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Controlling Chaos by GA-Based Reinforcement
Learning Neural Network

Chin-Teng Lin,Member, IEEE,and Chong-Ping Jou

Abstract—This paper proposes a TD (temporal difference) and chaos is harmful. On the contrary, in secure communications
GA (genetic algorithm) based reinforcement (TDGAR) neural chaotic signal can be added to an information signal then
learning scheme for controlling chaotic dynamical systems based transmitted in a secure way. That is, information signal to

on the technique ofsmall perturbations The TDGAR learning be t itted i ked by th ise like chaofic si b
scheme is a new hybrid GA_, which i_ntegrates the TD _prediction € _rans_ml ea Is mas ? y the noise like C aotic signa ) y
method and the GA to fulfill the reinforcement learning task. adding it at the transmitter then at the receiver the masking
Structurely, the TDGAR learning system is composed of two is removed, the information signal cannot be deciphered in
integrated feedforward networks. One neural network acts as general at the receiving end unless full information about the
a critic network for he_lplng the I(_earnlng of the other_ network, chaotic system is available. One may wish then to design a
the action network, which determines the outputs (actions) of the hvsical. biological. chemical - t ¢ iect
TI_D_GAR learning system. Using the TD_prediction method, the p yS'C"?" lological, ¢ emlpa experlmen, orto prOjeF: an
critic network can predict the external reinforcement signal and  industrial plant to behave in a chaotic manner to achieve a
provide a more informative internal reinforcement signal to the desired performance. Thus, the problem of controlling chaos
action network. The action network uses the GA to adapt itself has peen lately begun receiving attention. Researches on
according to the |nterne_1l relnforcement S|gna|._Th|s can usu_ally the control of chaos in a host of physical systems ranging
accelerate the GA learning since an external reinforcement signal f | d electronic circuits to chemical and bioloaical
may only be a\(ailable ata time long after a sequence of acti_ons rom lasers and € eg ronic circuits to chemical and Dio qglca
have occurred in the reinforcement learning problems. By defin- systems can be rewewed from [8] and referenc?s t.herem-
ing a simple external reinforcement signal, the TDGAR learning Controlling chaos is to convert chaotic oscillations into
system can learn to produce a series of small perturbations desired regular ones with a periodic behavior. The possibility
to convert chaotic oscillations of a chaotic system into desired ¢ 1, -haseful selection and stabilization of particular orbits in

regular ones with a periodic behavior. The proposed method is | chaoti t imginimal det ineaffort
an adaptive search for the optimum control technique. Computer a normal chaotic sysiem usimginimal predetermineenorts

simulations on controlling two chaotic systems, i.e., the ehon Provides a unique opportunity to maximize the output of a
map and the logistic map, have been conducted to illustrate the dynamical system. It is thus of great importance to develop

performance of the proposed method. suitable control methods and to analyze their efficacy. Re-
Index Terms—Chaos, genetic algorithm, periodic control, rein- Cently, much interest has been focused on this type of problems
forcement learning, temporal difference prediction. [2]-[8]. Different control algorithms are essentially based on

the fact that one would like to effect changes as minimal
as possible to the original system so that it is not grossly
|. INTRODUCTION deformed. From this point of view, controlling methods or

HAOS is apparently an irregular motion, which is nondlgorithms can be broadly classified into two categories:

linear but deterministic. It tracks a trajectory that is quitéedback and nonfeedback methods [9]. Feedback control
complex but not entirely random. Chaos has been obseryggthods essentially make use of the intrinsic properties of
in many physical systems, such as chemical reactors flGigaotic systems, including their sensitivity to initial conditions,
flow systems, forced oscillators, feedback control devices, ajfiStabilize orbits already existing in the systems. In contrast to
laser systems [1]. In designing such a system, it is oftdgedback control techniques, nonfeedback methods make use
desired that chaos can be avoided, i.e., certain portion of ffe2 Small perturbing external force such as a small driving
parameter space where the system behaves chaotically cafPfee: @ small noise term, a small constant bias, or a weak
ignored. However, some portion of the parameter space ¢Afdulation to some system parameter. All these methods
be significant; neglecting it may be highly undesirable wheRodify the underlying chaotic dynamical system weakly so
chaos is useful in some situations. For example, increadBgt stable solutions appear.
drag in flow system, erratic fibrillations of heart beating and In 1990, Ottet al. [2] first proposed a new method (col-

complicated circuit oscillations are some situations whel@duially called the OGY method) of controlling a chaotic
dynamical system by stablizing one of the many unstable

periodic orbits embedded in a chaotic attractor, through only
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They applied OGY’s method to control the chaotic vibration&A’'s are general purpose optimization algorithms with a
of a magnetoelastic ribbon to achieve stable period-1 aptbbabilistic component that provides a means to search poorly
period-2 orbits in the chaotic regime. However, OGY’s methaghderstood irregular spaces [21]. From the network learning
requires monitoring the system long enough to determinepaint of view, since GA’s only need the suitable evaluation
linearization of its behavior in the neighborhood of the desireaf the network performance to yield the fithess values for
unstable periodic orbit before it can be applied. Besides, theolution, they are suitable for the reinforcement learning
determination of small nudges of the perturbation requirgsoblems [22]-[25]. As compared to the aforementioned ac-
a knowledge of the eigenvalues and eigenvectors of tter critic architecture, all the above GA-based reinforcement
unstable orbits. More recently, Alsingt al. [10] used a learning schemes use only the action networks. Without the
feedforward backpropagation neural network to stabilize tipeedictions (internal critics) of the critic network, the GA
unstable periodic orbits embedded in a chaotic system. Theamnot proceed to the new generation until the arrival of the
controlling algorithm used for training the network is based oexternal reinforcement signals. This causes the main drawback
OGY’s method, and thus inherits the deficiencies of the OGY&f these pure GA approaches, i.e., very slow convergence,
method mentioned above. Another approach to controllirgince an external reinforcement signal may only be available
chaos with a neural network was proposed by Otawara and Fdra time long after a sequence of actions has occurred in the
[11], where the same network structure as Alsing’s was usedinforcement learning problems.
Their method approximates the system’s governing equationdn this paper, we integrate the actor critic architecture
through judicious perturbation of an accessible parametnd GA into a new reinforcement learning scheme. This
of the system. Specifically, it feeds back automatically ttecheme can solve the local minima problem in the actor-
deviation of the predicted value at the succeeding iteratiaritic architecture by making use of the global optimization
from the unstable fixed point on a return map to the parameteapability of GA’s. Also, it can efficiently speed up the
The above two neural-network approaches are both supesnvergence of GA’s with the prediction capability of the
vised learning methods, in which a feedforward multilayeactor critic architecture. The proposed scheme is called the
neural network is trained by data pairs generated fromTd& and GA-based reinforcement (TDGAR) learning method.
chaotic system to produce a time series of small perturbatiddsucturely, the TDGAR learning system is constructed by
necessary for control. The disadvantage is that the fixadegrating two feedforward multilayer networks. One neural
points of the chaotic system need to be determined andf@mtwork acts as the critic network for helping the learning of
the system’s nonlinear dynamics need to be analyzed the action network, and the other neural network acts as the
advance. However, since the application of neural controllaastion network for determining the outputs (actions) of the
to chaotic systems has gained great benefits, we therefdl2GAR learning system. Using the TD prediction method,
expect to give a systematic approach to designing a neutta critic network can predict the external reinforcement signal
controller for controlling chaos by reinforcement learningnd provide a more informative internal reinforcement signal
method. In this paper, we shall propose a genetic algoritiim the action network. The action network uses the GA to
(GA)-based reinforcement learning scheme to the problemdapt itself according to the internal reinforcement signal.
of controlling chaos. This scheme need not know the fixéthe key concept of the proposed TDGAR learning scheme
points of a chaotic system, and can effectively control this to formulate the internal reinforcement signal as the fithess
system on a high periodic orbit without supervised traininfyinction of the GA such that the GA can evaluate the candidate
data. solutions (chromosomes) regularly even during the period
In the neural learning methods, supervised learning is effiithout external reinforcement feedback from the environ-
cient when the input—output training pairs are available [12hent. Hence, the GA can proceed to new generations regularly
However, many control problems require selecting contralithout waiting for the arrival of the external reinforcement
actions whose consequences emerge over uncertain perisigeal. The proposed TDGAR learning method is applied to
for which input—output training data are not readily availabléhe controlling chaos problems in this paper based on the
In such a case, the reinforcement learning method can teehnique of small perturbations. By defining a simple external
used to learn the unknown desired outputs by providing tiheinforcement signal, the TDGAR learning system can learn
system with a suitable evaluation of its performance. Twio produce a series of small perturbations to convert chaotic
general approaches are for reinforcement learningatier- oscillations of a chaotic system into desired regular ones with
critic architecture and the GA. The former approach uses thgeriodic behavior. Computer simulations on controlling two
temporal difference (TD) method to train a critic networlchaotic systems, i.e., theéidon map and the logistic map, will
that learns to predict failure. The prediction is then used tee conducted to illustrate the performance of the proposed
heuristically generate plausible target outputs at each time steygthod.
thereby allowing the learning of the action network that maps This paper is organized as follows. Section Il describes
state variables to output actions [12]—-[15]. The action and critice concept of using small perturbations to control chaos.
networks can be neuron-like adaptive elements [13], multilayBection Il describes the basic of GA’s. The structure of
neural networks [17], or neural fuzzy networks [18], [19]. Thé¢he proposed TDGAR learning system and the corresponding
main drawback of these actor critic architectures is that thégarning algorithm are presented in Section IV. In Section V,
usually suffer the local minima problem in network learninghe TDGAR learning method is applied to control two chaotic
due to the use of gradient descent (ascent) learning methggstems. Finally, conclusions are summarized in Section VI.
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II. USING SMALL PERTURBATIONS TO CONTROL CHAOS the other with double precision, then one chaotic orbit will

The presence of chaos may be of a great advantage ng}selly approagh the other chaotic orbit in the first-fe-w
control in a variety of situations. In a practical situation€rations, but will then rapidly move far apart. Those orbits in
involving a real physical apparatus, one may expect that ch4gi0tic systems are unstable in the sense that small deviation
is avoided or that the system dynamics is changed in some WM the periodic orbit grows exponentially rapidly in time,
so that improved performance can be obtained. Given a chadfitd the system orbit quickly moves away from the periodic
attractor, one might consider making some large, possif§Pit: Occasionally, the chaotic orbit may closely approach a
costly, change in the system to achieve the desired objectif@rticular unstable periodic orbit, in which case the chaotic
In a nonchaotic system, small control signals typically can onfjfPit would approximately follow the periodic cycle for a
change the system dynamics slightly. Short of applying Iar%W periods, but it would then rapidly move away because of
control signals or greatly modifying the system, it is stuck'® mstat_)lllty of the perl'odlc orbit. T.herefore, adding a s.mgll
with whatever system performance already exists. HowevBgrturbation on a chaotic system will cause a large variation
in a chaotic system it is free to choose among a rich variety 8f the orbit except that the orbit is closely around the fixed
dynamical behaviors. Thus, it may be advantageous to des nt_s. Henc_e, when the chaotic state is in the _nelghborhood of
chaos into systems, allowing such variety without requirin%'% fixed point, only a small perturbation applied to a system
large control signals or the design of separate systems Rﬂ,ramete_zr WI|! let it fall mto the vicinity of the flxe(_j point in
each desired behavior. the next iteration; otherwise, even when the state is exactly on

Ott et al. [2] prescribed a method to transform a systerd fixed point with no small pe_rturbation to stabilize it, it will
initially in a chaotic state into a controlled periodic oneMOVve apart from the fixed point eventually.

There exits an infinite number of unstable periodic orbits Neural networks are attractive for use as controllers of
embedded in the attractor, and only small, carefully chos€AMPIex systems, because they do not require the models
perturbations are necessary to stabilize one of these. ThatOfsthe dynamical systems to be controlled. A neural network
one can select a desired behavior from the infinite variefyth inputs being fed by a time series of values of the phase
of behaviors naturally present in chaotic systems, and thep@ce variables of a chaotic system can be trained to produce
stabilize this behavior by applying only tiny changes to af time series of proper small perturba_uons for controlllng
accessible system parameter [8]. Lima and Pettini [26] ha¢B20S. In this paper, we shall use reinforcement learning
suggested that it is possible to bring a chaotic system intc>g€me to learn the unknown desired outputs (perturbations)
regular regime by means of a small parametric perturbation® Providing the leaming system with a suitable function
suitable frequency. In addition, the effect of an additional wedkeinforcement signal) for evaluating its performance. Usually,
constant bias term to quench chaos has also been reporteld if difficult to define a reinforcement signal for controlling
[27]. All these methods are based on the idea of using smalghaotic system, because no apparent information is revealed

changes to perturb a chaotic system. Let us consider a retfftrindicate whether a control action is good or bad. However,
or iterated map inspired by the idea mentioned in the above paragraph, (i.e.,

when a chaotic state is closely around the fixed point, a small
Tpt1 = f(n; p) (1) perturbation will stabilize it on the fixed point), we can define

wherep is the accessible parameter of the system that cantgrg reinforcement signal by a limitation on the magnitudes

externally perturbeds,, is the state value at theth iteration, of perturbations, i.e., a predefined maximum perturbation is

andz,. ., is the state value at the, ¢ 1)th iteration. Inspired used as a constraint. When the perturbation is within the

. - Qredefined maximum perturbation range, the reinforcement
by the above mentioned methods, giving a small change 1o A : ; o
signal will indicate the control action being a successful trial;

the system param.eter, we can express the perturbed ma%t %rwise, it is a failure trial. One big advantage of this
the following form: . . .
learning control scheme is that we need not know the fixed
Tnt+1 = f(zn; p+ 6p) (2) point of the controlled chaotic system in advance because a
series of successful trials (meaning that a series of proper small
where ép is the time-varying small change to alter systemertyrbations are allowed to apply to the system) has indicated
parameter. Another form of small perturbations is that the system states are around a fixed point. Thus, the
3) magnitude of the small perturbation provides a good indicator
of the target point.
where the function obp is just like an external force acting For the control of higher period orbits, we further propose
on the chaotic system to quench chaos. Our goal is to desiga acheme callegeriodic control In this scheme, unlike the
neural controller to find this small perturbation sigdalsuch control of a period-1 orbit, where the chaotic system is
that chaos can be controlled. perturbed by a small perturbatiameach iteration we perturb
Chaotic systems exhibit extremely sensitive dependencetbe chaotic systenevery N iterationsfor the control of a
initial conditions, i.e., two identical chaotic systems startingeriod<V orbit. The periodic control learns to find any one of
at nearly the same point follow orbits that divert rapidly fronthe N points on the periodv orbit depending on the position
each other and become quickly uncorrelated. For exampdd,the initial states, and view it as a fixed point for control.
if we run a chaotic system two times starting at the sante other words, the periodic control reduces the peréd-
initial conditions; one is computed with single precision andontrol problem to a period-1 control problem. In this way,

Ln+1 = f(xn; p) + 6])



LIN AND JOU: CONTROLLING CHAOS BY GA-BASED REINFORCEMENT 849

the controller is switched on to keep the system stay in ofithess value which determines the probability of the individual
of the period points everyN iterations, and then switchedundergoing genetic operators. The population then evolves
off to let the system run freely to reach other peri¥dpoints from generation to generation through the application of the
by making use of the periodic feature of the peri¥dehaotic genetic operators. The total number of strings included in a
orbit. Hence, in our proposed TDGAR learning system, it igopulation is kept unchanged through generations. A GA in
free to select the target for the control of a peri¥derbit. its simplest form uses three operataeproduction, crossover
However, in the learning process of periodic control, it iand mutation [28]. Through reproduction, strings with high
possible that the control of a peridd-orbit falls into any one fitnesses receive multiple copies in the next generation while
of the period®/2, period#V/4, or period-1 points. Hence, westrings with low fitnesses receive fewer copies or even none
have to check the learned stabilized point to see if it is the all. The crossover operator produces two offspring (new
same as any one of the followiny-1 points in the nextV- candidate solutions) by recombining the information from two
1 free running iterations. If so, the stabilized point is not parents in two steps. First, a given number of crossing sites are
period<V point and we have to restart the learning with newelected along the parent strings uniformly at random. Second,
initial states. In the next section, we give a brief descriptiowvo new strings are formed by exchanging alternate pairs of
of the genetic algorithm and in Section IV we shall describselection between the selected sites. In the simplest form,
the proposed learning system deliberately. crossover with single crossing site refers to taking a string,
splitting it into two parts at a randomly generated crossover
point and recombining it with another string which has also
lll. GENETIC ALGORITHMS been split at the same crossover point. This procedure serves to

GA's are invented to mimic some of the processes observe@mote change in the best strings which could give them even
in natural evolution. The underlying principles of GA’s werdigher fitnesses. Mutation is the random alteration of a bit in
first published by Holland [20]. The mathematical frameworthe string which assists in keeping diversity in the population.
was developed in the 1960’s and was presented in Holland’sRoughly speaking, GA’s manipulate strings of binary digits,
pioneering book [21]. GA’s have been used primarily in tw6l's” and “0’s,” called chromosomes which represent multiple
major areas: optimization and machine learning. In optimizgoints in the search space through proper encoding mechanism.
tion applications, GA’s have been used in many diverse field@ch bitin a string is called allele. GA’s carry out simulated
such as function optimization, image processing, the traveligyolution on populations of such chromosomes. Like nature,
salesman problem, system identification, and control. In m@A’s solve the problem of finding good chromosomes by
chine learning, GA’s have been used to learn syntacticatyanipulating the material in the chromosomes blindly without
simple string IF-THEN rules in an arbitrary environmentany knowledge about the type of problem they are solving.
Excellent references on GA’s and their implementations afdie only information they are given is an evaluation of each
applications can be found in [28] and [30]. chromosome they produce. The evaluation is used to bias

The GA is a general purpose stochastic optimization methtite selection of chromosomes so that those with the best
for search problems. GA'’s differ from normal optimization angvaluations tend to reproduce more often than those with
search procedures in several ways. First, the algorithm wolkad evaluations. GA’s, using simple manipulations of chromo-
with a population of strings, searching many peaks in parallebme, such as simple encodings and reproduction mechanisms,
By employing genetic operators, it exchanges informatiagran display complicated behavior and solve some extremely
between the peaks, hence lowering the possibility of endidifficult problems without knowledge of the decoded world.
at a local minimum and missing the global minimum. Second, The encoding mechanisms and the fitness function form the
it works with a coding of the parameters, not the parametdisks between the GA and the specific problem to be solved.
themselves. Third, the algorithm only needs to evaluate tfibe technique for encoding solutions may vary from problem
objective function to guide its search, and there is no requir®-problem and from GA to GA. Generally, encoding is carried
ment for derivatives or other auxiliary knowledge. The onlput using bit strings. The coding that has been shown to be
available feedback from the system is the value of the péhe optimal one is binary coding [21]. Intuitively, it is better
formance measure (fitness) of the current population. Finallp, have few possible options for many bits than to have many
the transition rules are probabilistic rather than deterministigptions for few bits. A fitness function takes a chromosome
The randomized search is guided by the fitness value of eahinput and return a number or a list of numbers that is a
string and how it compares to others. Using the operators oreasure of the chromosome’s performance on the problem
the chromosomes which are taken from the population, the be solved. Fitness functions play the same role in GA’s
algorithm efficiently explores parts of the search space wheas the environment plays in natural evolution. The interaction
the probability of finding improved performance is high.  of an individual with its environment provides a measure of

The basic element processed by a GA is the string forméthess. Similarly, the interaction of a chromosome with a

by concatenating substrings, each of which is a binary codifithess function provides a measure of fithess that the GA uses
of a parameter of the search space. Thus, each string represehisn carrying out reproduction.
a point in the search space and hence a possible solution ttn this paper, we develop a novel hybrid GA called the
the problem. Each string is decoded by an evaluator to obtdi® and GA-based reinforcement learning method, which
its objective function value. This function value, which shouléthtegrates the TD prediction method and the GA into the actor
be maximized or minimized by the GA, is then converted to aitic architecture to fulfill the reinforcement learning task.
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Fig. 1. The proposed TDGAR learning system for controlling chaos. . .. . .
g prop 9y g a multistep prediction of the external reinforcement signal

that will eventually be obtained from the environment for the
IV. TD- AND GA-BASED current action chosen by the action network. With the multistep
REINFORCEMENT LEARNING SYSTEM prediction, the critic network can provide a more informative
The proposed TDGAR learning method is a kind of hybrichternal reinforcement signal to the action network. The action
GA algorithms [28]. Traditional simple GA'’s, though robustnetwork can then determine a better action to impose onto the
are generally not the most successful optimization algorithemvironment in the next time step according to the current
on any particular domain. Hybridizing a GA with algorithmsenvironment state and the internal reinforcement signal. The
currently in use can produce an algorithm better than the Giternal reinforcement signal from the critic network enables
and the current algorithms [30]-[33] GA’s may be crossdabth the action network and the critic network to learn at
with various problem specific search techniques to form emch time step without waiting for the arrival of an external
hybrid that exploits the global perspective of the Gflopal reinforcement signal, greatly accelerating the learning of both
searchand the convergence of the problem-specific techniquetworks. The structures and functions of the critic network
(local search. In some situations, hybridization entails usingnd the action network are described in the following sections.
the representation as well as optimization techniques alreadyl) The Critic Network: The critic network constantly pre-
in use in the domain, while tailoring the GA operators to thdicts the reinforcement associated with different input states,
new representation. In this connection, the proposed TDGARd thus equivalently, evaluates the goodness of the control
learning method is a hybrid of GA and the actor critic archiactions determined by the action network. The only infor-
tecture which is a quite mature technique in the reinforcemeantation received by the critic network is the state of the
learning domain. The TDGAR method is an adaptive searehvironment in terms of state variables and whether or not
for the optimum control technique. We shall next introduce failure has occurred. The critic network is a standard two
the structure and learning algorithm of the TDGAR learninyer feedforward network with sigmoids in the hidden layer

system in the following sections. and output layer. The input to the critic network is the state of
the plant, and the output is an evaluation of the state, denoted
A. Structure of the TDGAR Learning System by ». This value is suitably discounted and combined with the

The proposed TDGAR learning system is constructed @(ternal failure signal to produce the internal reinforcement

integrating two feedforward multilayer networks. One neur&9nah 7(t). g _
network acts as a critic network for helping the learning of F19- 2 Shows the structure of the critic network. It includes
the other network, the action network, which determines tfehidden nodes and input nodes including a bias node (i.e.,

outputs (actions) of the TDGAR learning system as showit *2> """ @n). In this network, each hidden node receives
in Fig. 1. Both the critic network and the action networ NPUts and has weights, while each output node receives

have exactly the same structure as that shown in Fig.’>;/ inputs and has +/ weights. The output of each hidden

The TDGAR learning system is basically in the form of\©de iS given by

the actor critic architecture [14]. Since we want to solve n

the reinforcement learning problems in which the external vilt, t+1] =g Zaij[t]xj[t‘i‘l] (4)
reinforcement signal is available only after a long sequence j=1

of actions have been passed onto the environment plant,

we need a multistep critic network to predict the externdfnere

reinforcement signal. In the TDGAR learning system, the critic 1 (5)
network models the environment such that it can perform 14es
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t andt+-1 are successive time steps, anglis the weight from
the jth input node to théth hidden node. The output node ofa’ e’y lalld [ o,
the critic network receives inputs from the hidden nodes (i.e.,

bl; l e Ibl,, ]CI; ,"‘ [011, I chromosome 1

y;) and directly from the input nodes (i.ex,) @ ety oo [ Ja? [ oo Ja2 2, [ [#7, [ 2 T+ [, ] chromosome 2
[ L ]
n h g L4
oft, t+ 1 =g | S bt + 10+ altuilt, ¢+ 1] * ¢
j=1 i=1 @ Jau] v @ J@ L= @, [0, [ | 7. [, [+ [@.] chromosome p

Fig. 3. The encoding of the neural network in Fig. 2 on chromosomes.

wherew is the prediction of the external reinforcement value,
b; is the weight from thgth input node to the output node, andn state evaluation based on the state of the system attire
¢; is the weight from theth hidden node to the output node.

Unlike the supervised learning problem in which the correct 0 start state
“target” output values are given for each input pattern t6(t+1) = q r[t+1] —v[t, &, failure state
instruct the network learning, the reinforcement learning prob- rlt+ 1]+ yu[t, t + 1] — v[t, t], otherwise
lem has only very simple “evaluative” or “critic” information (8)

available for learning rather than “instructive” information. I'where 0 < v < 1 is the discount rate. In other words,
the extreme case, there is only a single bit of information tbe change in the value of plus the value of the exter-
indicate whether the output is right or wrong. The environmenal reinforcement signal constitutes the heuristic or internal
supplies a time-varying input vector to the network, receivagsinforcement signali(¢), where the future values af are
its time varying output/action vector and then provides a tiniscounted more the further they are from the current state of
varying scalar reinforcement signal. In this paper, the exterthe system.
reinforcement signalb-(¢t) is two-valued,r(¢) € {-1, 0}, 2) The Action Network:The action network is to determine
such thatr(t) = 0 means “a success” anglt) = —1 a proper action acting on the environment (plant) according
means “a failure.” We also assume thdt) is the external to the current environment state. In our TDGAR learning
reinforcement signal available at time stepnd is caused by system, the structure of the action network is exactly the
the inputs and actions chosen at earlier time steps, (i.e.,satne as that of the critic network shown in Fig. 2. The only
time steps —1, t—2, - - ). To achieve the control goal by theinformation received by the action network is the state of
proposed TDGAR learning system, we have to define a progbe environment in terms of state variables and the internal
external reinforcement signal. According to the key concefgtinforcement signal from the critic network. In applying GA’s
of controlling chaos by using small perturbations discussedfior neural-network learning, the connection weights of the
Section Il, we define the external reinforcement signal as action network are encoded as genes (or chromosomes), and
GA'’s are then used to search for better solutions (optimal
0 it |5p| < 6p structures gnd parameterfs) for the action network. Fig. 3 shgws
r(t) ={ ’ — —amax (7) the encoding of the action network on chromosomes with
—1, otherwise : - . . -
’ population sizep. Bit string encoding is the most common
encoding technique used by GA researchers because of its ease
where épn.x IS a predefined maximum perturbation valueof creating and manipulating. However, binary string encoding
From the analysis in Section Il, we understand that the actiasually causes longer search time than the real-valued string
network will produce large perturbations to repress chaotncoding. Hence, connection weights of the action network
oscillations when the state of the chaotic system falls owtfe encoded here as a real-valued string. Initially, the GA
side the controlling region, (i.e., the period-1 orbit). On thgenerates a population of real-valued strings randomly. An
other side, when the state of the chaotic system falls in thetion network corresponding to each string then runs in a
controlling region, the action network only needs to produdeedforward fashion to produce control actions acting on the
small perturbations to maintain the regular state trajectory efivironment according to (4) and (6). At the same time, the
the chaotic system. Hence, the magnitude of the perturbatignitic network constantly predicts the reinforcement associated
produced by the action network is a good indicator to s&g@th changing environment states under the control of the
the performance of the TDGAR learning system. Accordingurrent action network. After a fixed time period, the internal
to (7), the learning system will get an external reinforcemenginforcement signal from the critic network will indicate the
signal with value zero indicating “success” when the producéfitness” of the current action network. This evaluation process
perturbation is small enough; otherwise, it will get a signaontinues for each string (action network) in the population.
with value one indicating “failure.” When each string in the population has been evaluated and
The critic network evaluates the action recommended lgyven a fithness value, the GA can look for a better set of
the action network and represents the evaluated result shdngs and apply genetic operators on them to form a new
the internal reinforcement signal. The internal reinforcemepbpulation as the next generation. Better actions can thus
signal is a function of the external failure signal and the change chosen by the action network in the next generation.
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The solution to the temporal credit assignment problem in
the TDGAR system is to use a multistep critic network that
predicts the reinforcement signal at each time step in the
period without any external reinforcement signal from the
environment. This can ensure that both the critic network
and the action network can update their parameters during the
period without any evaluative feedback from the environment.
To train the multistep critic network, we use a technique
based on the temporal difference method, which is often
closely related with the dynamic programming techniques
[13], [34], [35]. Unlike the single step prediction and the
supervised learning methods which assign credit according
to the difference between the predicted and actual outputs,
the temporal difference methods assign credit according to
the difference between temporally successive predictions. Note
that the term “multistep prediction” used here means the critic
Evaluation network can predict a value that will be available several time
(Fitness) steps later, although it does such prediction at each time step
to improve its prediction accuracy.

The goal of training the multistep critic network is to
minimize the prediction error, i.e., to minimize the internal
reinforcement signa¥;(¢). It is similar to a reward/punishment
scheme for the weights updating in the critic network. If pos-
itive (negative) internal reinforcement is observed, the values

Generation=0

Mutation
Crossover

Time-step>TIME
or
Failure occurred

No

Generation>G

Get the best

solution of the weights are rewarded (punished) by being changed in
the direction which increases (decreases) its contribution to
the total sum. The weights on the links connecting the nodes

in the input layer directly to the nodes in the output layer are

_ _ updated according to the following rule:
Fig. 4. The flowchart of the proposed TDGAR learning method.

bilt + 1] = b[t] + [t + L 1 ©)
After a fixed number of generations, or when the desired

control performance is achieved, the whole evolution procegberen > 0 is the learning rate and[t + 1] is the internal

is stop, and the string with the largest fitness value in tfiginforcement signal at time+ 1.

last generation is selected and decoded into the final actiorSimilarly, for the weights on the links between the hidden
network. The detailed learning scheme for the action netwd@yer and the output layer, we have the following weight
will be discussed in the next section. update rule:
B. Learning Algorithm of the TDGAR Learning System cilt +1] = Gilt] + it + uilt, ¢]- (10)

The flowchart of the TDGAR learning algorithm is showrThe weight update rule for the hidden layer is based on a
in Fig. 4. In the following sections, we first consider thenodified version of the error backpropagation algorithm [36].
reinforcement learning scheme for the critic network of thgince no direct error measurement is possible (i.e., knowledge
TDGAR system, and then introduce the GA-based reinforcef correct action is not availablej, plays the role of an error
ment learning scheme for the action network of the TDGAReasure in the update of the output node weights? i
system. positive, the weights are altered so as to increase the output

1) Learning Algorithm for the Critic NetworkWhen both for positive input, and vice versa. Therefore, the equation for
the reinforcement signal and input patterns from the envipdating the hidden weights is
ronment depend arbitrarily on the past history of the action
network outputs and the action network only receives a rein- a;;[t + 1] = ay;[t] + 7t + wilt, t]
forcement signal after a long sequence of outputs, the credit (1 = yilt, t]) sgn(ei[t])a; 1] (11)
assignment problem becomes severe. Tieismporal credit
assignmenproblem results because we need to assign creditote that the sign of a hidden node’s output weight is used,
blame to each step individually in long sequences leading tgther than its value. The variation is based on Anderson’s
to eventual successes or failures. Thus, to handle this classpirical study [17] that the algorithm is more robust if the
of reinforcement learning problems, we need to solve tlsgn of the weight is used rather than its value.
temporal credit assignment problem along with solving the 2) Learning Algorithm for the Action NetworkThe GA is
original structural credit assignment problem concerning attrised to train the action network by using the internal reinforce-
bution of network errors to different connections or weightsnent signal from the critic network as the fithess function.
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Initially, the GA randomly generates a population of real-
valued strings, each of which represents one set of parameters
for the action network. The real value encoding scheme instead
of the normal binary encoding scheme in GA’s is used here, £d”
recombination can only occur between weights. A population
of small size is used in our learning scheme. This reducess|0.51 -1.370.41[-2.03-1.130.49] 1.69| 0.13|-2.13-0.40]-1.12 2.18 | 1.01]-2.39]
the exploration of the multiple (representationally dissimilar)

crossover site Crossover site

v v

[1.59] 1.22] 2.26] 1.52]-2.13-0.29]-0.99-2.41 1.10]1.22] 1.80}-1.2411.28]0.18 |

solutions for the same network. ()

After a new real-valued string is created, an interpreter
takes this real-valued string and uses it to set the parameters crossover site crossover site
in the action network. The action network then runs in a v v

feedforward fashion to control the environment (plant) for & sL1.59] 1.22{0.41]-2.04-1.150.49] 1.69] 0.13]-2.13 1.22] 1.80]-1.24"1 28] 0.15)
fixed time period (determined by the constafit/'M E” in
Fig. 4) or until a failure occurs. At the same time, the critiG 57,51, ;5 2.26]1.52]-2.13:0.29]-0.99-2.43 1.10-0.40]-1.142.18 -1.01}-2.39]
network predicts the external reinforcement signal from t T B

controlled environment and provides an internal reinforcement ®)

signal to indicate the “fithess” of the action network. In this
way, according to a defined fitness function, a fitness valuesﬁg'sgs'o
assigned to each string in the population, where high fitness
values mean good fit. The fitness functidn/l’, can be any
nonlinear, nondifferentiable, discontinuous, positive function, mutation site (for example, adding a random value 3.26)
because the GA only needs a fitness value assigned to each v

string. In this paper, we use the internal reinforcement signﬁm‘;{) slziio o5 2 110 0ad- (32181101259
from the critic network to define the fitness function 33|01 |-1:37 226|1.32]:2.130.29]:0.99-2.43 1. 10049 -1. I3 2181 1.01}-2

lllustration of crossover operation for real-value strings. (a) before
ver. (b) After crosssover.

-1 (@
FIT(t) 0 (12)

which reflects the fact that small internal reinforcement values, v ,
(i.e., small prediction errors of the critic network) mean higher 7.550.51] 1.89] 2.26] 1.52-2.13-0.20-0.99-2.4 1.10-0.40-1.13 2.18| 1.0/} 2.39)
fitness of the action network, whetés the current time step,
1 <t <TIME, and the constantl"IM E” is a fixed time (b)
period during which the performance of the action network Bg. 6. lllustration of mutation operation for real-value string. (a) Before
evaluated by the critic network. If an action network receivegutation. (b) After mutation.
a failure signal from the environment before the time limit,
(i.e.,t < TIME), then the action network that can keep theince we use the real value encoding scheme, we use a higher
desired control goal longer before failure occurs will obtaimutation probability in our algorithm. This is different from
higher fitness value. The above fitness function is differetite traditional GA’s that use the binary encoding scheme.
from that defined normally in the pure GA approach [24]The latter are largely driven by recombination, not mutation.
where the relative measure of fithess takes the form of @he operation of mutation is done by adding a randomly
accumulator that determines how long the experiment is ssitlected value within the rangel0 to a randomly selected
“success.” Hence, a string (action network) cannot be assigrat of the chromosome. Fig. 6 shows an example illustrating
a fitness value until an external reinforcement signal arrivése mutation operation. The above learning process continues
to indicate the final success or failure of the current actido new generations until the number of generations meets
network. a predetermined stop criterion. After the whole evolution

When each string in the population has been evaluated grdcess is stop, the string with the largest fitness value in the
given a fitness value, the GA then looks for a better sktst generation is selected and decoded into the final action
of strings to form a new population as the next generatigretwork.
by using genetic operators, (i.e., the reproduction, crossoverThe major feature of the proposed hybrid GA learning
and mutation operators). In basic GA operators, the crossogeheme is that we formulate the internal reinforcement signal
operation can be generalized to multipoint crossover in whies the fithess function for the GA based on the actor-critic
the number of crossover poinf®.) is defined. With/V. set architecture. In this way, the GA can evaluate the candidate
to one, generalized crossover reduces to simple crossowalutions (the weights of the action network) regularly during
The multipoint crossover can solve one major problem diie period without external reinforcement feedback from the
the simple crossover; one point crossover cannot combiaevironment. The GA can thus proceed to new generations in
certain combinations of features encoded on chromosomiesed time steps (specified by the constadt’'i/ E”) without
In the proposed GA-based reinforcement learning algorithavaiting for the arrival of the external reinforcement signal. In
we chooseN, = 2. The crossover operation for real valuether words, we can keep the time steffd {/ £) for evalu-
encoding is demonstrated in Fig. 5. For the mutation operatating each string (action network) and the generation side (
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Hénon map at each iteration. The control goal is to stabilize

2 ' the Henon map on its unstable period-1 orbit, (i.e., fixed
15} 1 point).
There are two input state variables to the TDGAR learning
1+ { system:z,, the state variable of the &hon map at theith
iteration; x,,_1, the state variable at thg. — 1)th iteration.
05r 1 The used critic network and action network in the TDGAR
N ok learning system are three-layer neural networks shown in
Z Fig. 2, both with three input nodes, five hidden nodes, and
05k | one output node. Hence, there are 23 weights in each network.
A bias node fixed at 0.5 is used as the third input to the
1t {1 network, a weight from the bias node to a hidden node (or
to the output node) in effect changes the threshold behavior
-1.5¢ 1 of that node. We use the fitness function defined in (12),
. ie., FIT(t) = 1/|#(¢)|, in the TDGAR learning system,
25 1 0 1 2 where7(¢) is the internal reinforcement signal from the critic
X(n) network, which is to predict the external reinforcement signal

in (7). The learning parameters used in the TDGAR system
are the maximum perturbatidp,,,,,. = 0.0005, the population
sizesPOP = 200, the learning ratey = 0.1, the discount rate
fixed in our learning algorithm (see the flowchart in Fig. 3}, = 0.95, the time limitZ77ME = 100, and the generation
since the critic network can give predicted reward/penaljzes( is not limited here. Initially, we set all the weights
information to a string without waiting for the final successn the critic network and action network as random values
or failure. This can usually accelerate the GA learning singtwveen—2.5 and 2.5.

an external reinforcement signal may only be available at aThe TDGAR learning process proceeds as follows. We
time long after a sequence of actions has occurred in &t randomly generate 200 (population size) chromosomes
reinforcement learning problems. This is similar to the faglorresponding to 200 initial action networks. For each action
that we usually evaluate a person according to his/her potenfighwork, there is a critic network with random initial weights
or performance during a period, not after he/she has doggsociated with it to form a TDGAR learning system as

Fig. 7. The Hnon attractor.

something really good or bad. shown in Fig. 1. These 200 TDGAR learning systems are
trained and evaluated one by one as follows. In the beginning,
V. SIMULATIONS AND RESULTS the initial state values of the controlled chaotic system are

In this section, we apply the proposed TDGAR learninffd into the critic network and the action network. The
method to control two chaotic systems2ibn map and logistic action network then work in a feedforward fashion to produce
map. These maps have been extensively studied for decaegdurbation for controlling the chaotic system, and the critic
as examples of producing chaos from a simple algebrdl§twork produces a output value, to predict the exter-
expression. We shall demonstrate the power of the TDGARI reinforcement signal. The produced perturbation is then
learning method by controlling these two chaotic systems &¥aluated and an external reinforcement signal is generated

period-1, period-2, or period-4 orbits without analysis of th@ccording to (7). With this external reinforcement signal, the
system’s nonlinear dynamics. critic network will tune itself to get better prediction in the

future. The new state values of the chaotic system are then
sent back to the inputs of the action and critic networks,

and starts the next iteration. After 100 (time limit) iterations,

I_-|en0_n map is a two (_jlmen5|onal mapping W'th the corgne critic network  will produce an internal reinforcement
lation dimension approximately equal to 1.25 given by gjgna according to (8) to give the action network a final

Tny1 = A— 22 + Br, 1. (13) and detailed evaluation. However, it should be noted that at

the beginning of learning (30 time steps used here), larger

This mapping becomes chaotic oscillations when the paragerturbations are allowed such that the action network can

eters in (13) are set ad = 1.29 and B = 0.3 [10]. In this find more feasible solutions for the perturbations so as to
case, the chaotic state trajectory of this system is shownfifice the state of the étion map fall into the controlling
Fig. 7, which is obtained by iterating (13) for L@imes. To region quickly from any initial point. After 30 time steps,

control the Henon map by the small perturbation techniquge begin to check if the perturbations are within a predefined

discussed in Section Il [see (2) or (3)], a small perturbatiopaximum perturbation range. With the internal reinforcement

ép, is added to (13) signal available, a fitness value can be obtained by (12). In

st = (A+6p) — 22 + Ban_1. (14) this way, when _each of_the 200 action networks has been

evaluated and given a fitness value, the GA then looks for

The perturbationgp, is generated by the action network ofa better set of action networks to form a new population

the TDGAR learning system (see Fig. 1), and acts on tlhg using genetic operators and starts the next generation.

A. Controlling of HEhon Map
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Fig. 8. Control of the lnon map on the period-1 orbit by using different predefined maximum perturbation values as learning criteria.
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Fig. 9. Control of the lnon map on the period-1 orbit by the TDGAR learning system.

The details of the learning process has been describednin= 800. The results are shown in Fig. 8, where orbit “1”

Section IV-B. Repeat the above, learning process reguladgnotes the period-1 orbit (fixed point) of thékbn map, orbit

from generation to generation. A control strategy (i.e., dR” is the stabilized orbit when the controller is trained under

action network) was deemed successful if it could stabilizee criteria|ép| < Spmax 1, Orbit “3” is the stabilized orbit

the Henon map on its period-1 orbit, i.e., the fixed point oivhen the controller is trained under the critdfig] < pmax 2,

the Henon map. and orbit “4” is the stabilized orbit when the controller is
In the following tests, we define different allowed maximuntrained under the criterigdp| < Spmax 3. It is observed that

perturbation valuesép.ax, 10 see the learning efficiency ofthe Henon map stays around its fixed point; = 0.838 486,

the TDGAR learning system. Three maximum perturbatiastably during the control process. Once the control signal

values are defined aSp,..1 = 0.005, épmax2 = 0.01, is removed, the system evolves chaotically. Moreover, it is

and épmax 3 = 0.05 for learning criteria [see (7)]. After observed that more strictly the maximum perturbation value

learning, three corresponding action networks (controllers) a@seallowed, more closely the &hon map is stabilized to its

obtained to stabilize the éfion map successfully. In the testfixed point. However, higher accuracy is achieved at the cost

the controller is switched on, [i.e., the small perturbationsf lower learning speed.

produced by the action network are added to tkadh map as  Fig. 9 shows the results of controlling th&hkbn map by the

in (14)] at iterationn = 200, and is switched off at iteration learned TDGAR controller under the critefiép| < 8pmax =
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Fig. 10. Control signal from the action network of TDGAR in controlling théndn map on the period-1 orbit.

B. Controlling of Logistic Map

In this simulation, we apply the TDGAR learning system to

osr 1 control what is considered the simplest, but one of the most
ogk i interesting dynamical system, the logistic map
UJL Tpg1 = prp(1 —zp). (15)
fD'B
= This map is often used to model population dynamics. The
parametep is the nonlinearity parameter; when= 3.79 the
04y 1 mapping is chaotic [11]. The fixed point for the period-1 orbit
o3k i is zr1 = 0.736 148. The fixed points for the period-2 orbit are
0ol Tro1 = 0.375293 andx 22 = 0.888 559. The logistic map is
' an one dimensional map. Fig. 11 shows the state trajectory
01 . . . . : . L . of the logistic map withp = 3.79 obtained by iterating (15)
o0z 03 04 n.sx(n)n.a o708 es for 10* times. When adding small perturbations to control the
logistic map, the perturbed logistic map has the form of [see
Fig. 11. The logistic map. (2)]
Tyl = P+ 6p)xn(l — zp) (16)

0.0005. We see that the &hon map stays on its period-1

orbit stably during the control process. An enlargement of the [see (3)]

square in Fig. 9 shows the precise state values of the controlled

chaotic system from iteration = 400 to iterationn = 500. Tpt1 = prn(l — x,) + bp. a7
Corresponding to Fig. 9, Fig. 10 shows the control signals

(perturbations) produced by the action network of the learnedin the TDGAR learning system for controlling the logistic
TDGAR system. It shows that only a few larger perturbationsap, the fithess function and the external reinforcement signal
are needed to repress chaotic oscillations at the beginningaoé defined to be the same as those used before, i.e., (7) and
the control process, and then quite small perturbations gf€). Since there is only one input state variable in this case,
enough to keep the &hon map stay on its period-1 orbit. Anthe used critic network and action network both have two
enlargement of the square in Fig. 10 also shows the precisput nodes (including the bias node), four hidden nodes and
control signals (perturbations) during the control process froome output node. The learning parameters used are the same
iteration » = 400 to iterationn = 500. The enlargement as those in the previous example. The initial state is randomly
pictures in Figs. 9 and 10 show that the small perturbatioselected between zero and one so as to get nontrivial dynamical
6p, presented in (14) [also refer to (3)] is not just a static shiftehavior.

of operation points (constant); it is more like a dynamical Fig. 12 shows the results of controlling the logistic map on
external force acting on the chaotic system to quench chahs period-1 orbit. It shows that the orbit of the controlled
from time to time. logistic map remains around the fixed poiryt; = 0.736 148
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Fig. 12. Control of the logistic map on the period-1 orbit by the TDGAR learning system.
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Fig. 13. Control of the logistic map on the period-2 orbit by the TDGAR learning system.

as long as the controller is switched on. As for the control dpparently, the initial state determines which period-2 point
period-2 orbits, we propose a scheme capediodic control to be stabilized by the controller. For example, if the initial
We observe on the period-2 orbit of the logistic map that whestate is close to the period-2 poifit-2, it is more likely that
Zn+1 IS closely in the proximity ofz o1, it will automatically the controller will learn to control this point rather than the
triggered to the next fixed pointz22, and then bounds back toother period-2 point:z»;. In the simulations, we did observe
ZFr21. This happens periodically. Hence, the periodic contrttis situation. When we set the initial state s = 0.9, the
scheme adds a small perturbation to the chaotic system onlyiaal learned controlled point wasgo; = 0.888432. When
every other iteration of the system. Consequently, the extermad set the initial state as, = 0.3, the final learned controlled
reinforcement signal is also available at every other iteration fioint was«p22 = 0.375668. As mentioned at the end of
the learning process. In other words, the controller is switch&ection I, it was possible that the period-2 control failed and
on to keep the system stay in one fixed point at one iteratide|l into period-1 control, when the initial state was very close
and then switched off to let the system run freely to readh the period-1 orbit (fixed pointyr; = 0.736 148. When
another fixed point at the next iteration. In this way, ththis happened, we assigned new initial state and restarted the
controller is switched on and off periodically. Fig. 13 showkarning process. The idea of periodic control can be easily
the results of controlling the logistic map on a period-2 orbiextended to the control of higher periodic orbits. Fig. 14 shows
where the orbit is highly stabilized during the control procesthe results of controlling the logistic map on a period-4 orbit,
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Fig. 14. Control of the logistic map on the period-4 orbit by the TDGAR learning system.

where the controller is switched on every four iterations of thehaotic system by reinforcement learning method. In other
logistic map. Note that the orbit is highly stabilized during thevords, we are interested in stablizing the chaotic parameter
control process. The TDGAR learning system also showsregion of a chaotic system, instead of looking for its nonchaotic
good efficiency of control on a high periodic orbits. Howeveparameter region in this research.

our simulations show that higher order orbits are more difficult,

(i.e., take longer learning time) to stabilize than the lower order VI. CONCLUSION

ones (as they are in the OGY's method), partially because ofrpis haner integrates the TD technique, gradient descent

the false learning of the periali/2, period:V/4, --- points. \nahag and GA into the actor-critic architecture to form a new
In our simulations, the learning for controlling the logistiGqintorcement learning system, called the TDGAR learning
map on period-1 orbit took 2235 generations, on period-2 Orlggstem. By the TDGAR learning system, we can train a neural
took 29341 generations, and on period-4 orbit took 208 3¢3ntroller for the plant according to a simple reinforcement
generations. _ o signal. The proposed TDGAR learning method makes the
~ In the above simulations, we used the deterministic mapgssign of neural controllers more feasible and practical for
i.e., the Fenon map and the logistic map, as test examples. Thisy| world applications, since it greatly lessens the quality
was done purely for numerical convenience, and also becausg| quantity requirements of the teaching signals, and reduces
these two maps have _been widely L_Jsed as benchmarks fortmg: long training time of a pure GA approach. The TDGAR
researches of controlling chaos. Sm_ce the TDGAR Iearnuﬂé)aming system has been successfully applied to control two
system need not know the mathematical model or the propegihylated chaotic systems by incorporating the techniques of
(such as fixed points) of the controlled chaotic system, it igna|| perturbations and periodic control in this paper. The
immaterial to the TDGAR learning system whether the chaotigylation results showed that the TDGAR learning system
signals are generated analytically or experimentally from re@dn jearn to produce a series of small perturbations to convert
world. In other words, the above simulations demonstrate thgaotic oscillations of a chaotic system into desired regular
feasibility of applying the proposed TDGAR learning systergnes with a periodic behavior including period-1, period-2, and
for controlling chaos in a practical situation involving a re%eriod-4 orbits. Since the TDGAR learning system need not
physical apparatus. We therefore expect our system to gw the mathematical model or the property (such as fixed
applicable to some realistic objects as diverse as synchroniwhts) of the chaotic system for control, it can be applied to

chaotic oscillators [37], magnetoelastic ribbon system [3ontrol a physical chaotic system in the real-world directly.
nonlinear electrical oscillator [9], and chaotic laser system
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