the distribution aetwork. Since different control configurations are used, it's
some of the training patterns and the final assignment of fuzdifficult to compare the performance of these two networks.
rules in thely,,(k + 1), y,(k)] plain. After off-line training, However, the controlled result of the RSONFIN appears to be
the RSONFIN is operated as a direct controller as shown saperior to that of the memory neural network in [45] for the
Fig. 15 withy,,,(k+1) andy, (k) being the inputs. During the reversible plant.
control phase, on-line learning is also performed as shown in
Fig. 1_5. To test the gdaptlve controller, as in [45], we use the V. CONCLUSIONS
following reference input:
An RSONFIN with on-line self-organizing learning capa-
r(k) = sin(nk/25), k < 500 bility is proposed in this paper. Basically, this network is
—-10 500 < & < 1000 constructed by expanding the powerful ability of a neural
- fuzzy network to deal with temporal problems. The RSONFIN

=-10 1000 < /& < 1500 itself realizes dynamic fuzzy reasoning by creating recursive
=0.3 sin(7k/25) + 0.4 sin(7k/32) fuzzy rules, which are generated automatically and optimally
+ 0.3 sin(7k/10) k > 1500. during on-line operation via concurrent structure and param-

eter learning. The structure identification process proposed
The controlled result is shown in Fig. 16. In [46], a differenin this paper can effectively reduce the rule number and
control scheme is used, but for this control scheme mudletwork size, and the derived order-derivative-based parameter
information of the plant (like the order of the plant and théarning algorithm can optimally tune the parameters on both
plant type) must be known in advance, which might not ke feedforward and feedback connections. The RSONFIN can
known in practice. In [45], an indirect control configuratiorbe used for normal operation at any time as learning proceeds
is used to control the same plant using the memory neureithout any assignment of fuzzy rules in advance. Simulations
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in several temporal problems have demonstrated the high
learning efficiency of the RSONFIN. As a contrast, the role

played by the RSONFIN in the recurrent neural networkm
domain is parallel to the role played by the feedforward neural

fuzzy network in the feedforward neural network domain. Thd?]
former networks are good at dynamic mapping, while the

latter networks are for static mapping. Both of the RSONFIN3]
and the feedforward neural fuzzy network have the same
advantages (such as fast learning, small network size, beipg
easy to incorporate expert knowledge) over their pure neural
network counterparts. [5]

(6]

(71
Let u(m;, o;) represent the Gaussian membership function
with centerm; and widthe;, andE(A, B) represent the fuzzy [g]

measure of two fuzzy setd and B. The whole algorithm for
the generation of new fuzzy rules as well as fuzzy sets for ea
input variable is as follows. Suppose no rule exists initially.

APPENDIX

IF x is the first incoming pattern THEN do [10]
PART 1.{ Generate a new rule, 1]
with centerm; = x, width
Dy =diag1l/oimit, -+ 1/Cinit),
whereo,;; is a prespecified constant. (12]
After decomposition, we have
one-dimensional membership functions,
with mi; = &5 andoli = Oinit, 1=1---m. (3]
+
ELSE for each newly incoming pattesn do
PART 2.{ find J = arg max; < ;<. F” (x), (14]
IF F7 > Fin(t)
after a period of time [15]
perform fuzzy measure and eliminate
unnecessary membership functions [16]
ELSE
{e(t+1) =c(t)+ 1, . [17]
generate a new fuzzy rule, with
m. 11y = X, Deyry = (=1/7) - diag
(1/1n(F7)- -1/ In(F7)). [18]
After decomposition, we have [19]
Mupew—i = Liy Tnew—i — _/3 . ln(FJ),
t=1---n.
Do the following fuzzy measure for each  [20]
input variable: [21]
{degree(i, t) = maxi<j<,
E[N(mnewfiv O—newfi)v u(mjiv in)]a
wherek; is the number of partitions (22]
of the ¢th input variable.
IF degree(i, t) < p,
THEN adopt this new membership (23]
function and sek; = k; + 1,
ELSE set the projected membership [24]
function as the closest ong.
} [25]
¥
[26]

In the above algorithny is a scalar similarity criterion; higher
similarity between two fuzzy sets is allowed for larger
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