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Controlling Chaos by GA-Based Reinforcement
Learning Neural Network

Chin-Teng Lin,Member, IEEE,and Chong-Ping Jou

Abstract—This paper proposes a TD (temporal difference) and
GA (genetic algorithm) based reinforcement (TDGAR) neural
learning scheme for controlling chaotic dynamical systems based
on the technique of small perturbations. The TDGAR learning
scheme is a new hybrid GA, which integrates the TD prediction
method and the GA to fulfill the reinforcement learning task.
Structurely, the TDGAR learning system is composed of two
integrated feedforward networks. One neural network acts as
a critic network for helping the learning of the other network,
the action network, which determines the outputs (actions) of the
TDGAR learning system. Using the TD prediction method, the
critic network can predict the external reinforcement signal and
provide a more informative internal reinforcement signal to the
action network. The action network uses the GA to adapt itself
according to the internal reinforcement signal. This can usually
accelerate the GA learning since an external reinforcement signal
may only be available at a time long after a sequence of actions
have occurred in the reinforcement learning problems. By defin-
ing a simple external reinforcement signal, the TDGAR learning
system can learn to produce a series of small perturbations
to convert chaotic oscillations of a chaotic system into desired
regular ones with a periodic behavior. The proposed method is
an adaptive search for the optimum control technique. Computer
simulations on controlling two chaotic systems, i.e., the H́enon
map and the logistic map, have been conducted to illustrate the
performance of the proposed method.

Index Terms—Chaos, genetic algorithm, periodic control, rein-
forcement learning, temporal difference prediction.

I. INTRODUCTION

CHAOS is apparently an irregular motion, which is non-
linear but deterministic. It tracks a trajectory that is quite

complex but not entirely random. Chaos has been observed
in many physical systems, such as chemical reactors, fluid
flow systems, forced oscillators, feedback control devices, and
laser systems [1]. In designing such a system, it is often
desired that chaos can be avoided, i.e., certain portion of the
parameter space where the system behaves chaotically can be
ignored. However, some portion of the parameter space can
be significant; neglecting it may be highly undesirable when
chaos is useful in some situations. For example, increased
drag in flow system, erratic fibrillations of heart beating and
complicated circuit oscillations are some situations where
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chaos is harmful. On the contrary, in secure communications
chaotic signal can be added to an information signal then
transmitted in a secure way. That is, information signal to
be transmitted is masked by the noise like chaotic signal by
adding it at the transmitter then at the receiver the masking
is removed, the information signal cannot be deciphered in
general at the receiving end unless full information about the
chaotic system is available. One may wish then to design a
physical, biological, chemical experiment, or to project an
industrial plant to behave in a chaotic manner to achieve a
desired performance. Thus, the problem of controlling chaos
has been lately begun receiving attention. Researches on
the control of chaos in a host of physical systems ranging
from lasers and electronic circuits to chemical and biological
systems can be reviewed from [8] and references therein.

Controlling chaos is to convert chaotic oscillations into
desired regular ones with a periodic behavior. The possibility
of purposeful selection and stabilization of particular orbits in
a normal chaotic system usingminimal predeterminedefforts
provides a unique opportunity to maximize the output of a
dynamical system. It is thus of great importance to develop
suitable control methods and to analyze their efficacy. Re-
cently, much interest has been focused on this type of problems
[2]–[8]. Different control algorithms are essentially based on
the fact that one would like to effect changes as minimal
as possible to the original system so that it is not grossly
deformed. From this point of view, controlling methods or
algorithms can be broadly classified into two categories:
feedback and nonfeedback methods [9]. Feedback control
methods essentially make use of the intrinsic properties of
chaotic systems, including their sensitivity to initial conditions,
to stabilize orbits already existing in the systems. In contrast to
feedback control techniques, nonfeedback methods make use
of a small perturbing external force such as a small driving
force, a small noise term, a small constant bias, or a weak
modulation to some system parameter. All these methods
modify the underlying chaotic dynamical system weakly so
that stable solutions appear.

In 1990, Ottet al. [2] first proposed a new method (col-
loquially called the OGY method) of controlling a chaotic
dynamical system by stablizing one of the many unstable
periodic orbits embedded in a chaotic attractor, through only
small time dependent perturbations in some accessible system
parameter. OGY’s method is one kind of feedback control
algorithms and has attracted the attention of many physicists
interested in applications of nonlinear dynamics. Experimental
control of chaos was achieved by Dittoet al. [3] soon after.
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They applied OGY’s method to control the chaotic vibrations
of a magnetoelastic ribbon to achieve stable period-1 and
period-2 orbits in the chaotic regime. However, OGY’s method
requires monitoring the system long enough to determine a
linearization of its behavior in the neighborhood of the desired
unstable periodic orbit before it can be applied. Besides, the
determination of small nudges of the perturbation requires
a knowledge of the eigenvalues and eigenvectors of the
unstable orbits. More recently, Alsinget al. [10] used a
feedforward backpropagation neural network to stabilize the
unstable periodic orbits embedded in a chaotic system. Their
controlling algorithm used for training the network is based on
OGY’s method, and thus inherits the deficiencies of the OGY’s
method mentioned above. Another approach to controlling
chaos with a neural network was proposed by Otawara and Fan
[11], where the same network structure as Alsing’s was used.
Their method approximates the system’s governing equations
through judicious perturbation of an accessible parameter
of the system. Specifically, it feeds back automatically the
deviation of the predicted value at the succeeding iteration
from the unstable fixed point on a return map to the parameter.
The above two neural-network approaches are both super-
vised learning methods, in which a feedforward multilayer
neural network is trained by data pairs generated from a
chaotic system to produce a time series of small perturbations
necessary for control. The disadvantage is that the fixed
points of the chaotic system need to be determined and/or
the system’s nonlinear dynamics need to be analyzed in
advance. However, since the application of neural controllers
to chaotic systems has gained great benefits, we therefore
expect to give a systematic approach to designing a neural
controller for controlling chaos by reinforcement learning
method. In this paper, we shall propose a genetic algorithm
(GA)-based reinforcement learning scheme to the problems
of controlling chaos. This scheme need not know the fixed
points of a chaotic system, and can effectively control the
system on a high periodic orbit without supervised training
data.

In the neural learning methods, supervised learning is effi-
cient when the input–output training pairs are available [12].
However, many control problems require selecting control
actions whose consequences emerge over uncertain periods
for which input–output training data are not readily available.
In such a case, the reinforcement learning method can be
used to learn the unknown desired outputs by providing the
system with a suitable evaluation of its performance. Two
general approaches are for reinforcement learning; theactor-
critic architecture and the GA. The former approach uses the
temporal difference (TD) method to train a critic network
that learns to predict failure. The prediction is then used to
heuristically generate plausible target outputs at each time step,
thereby allowing the learning of the action network that maps
state variables to output actions [12]–[15]. The action and critic
networks can be neuron-like adaptive elements [13], multilayer
neural networks [17], or neural fuzzy networks [18], [19]. The
main drawback of these actor critic architectures is that they
usually suffer the local minima problem in network learning
due to the use of gradient descent (ascent) learning method.

GA’s are general purpose optimization algorithms with a
probabilistic component that provides a means to search poorly
understood irregular spaces [21]. From the network learning
point of view, since GA’s only need the suitable evaluation
of the network performance to yield the fitness values for
evolution, they are suitable for the reinforcement learning
problems [22]–[25]. As compared to the aforementioned ac-
tor critic architecture, all the above GA-based reinforcement
learning schemes use only the action networks. Without the
predictions (internal critics) of the critic network, the GA
cannot proceed to the new generation until the arrival of the
external reinforcement signals. This causes the main drawback
of these pure GA approaches, i.e., very slow convergence,
since an external reinforcement signal may only be available
at a time long after a sequence of actions has occurred in the
reinforcement learning problems.

In this paper, we integrate the actor critic architecture
and GA into a new reinforcement learning scheme. This
scheme can solve the local minima problem in the actor-
critic architecture by making use of the global optimization
capability of GA’s. Also, it can efficiently speed up the
convergence of GA’s with the prediction capability of the
actor critic architecture. The proposed scheme is called the
TD and GA-based reinforcement (TDGAR) learning method.
Structurely, the TDGAR learning system is constructed by
integrating two feedforward multilayer networks. One neural
network acts as the critic network for helping the learning of
the action network, and the other neural network acts as the
action network for determining the outputs (actions) of the
TDGAR learning system. Using the TD prediction method,
the critic network can predict the external reinforcement signal
and provide a more informative internal reinforcement signal
to the action network. The action network uses the GA to
adapt itself according to the internal reinforcement signal.
The key concept of the proposed TDGAR learning scheme
is to formulate the internal reinforcement signal as the fitness
function of the GA such that the GA can evaluate the candidate
solutions (chromosomes) regularly even during the period
without external reinforcement feedback from the environ-
ment. Hence, the GA can proceed to new generations regularly
without waiting for the arrival of the external reinforcement
signal. The proposed TDGAR learning method is applied to
the controlling chaos problems in this paper based on the
technique of small perturbations. By defining a simple external
reinforcement signal, the TDGAR learning system can learn
to produce a series of small perturbations to convert chaotic
oscillations of a chaotic system into desired regular ones with
a periodic behavior. Computer simulations on controlling two
chaotic systems, i.e., the Hénon map and the logistic map, will
be conducted to illustrate the performance of the proposed
method.

This paper is organized as follows. Section II describes
the concept of using small perturbations to control chaos.
Section III describes the basic of GA’s. The structure of
the proposed TDGAR learning system and the corresponding
learning algorithm are presented in Section IV. In Section V,
the TDGAR learning method is applied to control two chaotic
systems. Finally, conclusions are summarized in Section VI.
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II. USING SMALL PERTURBATIONS TOCONTROL CHAOS

The presence of chaos may be of a great advantage for
control in a variety of situations. In a practical situation
involving a real physical apparatus, one may expect that chaos
is avoided or that the system dynamics is changed in some way
so that improved performance can be obtained. Given a chaotic
attractor, one might consider making some large, possibly
costly, change in the system to achieve the desired objective.
In a nonchaotic system, small control signals typically can only
change the system dynamics slightly. Short of applying large
control signals or greatly modifying the system, it is stuck
with whatever system performance already exists. However,
in a chaotic system it is free to choose among a rich variety of
dynamical behaviors. Thus, it may be advantageous to design
chaos into systems, allowing such variety without requiring
large control signals or the design of separate systems for
each desired behavior.

Ott et al. [2] prescribed a method to transform a system
initially in a chaotic state into a controlled periodic one.
There exits an infinite number of unstable periodic orbits
embedded in the attractor, and only small, carefully chosen
perturbations are necessary to stabilize one of these. That is,
one can select a desired behavior from the infinite variety
of behaviors naturally present in chaotic systems, and then
stabilize this behavior by applying only tiny changes to an
accessible system parameter [8]. Lima and Pettini [26] have
suggested that it is possible to bring a chaotic system into a
regular regime by means of a small parametric perturbation of
suitable frequency. In addition, the effect of an additional weak
constant bias term to quench chaos has also been reported in
[27]. All these methods are based on the idea of using small
changes to perturb a chaotic system. Let us consider a return
or iterated map

(1)

where is the accessible parameter of the system that can be
externally perturbed, is the state value at theth iteration,
and is the state value at the ( )th iteration. Inspired
by the above mentioned methods, giving a small change to
the system parameter, we can express the perturbed map as
the following form:

(2)

where is the time-varying small change to alter system
parameter. Another form of small perturbations is

(3)

where the function of is just like an external force acting
on the chaotic system to quench chaos. Our goal is to design a
neural controller to find this small perturbation signalsuch
that chaos can be controlled.

Chaotic systems exhibit extremely sensitive dependence on
initial conditions, i.e., two identical chaotic systems starting
at nearly the same point follow orbits that divert rapidly from
each other and become quickly uncorrelated. For example,
if we run a chaotic system two times starting at the same
initial conditions; one is computed with single precision and

the other with double precision, then one chaotic orbit will
closely approach the other chaotic orbit in the first few
iterations, but will then rapidly move far apart. Those orbits in
chaotic systems are unstable in the sense that small deviation
from the periodic orbit grows exponentially rapidly in time,
and the system orbit quickly moves away from the periodic
orbit. Occasionally, the chaotic orbit may closely approach a
particular unstable periodic orbit, in which case the chaotic
orbit would approximately follow the periodic cycle for a
few periods, but it would then rapidly move away because of
the instability of the periodic orbit. Therefore, adding a small
perturbation on a chaotic system will cause a large variation
on the orbit except that the orbit is closely around the fixed
points. Hence, when the chaotic state is in the neighborhood of
the fixed point, only a small perturbation applied to a system
parameter will let it fall into the vicinity of the fixed point in
the next iteration; otherwise, even when the state is exactly on
a fixed point with no small perturbation to stabilize it, it will
move apart from the fixed point eventually.

Neural networks are attractive for use as controllers of
complex systems, because they do not require the models
of the dynamical systems to be controlled. A neural network
with inputs being fed by a time series of values of the phase
space variables of a chaotic system can be trained to produce
a time series of proper small perturbations for controlling
chaos. In this paper, we shall use reinforcement learning
scheme to learn the unknown desired outputs (perturbations)
by providing the learning system with a suitable function
(reinforcement signal) for evaluating its performance. Usually,
it is difficult to define a reinforcement signal for controlling
a chaotic system, because no apparent information is revealed
to indicate whether a control action is good or bad. However,
inspired by the idea mentioned in the above paragraph, (i.e.,
when a chaotic state is closely around the fixed point, a small
perturbation will stabilize it on the fixed point), we can define
the reinforcement signal by a limitation on the magnitudes
of perturbations, i.e., a predefined maximum perturbation is
used as a constraint. When the perturbation is within the
predefined maximum perturbation range, the reinforcement
signal will indicate the control action being a successful trial;
otherwise, it is a failure trial. One big advantage of this
learning control scheme is that we need not know the fixed
point of the controlled chaotic system in advance because a
series of successful trials (meaning that a series of proper small
perturbations are allowed to apply to the system) has indicated
that the system states are around a fixed point. Thus, the
magnitude of the small perturbation provides a good indicator
of the target point.

For the control of higher period orbits, we further propose
a scheme calledperiodic control. In this scheme, unlike the
control of a period-1 orbit, where the chaotic system is
perturbed by a small perturbationin each iteration, we perturb
the chaotic systemevery N iterationsfor the control of a
period- orbit. The periodic control learns to find any one of
the points on the period- orbit depending on the position
of the initial states, and view it as a fixed point for control.
In other words, the periodic control reduces the period-
control problem to a period-1 control problem. In this way,
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the controller is switched on to keep the system stay in one
of the period- points every iterations, and then switched
off to let the system run freely to reach other period-points
by making use of the periodic feature of the period-chaotic
orbit. Hence, in our proposed TDGAR learning system, it is
free to select the target for the control of a period-orbit.
However, in the learning process of periodic control, it is
possible that the control of a period-orbit falls into any one
of the period- , period- , or period-1 points. Hence, we
have to check the learned stabilized point to see if it is the
same as any one of the following-1 points in the next -
1 free running iterations. If so, the stabilized point is not a
period- point and we have to restart the learning with new
initial states. In the next section, we give a brief description
of the genetic algorithm and in Section IV we shall describe
the proposed learning system deliberately.

III. GENETIC ALGORITHMS

GA’s are invented to mimic some of the processes observed
in natural evolution. The underlying principles of GA’s were
first published by Holland [20]. The mathematical framework
was developed in the 1960’s and was presented in Holland’s
pioneering book [21]. GA’s have been used primarily in two
major areas: optimization and machine learning. In optimiza-
tion applications, GA’s have been used in many diverse fields
such as function optimization, image processing, the traveling
salesman problem, system identification, and control. In ma-
chine learning, GA’s have been used to learn syntactically
simple string IF–THEN rules in an arbitrary environment.
Excellent references on GA’s and their implementations and
applications can be found in [28] and [30].

The GA is a general purpose stochastic optimization method
for search problems. GA’s differ from normal optimization and
search procedures in several ways. First, the algorithm works
with a population of strings, searching many peaks in parallel.
By employing genetic operators, it exchanges information
between the peaks, hence lowering the possibility of ending
at a local minimum and missing the global minimum. Second,
it works with a coding of the parameters, not the parameters
themselves. Third, the algorithm only needs to evaluate the
objective function to guide its search, and there is no require-
ment for derivatives or other auxiliary knowledge. The only
available feedback from the system is the value of the per-
formance measure (fitness) of the current population. Finally,
the transition rules are probabilistic rather than deterministic.
The randomized search is guided by the fitness value of each
string and how it compares to others. Using the operators on
the chromosomes which are taken from the population, the
algorithm efficiently explores parts of the search space where
the probability of finding improved performance is high.

The basic element processed by a GA is the string formed
by concatenating substrings, each of which is a binary coding
of a parameter of the search space. Thus, each string represents
a point in the search space and hence a possible solution to
the problem. Each string is decoded by an evaluator to obtain
its objective function value. This function value, which should
be maximized or minimized by the GA, is then converted to a

fitness value which determines the probability of the individual
undergoing genetic operators. The population then evolves
from generation to generation through the application of the
genetic operators. The total number of strings included in a
population is kept unchanged through generations. A GA in
its simplest form uses three operators:reproduction, crossover,
and mutation [28]. Through reproduction, strings with high
fitnesses receive multiple copies in the next generation while
strings with low fitnesses receive fewer copies or even none
at all. The crossover operator produces two offspring (new
candidate solutions) by recombining the information from two
parents in two steps. First, a given number of crossing sites are
selected along the parent strings uniformly at random. Second,
two new strings are formed by exchanging alternate pairs of
selection between the selected sites. In the simplest form,
crossover with single crossing site refers to taking a string,
splitting it into two parts at a randomly generated crossover
point and recombining it with another string which has also
been split at the same crossover point. This procedure serves to
promote change in the best strings which could give them even
higher fitnesses. Mutation is the random alteration of a bit in
the string which assists in keeping diversity in the population.

Roughly speaking, GA’s manipulate strings of binary digits,
“1’s” and “0’s,” called chromosomes which represent multiple
points in the search space through proper encoding mechanism.
Each bit in a string is called anallele.GA’s carry out simulated
evolution on populations of such chromosomes. Like nature,
GA’s solve the problem of finding good chromosomes by
manipulating the material in the chromosomes blindly without
any knowledge about the type of problem they are solving.
The only information they are given is an evaluation of each
chromosome they produce. The evaluation is used to bias
the selection of chromosomes so that those with the best
evaluations tend to reproduce more often than those with
bad evaluations. GA’s, using simple manipulations of chromo-
some, such as simple encodings and reproduction mechanisms,
can display complicated behavior and solve some extremely
difficult problems without knowledge of the decoded world.

The encoding mechanisms and the fitness function form the
links between the GA and the specific problem to be solved.
The technique for encoding solutions may vary from problem
to problem and from GA to GA. Generally, encoding is carried
out using bit strings. The coding that has been shown to be
the optimal one is binary coding [21]. Intuitively, it is better
to have few possible options for many bits than to have many
options for few bits. A fitness function takes a chromosome
as input and return a number or a list of numbers that is a
measure of the chromosome’s performance on the problem
to be solved. Fitness functions play the same role in GA’s
as the environment plays in natural evolution. The interaction
of an individual with its environment provides a measure of
fitness. Similarly, the interaction of a chromosome with a
fitness function provides a measure of fitness that the GA uses
when carrying out reproduction.

In this paper, we develop a novel hybrid GA called the
TD and GA-based reinforcement learning method, which
integrates the TD prediction method and the GA into the actor
critic architecture to fulfill the reinforcement learning task.
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Fig. 1. The proposed TDGAR learning system for controlling chaos.

IV. TD- AND GA-BASED

REINFORCEMENT LEARNING SYSTEM

The proposed TDGAR learning method is a kind of hybrid
GA algorithms [28]. Traditional simple GA’s, though robust,
are generally not the most successful optimization algorithm
on any particular domain. Hybridizing a GA with algorithms
currently in use can produce an algorithm better than the GA
and the current algorithms [30]–[33] GA’s may be crossed
with various problem specific search techniques to form a
hybrid that exploits the global perspective of the GA (global
searchand the convergence of the problem-specific technique
(local search). In some situations, hybridization entails using
the representation as well as optimization techniques already
in use in the domain, while tailoring the GA operators to the
new representation. In this connection, the proposed TDGAR
learning method is a hybrid of GA and the actor critic archi-
tecture which is a quite mature technique in the reinforcement
learning domain. The TDGAR method is an adaptive search
for the optimum control technique. We shall next introduce
the structure and learning algorithm of the TDGAR learning
system in the following sections.

A. Structure of the TDGAR Learning System

The proposed TDGAR learning system is constructed by
integrating two feedforward multilayer networks. One neural
network acts as a critic network for helping the learning of
the other network, the action network, which determines the
outputs (actions) of the TDGAR learning system as shown
in Fig. 1. Both the critic network and the action network
have exactly the same structure as that shown in Fig. 2.
The TDGAR learning system is basically in the form of
the actor critic architecture [14]. Since we want to solve
the reinforcement learning problems in which the external
reinforcement signal is available only after a long sequence
of actions have been passed onto the environment plant,
we need a multistep critic network to predict the external
reinforcement signal. In the TDGAR learning system, the critic
network models the environment such that it can perform

Fig. 2. The structure of the critic network and the action network in the
TDGAR learning system.

a multistep prediction of the external reinforcement signal
that will eventually be obtained from the environment for the
current action chosen by the action network. With the multistep
prediction, the critic network can provide a more informative
internal reinforcement signal to the action network. The action
network can then determine a better action to impose onto the
environment in the next time step according to the current
environment state and the internal reinforcement signal. The
internal reinforcement signal from the critic network enables
both the action network and the critic network to learn at
each time step without waiting for the arrival of an external
reinforcement signal, greatly accelerating the learning of both
networks. The structures and functions of the critic network
and the action network are described in the following sections.

1) The Critic Network: The critic network constantly pre-
dicts the reinforcement associated with different input states,
and thus equivalently, evaluates the goodness of the control
actions determined by the action network. The only infor-
mation received by the critic network is the state of the
environment in terms of state variables and whether or not
a failure has occurred. The critic network is a standard two
layer feedforward network with sigmoids in the hidden layer
and output layer. The input to the critic network is the state of
the plant, and the output is an evaluation of the state, denoted
by . This value is suitably discounted and combined with the
external failure signal to produce the internal reinforcement
signal, .

Fig. 2 shows the structure of the critic network. It includes
hidden nodes and input nodes including a bias node (i.e.,

). In this network, each hidden node receives
inputs and has weights, while each output node receives

inputs and has weights. The output of each hidden
node is given by

(4)

where

(5)
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and are successive time steps, andis the weight from
the th input node to theth hidden node. The output node of
the critic network receives inputs from the hidden nodes (i.e.,

) and directly from the input nodes (i.e., )

(6)

where is the prediction of the external reinforcement value,
is the weight from theth input node to the output node, and
is the weight from theth hidden node to the output node.
Unlike the supervised learning problem in which the correct

“target” output values are given for each input pattern to
instruct the network learning, the reinforcement learning prob-
lem has only very simple “evaluative” or “critic” information
available for learning rather than “instructive” information. In
the extreme case, there is only a single bit of information to
indicate whether the output is right or wrong. The environment
supplies a time-varying input vector to the network, receives
its time varying output/action vector and then provides a time
varying scalar reinforcement signal. In this paper, the external
reinforcement signal is two-valued, ,
such that means “a success” and
means “a failure.” We also assume that is the external
reinforcement signal available at time stepand is caused by
the inputs and actions chosen at earlier time steps, (i.e., at
time steps ). To achieve the control goal by the
proposed TDGAR learning system, we have to define a proper
external reinforcement signal. According to the key concept
of controlling chaos by using small perturbations discussed in
Section II, we define the external reinforcement signal as

if
otherwise

(7)

where is a predefined maximum perturbation value.
From the analysis in Section II, we understand that the action
network will produce large perturbations to repress chaotic
oscillations when the state of the chaotic system falls out-
side the controlling region, (i.e., the period-1 orbit). On the
other side, when the state of the chaotic system falls in the
controlling region, the action network only needs to produce
small perturbations to maintain the regular state trajectory of
the chaotic system. Hence, the magnitude of the perturbation
produced by the action network is a good indicator to see
the performance of the TDGAR learning system. According
to (7), the learning system will get an external reinforcement
signal with value zero indicating “success” when the produced
perturbation is small enough; otherwise, it will get a signal
with value one indicating “failure.”

The critic network evaluates the action recommended by
the action network and represents the evaluated result as
the internal reinforcement signal. The internal reinforcement
signal is a function of the external failure signal and the change

Fig. 3. The encoding of the neural network in Fig. 2 on chromosomes.

in state evaluation based on the state of the system at time

start state

failure state

otherwise
(8)

where is the discount rate. In other words,
the change in the value of plus the value of the exter-
nal reinforcement signal constitutes the heuristic or internal
reinforcement signal, , where the future values of are
discounted more the further they are from the current state of
the system.

2) The Action Network:The action network is to determine
a proper action acting on the environment (plant) according
to the current environment state. In our TDGAR learning
system, the structure of the action network is exactly the
same as that of the critic network shown in Fig. 2. The only
information received by the action network is the state of
the environment in terms of state variables and the internal
reinforcement signal from the critic network. In applying GA’s
for neural-network learning, the connection weights of the
action network are encoded as genes (or chromosomes), and
GA’s are then used to search for better solutions (optimal
structures and parameters) for the action network. Fig. 3 shows
the encoding of the action network on chromosomes with
population size . Bit string encoding is the most common
encoding technique used by GA researchers because of its ease
of creating and manipulating. However, binary string encoding
usually causes longer search time than the real-valued string
encoding. Hence, connection weights of the action network
are encoded here as a real-valued string. Initially, the GA
generates a population of real-valued strings randomly. An
action network corresponding to each string then runs in a
feedforward fashion to produce control actions acting on the
environment according to (4) and (6). At the same time, the
critic network constantly predicts the reinforcement associated
with changing environment states under the control of the
current action network. After a fixed time period, the internal
reinforcement signal from the critic network will indicate the
“fitness” of the current action network. This evaluation process
continues for each string (action network) in the population.
When each string in the population has been evaluated and
given a fitness value, the GA can look for a better set of
strings and apply genetic operators on them to form a new
population as the next generation. Better actions can thus
be chosen by the action network in the next generation.
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Fig. 4. The flowchart of the proposed TDGAR learning method.

After a fixed number of generations, or when the desired
control performance is achieved, the whole evolution process
is stop, and the string with the largest fitness value in the
last generation is selected and decoded into the final action
network. The detailed learning scheme for the action network
will be discussed in the next section.

B. Learning Algorithm of the TDGAR Learning System

The flowchart of the TDGAR learning algorithm is shown
in Fig. 4. In the following sections, we first consider the
reinforcement learning scheme for the critic network of the
TDGAR system, and then introduce the GA-based reinforce-
ment learning scheme for the action network of the TDGAR
system.

1) Learning Algorithm for the Critic Network:When both
the reinforcement signal and input patterns from the envi-
ronment depend arbitrarily on the past history of the action
network outputs and the action network only receives a rein-
forcement signal after a long sequence of outputs, the credit
assignment problem becomes severe. Thistemporal credit
assignmentproblem results because we need to assign credit or
blame to each step individually in long sequences leading up
to eventual successes or failures. Thus, to handle this class
of reinforcement learning problems, we need to solve the
temporal credit assignment problem along with solving the
original structural credit assignment problem concerning attri-
bution of network errors to different connections or weights.

The solution to the temporal credit assignment problem in
the TDGAR system is to use a multistep critic network that
predicts the reinforcement signal at each time step in the
period without any external reinforcement signal from the
environment. This can ensure that both the critic network
and the action network can update their parameters during the
period without any evaluative feedback from the environment.
To train the multistep critic network, we use a technique
based on the temporal difference method, which is often
closely related with the dynamic programming techniques
[13], [34], [35]. Unlike the single step prediction and the
supervised learning methods which assign credit according
to the difference between the predicted and actual outputs,
the temporal difference methods assign credit according to
the difference between temporally successive predictions. Note
that the term “multistep prediction” used here means the critic
network can predict a value that will be available several time
steps later, although it does such prediction at each time step
to improve its prediction accuracy.

The goal of training the multistep critic network is to
minimize the prediction error, i.e., to minimize the internal
reinforcement signal, . It is similar to a reward/punishment
scheme for the weights updating in the critic network. If pos-
itive (negative) internal reinforcement is observed, the values
of the weights are rewarded (punished) by being changed in
the direction which increases (decreases) its contribution to
the total sum. The weights on the links connecting the nodes
in the input layer directly to the nodes in the output layer are
updated according to the following rule:

(9)

where is the learning rate and is the internal
reinforcement signal at time .

Similarly, for the weights on the links between the hidden
layer and the output layer, we have the following weight
update rule:

(10)

The weight update rule for the hidden layer is based on a
modified version of the error backpropagation algorithm [36].
Since no direct error measurement is possible (i.e., knowledge
of correct action is not available),plays the role of an error
measure in the update of the output node weights; ifis
positive, the weights are altered so as to increase the output
for positive input, and vice versa. Therefore, the equation for
updating the hidden weights is

(11)

Note that the sign of a hidden node’s output weight is used,
rather than its value. The variation is based on Anderson’s
empirical study [17] that the algorithm is more robust if the
sign of the weight is used rather than its value.

2) Learning Algorithm for the Action Network:The GA is
used to train the action network by using the internal reinforce-
ment signal from the critic network as the fitness function.
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Initially, the GA randomly generates a population of real-
valued strings, each of which represents one set of parameters
for the action network. The real value encoding scheme instead
of the normal binary encoding scheme in GA’s is used here, so
recombination can only occur between weights. A population
of small size is used in our learning scheme. This reduces
the exploration of the multiple (representationally dissimilar)
solutions for the same network.

After a new real-valued string is created, an interpreter
takes this real-valued string and uses it to set the parameters
in the action network. The action network then runs in a
feedforward fashion to control the environment (plant) for a
fixed time period (determined by the constant “ ” in
Fig. 4) or until a failure occurs. At the same time, the critic
network predicts the external reinforcement signal from the
controlled environment and provides an internal reinforcement
signal to indicate the “fitness” of the action network. In this
way, according to a defined fitness function, a fitness value is
assigned to each string in the population, where high fitness
values mean good fit. The fitness function, , can be any
nonlinear, nondifferentiable, discontinuous, positive function,
because the GA only needs a fitness value assigned to each
string. In this paper, we use the internal reinforcement signal
from the critic network to define the fitness function

(12)

which reflects the fact that small internal reinforcement values,
(i.e., small prediction errors of the critic network) mean higher
fitness of the action network, whereis the current time step,

, and the constant “ ” is a fixed time
period during which the performance of the action network is
evaluated by the critic network. If an action network receives
a failure signal from the environment before the time limit,
(i.e., ), then the action network that can keep the
desired control goal longer before failure occurs will obtain
higher fitness value. The above fitness function is different
from that defined normally in the pure GA approach [24],
where the relative measure of fitness takes the form of an
accumulator that determines how long the experiment is still
“success.” Hence, a string (action network) cannot be assigned
a fitness value until an external reinforcement signal arrives
to indicate the final success or failure of the current action
network.

When each string in the population has been evaluated and
given a fitness value, the GA then looks for a better set
of strings to form a new population as the next generation
by using genetic operators, (i.e., the reproduction, crossover,
and mutation operators). In basic GA operators, the crossover
operation can be generalized to multipoint crossover in which
the number of crossover points is defined. With set
to one, generalized crossover reduces to simple crossover.
The multipoint crossover can solve one major problem of
the simple crossover; one point crossover cannot combine
certain combinations of features encoded on chromosomes.
In the proposed GA-based reinforcement learning algorithm,
we choose . The crossover operation for real value
encoding is demonstrated in Fig. 5. For the mutation operator,

(a)

(b)

Fig. 5. Illustration of crossover operation for real-value strings. (a) before
crosssover. (b) After crosssover.

(a)

(b)

Fig. 6. Illustration of mutation operation for real-value string. (a) Before
mutation. (b) After mutation.

since we use the real value encoding scheme, we use a higher
mutation probability in our algorithm. This is different from
the traditional GA’s that use the binary encoding scheme.
The latter are largely driven by recombination, not mutation.
The operation of mutation is done by adding a randomly
selected value within the range10 to a randomly selected
site of the chromosome. Fig. 6 shows an example illustrating
the mutation operation. The above learning process continues
to new generations until the number of generations meets
a predetermined stop criterion. After the whole evolution
process is stop, the string with the largest fitness value in the
last generation is selected and decoded into the final action
network.

The major feature of the proposed hybrid GA learning
scheme is that we formulate the internal reinforcement signal
as the fitness function for the GA based on the actor-critic
architecture. In this way, the GA can evaluate the candidate
solutions (the weights of the action network) regularly during
the period without external reinforcement feedback from the
environment. The GA can thus proceed to new generations in
fixed time steps (specified by the constant “ ”) without
waiting for the arrival of the external reinforcement signal. In
other words, we can keep the time steps ( ) for evalu-
ating each string (action network) and the generation size ()
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Fig. 7. The Hénon attractor.

fixed in our learning algorithm (see the flowchart in Fig. 3),
since the critic network can give predicted reward/penalty
information to a string without waiting for the final success
or failure. This can usually accelerate the GA learning since
an external reinforcement signal may only be available at a
time long after a sequence of actions has occurred in the
reinforcement learning problems. This is similar to the fact
that we usually evaluate a person according to his/her potential
or performance during a period, not after he/she has done
something really good or bad.

V. SIMULATIONS AND RESULTS

In this section, we apply the proposed TDGAR learning
method to control two chaotic systems, Hénon map and logistic
map. These maps have been extensively studied for decades
as examples of producing chaos from a simple algebraic
expression. We shall demonstrate the power of the TDGAR
learning method by controlling these two chaotic systems on
period-1, period-2, or period-4 orbits without analysis of the
system’s nonlinear dynamics.

A. Controlling of Hénon Map

Hénon map is a two dimensional mapping with the corre-
lation dimension approximately equal to 1.25 given by

(13)

This mapping becomes chaotic oscillations when the param-
eters in (13) are set as and [10]. In this
case, the chaotic state trajectory of this system is shown in
Fig. 7, which is obtained by iterating (13) for 10times. To
control the H́enon map by the small perturbation technique
discussed in Section II [see (2) or (3)], a small perturbation,

, is added to (13)

(14)

The perturbation, , is generated by the action network of
the TDGAR learning system (see Fig. 1), and acts on the

Hénon map at each iteration. The control goal is to stabilize
the H́enon map on its unstable period-1 orbit, (i.e., fixed
point).

There are two input state variables to the TDGAR learning
system: , the state variable of the H́enon map at the th
iteration; , the state variable at the th iteration.
The used critic network and action network in the TDGAR
learning system are three-layer neural networks shown in
Fig. 2, both with three input nodes, five hidden nodes, and
one output node. Hence, there are 23 weights in each network.
A bias node fixed at 0.5 is used as the third input to the
network, a weight from the bias node to a hidden node (or
to the output node) in effect changes the threshold behavior
of that node. We use the fitness function defined in (12),
i.e., , in the TDGAR learning system,
where is the internal reinforcement signal from the critic
network, which is to predict the external reinforcement signal
in (7). The learning parameters used in the TDGAR system
are the maximum perturbation , the population
sizes , the learning rate , the discount rate

, the time limit , and the generation
sizes is not limited here. Initially, we set all the weights
in the critic network and action network as random values
between 2.5 and 2.5.

The TDGAR learning process proceeds as follows. We
first randomly generate 200 (population size) chromosomes
corresponding to 200 initial action networks. For each action
network, there is a critic network with random initial weights
associated with it to form a TDGAR learning system as
shown in Fig. 1. These 200 TDGAR learning systems are
trained and evaluated one by one as follows. In the beginning,
the initial state values of the controlled chaotic system are
fed into the critic network and the action network. The
action network then work in a feedforward fashion to produce
perturbation for controlling the chaotic system, and the critic
network produces a output value,, to predict the exter-
nal reinforcement signal. The produced perturbation is then
evaluated and an external reinforcement signal is generated
according to (7). With this external reinforcement signal, the
critic network will tune itself to get better prediction in the
future. The new state values of the chaotic system are then
sent back to the inputs of the action and critic networks,
and starts the next iteration. After 100 (time limit) iterations,
the critic network will produce an internal reinforcement
signal according to (8) to give the action network a final
and detailed evaluation. However, it should be noted that at
the beginning of learning (30 time steps used here), larger
perturbations are allowed such that the action network can
find more feasible solutions for the perturbations so as to
force the state of the H´enon map fall into the controlling
region quickly from any initial point. After 30 time steps,
we begin to check if the perturbations are within a predefined
maximum perturbation range. With the internal reinforcement
signal available, a fitness value can be obtained by (12). In
this way, when each of the 200 action networks has been
evaluated and given a fitness value, the GA then looks for
a better set of action networks to form a new population
by using genetic operators and starts the next generation.
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Fig. 8. Control of the H́enon map on the period-1 orbit by using different predefined maximum perturbation values as learning criteria.

Fig. 9. Control of the H́enon map on the period-1 orbit by the TDGAR learning system.

The details of the learning process has been described in
Section IV-B. Repeat the above, learning process regularly
from generation to generation. A control strategy (i.e., an
action network) was deemed successful if it could stabilize
the H́enon map on its period-1 orbit, i.e., the fixed point of
the H́enon map.

In the following tests, we define different allowed maximum
perturbation values, , to see the learning efficiency of
the TDGAR learning system. Three maximum perturbation
values are defined as , ,
and for learning criteria [see (7)]. After
learning, three corresponding action networks (controllers) are
obtained to stabilize the H´enon map successfully. In the test,
the controller is switched on, [i.e., the small perturbations
produced by the action network are added to the Hénon map as
in (14)] at iteration , and is switched off at iteration

. The results are shown in Fig. 8, where orbit “1”
denotes the period-1 orbit (fixed point) of the Hénon map, orbit
“2” is the stabilized orbit when the controller is trained under
the criteria , orbit “3” is the stabilized orbit
when the controller is trained under the criteria ,
and orbit “4” is the stabilized orbit when the controller is
trained under the criteria . It is observed that
the H́enon map stays around its fixed point, ,
stably during the control process. Once the control signal
is removed, the system evolves chaotically. Moreover, it is
observed that more strictly the maximum perturbation value
is allowed, more closely the H́enon map is stabilized to its
fixed point. However, higher accuracy is achieved at the cost
of lower learning speed.

Fig. 9 shows the results of controlling the Hénon map by the
learned TDGAR controller under the criteria
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Fig. 10. Control signal from the action network of TDGAR in controlling the Hénon map on the period-1 orbit.

Fig. 11. The logistic map.

. We see that the H́enon map stays on its period-1
orbit stably during the control process. An enlargement of the
square in Fig. 9 shows the precise state values of the controlled
chaotic system from iteration to iteration .
Corresponding to Fig. 9, Fig. 10 shows the control signals
(perturbations) produced by the action network of the learned
TDGAR system. It shows that only a few larger perturbations
are needed to repress chaotic oscillations at the beginning of
the control process, and then quite small perturbations are
enough to keep the H́enon map stay on its period-1 orbit. An
enlargement of the square in Fig. 10 also shows the precise
control signals (perturbations) during the control process from
iteration to iteration . The enlargement
pictures in Figs. 9 and 10 show that the small perturbation,

, presented in (14) [also refer to (3)] is not just a static shift
of operation points (constant); it is more like a dynamical
external force acting on the chaotic system to quench chaos
from time to time.

B. Controlling of Logistic Map

In this simulation, we apply the TDGAR learning system to
control what is considered the simplest, but one of the most
interesting dynamical system, the logistic map

(15)

This map is often used to model population dynamics. The
parameter is the nonlinearity parameter; when the
mapping is chaotic [11]. The fixed point for the period-1 orbit
is . The fixed points for the period-2 orbit are

and . The logistic map is
an one dimensional map. Fig. 11 shows the state trajectory
of the logistic map with obtained by iterating (15)
for times. When adding small perturbations to control the
logistic map, the perturbed logistic map has the form of [see
(2)]

(16)

or [see (3)]

(17)

In the TDGAR learning system for controlling the logistic
map, the fitness function and the external reinforcement signal
are defined to be the same as those used before, i.e., (7) and
(12). Since there is only one input state variable in this case,
the used critic network and action network both have two
input nodes (including the bias node), four hidden nodes and
one output node. The learning parameters used are the same
as those in the previous example. The initial state is randomly
selected between zero and one so as to get nontrivial dynamical
behavior.

Fig. 12 shows the results of controlling the logistic map on
the period-1 orbit. It shows that the orbit of the controlled
logistic map remains around the fixed point
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Fig. 12. Control of the logistic map on the period-1 orbit by the TDGAR learning system.

Fig. 13. Control of the logistic map on the period-2 orbit by the TDGAR learning system.

as long as the controller is switched on. As for the control of
period-2 orbits, we propose a scheme calledperiodic control.
We observe on the period-2 orbit of the logistic map that when

is closely in the proximity of , it will automatically
triggered to the next fixed point , and then bounds back to

. This happens periodically. Hence, the periodic control
scheme adds a small perturbation to the chaotic system only at
every other iteration of the system. Consequently, the external
reinforcement signal is also available at every other iteration in
the learning process. In other words, the controller is switched
on to keep the system stay in one fixed point at one iteration,
and then switched off to let the system run freely to reach
another fixed point at the next iteration. In this way, the
controller is switched on and off periodically. Fig. 13 shows
the results of controlling the logistic map on a period-2 orbit,
where the orbit is highly stabilized during the control process.

Apparently, the initial state determines which period-2 point
to be stabilized by the controller. For example, if the initial
state is close to the period-2 point , it is more likely that
the controller will learn to control this point rather than the
other period-2 point . In the simulations, we did observe
this situation. When we set the initial state as , the
final learned controlled point was . When
we set the initial state as , the final learned controlled
point was . As mentioned at the end of
Section II, it was possible that the period-2 control failed and
fell into period-1 control, when the initial state was very close
to the period-1 orbit (fixed point) . When
this happened, we assigned new initial state and restarted the
learning process. The idea of periodic control can be easily
extended to the control of higher periodic orbits. Fig. 14 shows
the results of controlling the logistic map on a period-4 orbit,
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Fig. 14. Control of the logistic map on the period-4 orbit by the TDGAR learning system.

where the controller is switched on every four iterations of the
logistic map. Note that the orbit is highly stabilized during the
control process. The TDGAR learning system also shows a
good efficiency of control on a high periodic orbits. However,
our simulations show that higher order orbits are more difficult,
(i.e., take longer learning time) to stabilize than the lower order
ones (as they are in the OGY’s method), partially because of
the false learning of the period-/2, period- /4, points.
In our simulations, the learning for controlling the logistic
map on period-1 orbit took 2235 generations, on period-2 orbit
took 29 341 generations, and on period-4 orbit took 208 363
generations.

In the above simulations, we used the deterministic maps,
i.e., the H́enon map and the logistic map, as test examples. This
was done purely for numerical convenience, and also because
these two maps have been widely used as benchmarks for the
researches of controlling chaos. Since the TDGAR learning
system need not know the mathematical model or the property
(such as fixed points) of the controlled chaotic system, it is
immaterial to the TDGAR learning system whether the chaotic
signals are generated analytically or experimentally from real
world. In other words, the above simulations demonstrate the
feasibility of applying the proposed TDGAR learning system
for controlling chaos in a practical situation involving a real
physical apparatus. We therefore expect our system to be
applicable to some realistic objects as diverse as synchronized
chaotic oscillators [37], magnetoelastic ribbon system [3],
nonlinear electrical oscillator [9], and chaotic laser system
[38]. Because of the success of controlling chaos by the
proposed TDGAR learning system, we are now working on
the research of synchronization of chaos, especially for secure
communication.

It is noted that although the H´enon map and logistic
map have generally wide nonchaotic parameter regions in
which a return map will show a similar result as what being
controlled in the above simulations, our purpose is to develop
a systematic approach to designing a neural controller against

chaotic system by reinforcement learning method. In other
words, we are interested in stablizing the chaotic parameter
region of a chaotic system, instead of looking for its nonchaotic
parameter region in this research.

VI. CONCLUSION

This paper integrates the TD technique, gradient descent
method, and GA into the actor-critic architecture to form a new
reinforcement learning system, called the TDGAR learning
system. By the TDGAR learning system, we can train a neural
controller for the plant according to a simple reinforcement
signal. The proposed TDGAR learning method makes the
design of neural controllers more feasible and practical for
real world applications, since it greatly lessens the quality
and quantity requirements of the teaching signals, and reduces
the long training time of a pure GA approach. The TDGAR
learning system has been successfully applied to control two
simulated chaotic systems by incorporating the techniques of
small perturbations and periodic control in this paper. The
simulation results showed that the TDGAR learning system
can learn to produce a series of small perturbations to convert
chaotic oscillations of a chaotic system into desired regular
ones with a periodic behavior including period-1, period-2, and
period-4 orbits. Since the TDGAR learning system need not
know the mathematical model or the property (such as fixed
points) of the chaotic system for control, it can be applied to
control a physical chaotic system in the real-world directly.
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