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AbstractÐIn this paper, we propose an enumeration method to check link

conflicts in the mapping of n-dimensional uniform dependence algorithms with

arbitrary convex index sets into k-dimensional processor arrays. Previous

methods on checking the link conflicts had to examine either the whole index set or

the I/O spaces whose size are O�N2n� or O�Nnÿ1�, respectively, where N is the

problem size of the n-dimensional uniform dependence algorithm. In our

approach, checking the link conflicts is done by enumerating integer solutions of a

mixed integer linear program. In order to enumerate integer solutions efficiently, a

representation of the integer solutions is devised so that the size of the space

enumerated is O��2N�nÿk�. Thus, our approach to checking link conflicts has

better performance than previous methods, especially for larger k. For the special

case k � nÿ 2, we show that link conflicts can be checked by solving two linear

programs in one variable.

Index TermsÐUniform dependence algorithms, lower dimensional arrays, space-

time mapping, link conflict, mixed integer linear programming, Hermite normal

form, Smith normal form.
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1 INTRODUCTION

REGULAR processor arrays, such as systolic arrays introduced by
Kung [1], which have regularly and locally connected interconnec-
tions via data links between processing elements (PEs) are very
suitable for implementation on VLSI chips. This type of processor
arrays supports the parallel implementation of algorithms,
especially the uniform dependence algorithms, from signal or
image processing and scientific computation applications [2].

Uniform dependence algorithms, termed by Shang and Fortes

[3], include those described by single uniform recurrence equations

[2], [4], [5], [6], [7], [8], [9], [10] and those described by programs

with nested loops [11]. They are characterized by uniform data

dependencies and unit-time computation. Informally, a uniform

dependence algorithm is represented by a subset (called index set)

of multidimensional integer points (called index points) and a finite

set of data dependence vectors. The index set of an algorithm is a

finite convex subset of Zn [12]. The minimal convex polytope or

convex hull R bounding the index set is usually a nondegenerated

convex polytope inRn. An index set is a hyperparallelepiped index set

if R is a hyperparallelepiped. We call n the dimension of the

uniform dependence algorithm.
Most researches on synthesizing [13], [14], [15], [16], [17], [18]

processor arrays from the uniform dependence algorithms focus

on finding a space-time mapping (linear transformation) to the

algorithm such that the transformed algorithm represents a regular

processor array. The space-time mapping is, in general, repre-

sented as a transformation matrix. The first row and the rest of the

transformation matrix are the time mapping vector, called linear

schedule vector, and the space mapping matrix, called allocation

matrix, respectively. In other words, the space-time mapping
transforms an index point of the uniform dependence algorithm
into a time step and a PE location in the processor array. Thus, a
processor array is a k-dimensional array if the transformation
matrix is �k� 1� � n integer matrix. For mapping a uniform
dependence algorithm into a k-dimensional processor array, three
kinds of conflict-free mapping conditions must be satisfied. They
are precedence, computation, and data link conflict-free condi-
tions. We say that a computational conflict occurs if more than one
computation of a uniform dependence algorithm are mapped to
the same processor and the same time step, and that a link conflict
occurs if more than one datum are mapped such that they travel
along the same data link at the same time step. In this paper, we
address the problem of checking link conflicts in the mapping of
n-dimensional uniform dependence algorithms into k-dimensional
processor arrays with 0 < k < nÿ 1.

There have been several attempts on the problem of
checking the link conflicts [13], [14], [16], [17], [18], [19], [20].
One of these methods [13], [14] has to examine the whole
index set of size O�N2n�, where N is the problem size. Other
methods [16], [17], [18], [19], [20] use the I/O spaces concept
to check link conflicts. Each I/O space is associated with a
data dependence vector d. An I/O space can be an input
space or an output space and is defined as the set fiÿ dV j
i 2 J and iÿ dV 62 Jg and fi j i 2 J and i� dV 62 Jg, respectively,
where J is the index set. However, an exact link conflict checking
cannot be obtained by their methods if the I/O space is a
nonconvex one. In [17], [18], a procedure was proposed to map
nonconvex I/O space into convex one. But, the projection of
nonconvex I/O space may introduce superfluous points which are
not needed in the computation of the algorithm, into the projected
I/O space. An example of such projection of nonconvex I/O space
is shown in Fig. 1. Thus, to check link conflict exactly, enumeration
of the I/O space of size O�Nnÿ1� is required.

The rest of the paper is organized as follows: In the next section,
we define the algorithm model and the array model used in this
paper. Section 3 is devoted to the formulation of the link conflict
checking problem as a mixed integer linear program. In Section 4, a
representation of the integer solutions of the mixed integer linear
program is given. Based on this representation, we can enumerate
the integer solutions in an efficient way. For the special case
k � nÿ 2, we also show that the link conflicts can be checked by
solving two linear programs in one variable. In Section 5, we
estimate the size of the enumeration space and show that the time
complexity for the representation is polynomial. Finally, a
conclusion is given in Section 6.

2 ALGORITHM MODEL AND ARRAY MODEL

In this section, the models for the algorithms and processor arrays
used in this paper are introduced. We briefly describe them as
follows.

2.1 Algorithm Model

Algorithms under consideration are the uniform dependence
algorithms. A uniform dependence algorithm is a single-assign-
ment algorithm [2], which can be described as n-nested loops of
the form:

for i1 � l1 to u1 by 1 do
for i2 � l2 to u2 by 1 do

...
for in � ln to un by 1 do
stat1;
stat2;
...
statm;

endfor
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endfor
endfor

lj and uj are integer-valued linear expression involving

i1; i2; � � � ; ijÿ1, 1 < j � n.
The loops define a space J , called the index set J � Zn, of

points �i1; i2; � � � ; in� as follows:

J � f�i1; i2; � � � ; in� j lj � ij � uj for j � 1; � � � ; n; and ij 2 Zg:
Statement statj is of the form:

V�i� � fj�W�iÿ dW�; � � � ;V�iÿ dV�; � � � ;X�iÿ dX ��;
where index point i 2 J and dZ 2 Zn�1, Z � V;W;X . fj is a single-

valued function of a fixed number of arguments. V;W, and X are

variables of the uniform dependence algorithm. The constant

vectors dZ 2 Zn�1 are the data dependence vectors for the variables

Z � V;W;X , respectively. In the form of statement statj, comput-

ing the value V�i� of variable V at index point i needs the value

V�iÿ dV� of variable V at index point iÿ dV . Thus, we say that the

value V�iÿ dV� is used and the value V�i� is generated at index

point i for variable V. And, we say that data dependence vector dV
is associated with variable V. Now, we use the notation tokenV�i�
as a token of variable V whose value is used and generated in all

index points of the form i� zdV , where i 2 J and z 2 Z. From this,

the input space and output space of variable V associated with data

dependence vector dV are defined as the set fiÿ dV j i 2
J and iÿ dV 62 Jg and fi j i 2 J and i� dV 62 Jg, respectively.

Since the array model, described in the next paragraph,

considered in this paper is the same as that in [13], [17], [18], we

also impose the same restriction on the uniform dependence

algorithms as in their works. The restriction is stated as follows.

Restriction [13, p. 66]. For every data dependence vector

d
T

V � �d1; d2; � � � ; dn�;
we have gcd�d1; d2; � � � ; dn� � 1.

Under this restriction, there is no integer point between index

point i and index point i� dV . Thus, tokenV�i� and tokenV�i0�
represent two different tokens if and only if i 6� i0 � zdV for z 2 Z.

2.2 Array Model

We assume that the execution of the processor array is synchro-
nous with a global clock that ticks in unit time, and the evaluation
of a computation by a PE takes unit time.

Since we use the space-time mapping T � �
S

� �
2 Z�k�1��n to

map a uniform dependence algorithm with index set J to a

processor array, the processor space is defined as the set

fSi 2 Zk�n j i 2 Jg. Let data dependence vector dV be associated

with a variable V in a uniform dependence algorithm. Under this

space-time mapping, all tokens of the variable V must travel a

distance SdV in �dV time steps. Thus, for each data dependence

vector dV in the algorithm, there exists a directed path of links from

PE with index p to PE with index p� SdV . We assume that these

links are connected as follows: Let g be the greatest common

divisor of the entries of the vector SdV . Then, two PEs with indices

p1 and p2 are called neighboring PEs if there exists a directed link

�1=g�SdV between the indices of those PEs, i.e., p1 ÿ p2 � �1=g�SdV .

Assume that g > 1. Then, there are g directed links which connect

neighboring PEs with index p� �f=g�SdV , f � 0; � � � ; gÿ 1 and PEs

with index p� ��f � 1�=g�SdV , respectively. In addition, since the

processor array is synchronous with a global clock, �dV must be

equal to gz0 for some positive integer z0 so that a token can reach a

PE at the time specified by the space-time mapping. Thus, there are

z0 ÿ 1 shift registers in each directed link �1=g�SdV . In other words,

this array model does not allow data broadcasting. Let p be an

index of a PE in the processor space, it is called an input (output) PE

if pÿ �1=g�SdV (p� �1=g�SdV) is not in the processor space. All I/O

operations with the host are restricted to the input (output) PEs of

the array. This array model is the same as that is adopted in [13],

[14], [17], [18], [19], [20]. It conforms to the typical properties of

VLSI processor arrays, namely, simple and regular interconnection

pattern between PEs.

3 FORMULATION OF THE LINK CONFLICT CHECKING

PROBLEM

In this section, we disscuss the formulation of the link conflict
checking problem. A link conflict occurs if and only if two tokens
of a variable arrive the same PE at the same time and move
together contending the same link. Given a uniform dependence
algorithm with data dependence matrix D and index set J , the
formulation of the link conflict checking problem can be derived as
follows:

Let T � �
S

� �
be the space-time mapping. Let variable V be

associated with data dependence vector dV . Since, for each data

dependence vector dV � �d1; � � � ; dn�, we restricted that

gcd�d1; d2; � � � ; dn� � 1, there is no integer point between index

point i and index point i� dV . Let g be the greatest common

divisor of the entries of the vector SdV . Obviously, the value of g

may be greater than 1 for some allocation matrix S and data

d e p e n d e n c e v e c t o r dV . A s s u m e t h a t g > 1. T h e n ,
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�1=g�SdV ; �2=g�SdV ; � � � ; ��gÿ 1�=g�SdV , and SdV are g integer

vectors. Thus, rational points i� �f=g�dV are mapped to PEs with

indices Si� �f=g�SdV , f � 1; � � � ; gÿ 1. For example, under the

space-time mapping T given in Fig. 2, (2, 0, 0) + (1/2)(0, 0, 1) is the

rational point that mapped to PE with index 1. And, index points i

and i� dV are mapped to PEs with indices Si and Si� SdV ,

respectively. This implies that tokenV�i� travels from the PE with

index Si, passes through PEs with indices Si� �1=g�SdV ; � � � ; Si�
��gÿ 1�=g��SdV� and arrives at the PE with index Si� SdV . Let

i 6� i0 � zdV , for all z 2 Z , i; i
0 2 J . Then, by the Restriction of the

algorithm, tokens tokenV�i� and tokenV�i0� represent two different

tokens. Assume that there is a link conflict between tokens

tokenV�i� and tokenV�i0�. Then, tokenV�i� and tokenV�i0� arrive at

the same PE at the same time and move together along the link.
In other words, there exist two rational points i� r1dV and

i
0 � r2dV , r1; r2 2 Q, such that S�i� r1dV� � S�i0 � r2dV� and

��i� r1dV� � ��i0 � r2dV�. After simple manupulation, we have

��iÿ i0 � �r1 ÿ r2�dV� � 0

S�iÿ i0 � �r1 ÿ r2�dV� � 0:

Thus, we have T
 � 0, where 
 � �iÿ i0 � qdV� is a rational
vector and q 2 Q. Let integer vector y � iÿ i0 � 
 ÿ qdV 2 Zn�1.
Since i 6� i0 � zdV for all z 2 Z, we have that if there exists a
nonzero integer vector y such that y � iÿ i0 6� zdV for all z 2 Z,
then there exists a link conflict between tokenV�i� and tokenV�i0�.
Thus, the link conflict checking problem can be solved by checking
the nonzero integer solution y of the following mixed integer linear
programming problem.

Mixed Integer Linear Programming (MILP) problem:

�
S

� �

 � 0

y � 
 ÿ qdV
y 2 diff�J�
y 2 Zn�1


 2 Qn�1

q 2 Q
where diff�J� � fi1 ÿ i2 j i1; i2 2 Jg.

Clearly, diff�J� is a convex polytope which is symmetric to the
origin. Notice that a nonzero vector y such that y � iÿ i0 � zdV 2
diff�J� for an integer z is always a solution of the MILP problem,
since we can set 
 � 0 and choose q � ÿz. In this case, since
tokenV�i� and tokenV�i0� represent the same token, there is no link
conflict. If there exists a nonzero integer solution y � iÿ i0 6� z0dV ,
z0 2 Z, then a link conflict between tokens tokenV�i� and tokenV�i0�
exists. Thus, to check the link conflicts for the tokens of the variable
V, all nonzero integer solutions of the MILP problem need to be
enumerated.

4 CHECKING LINK CONFLICTS

In this section, we give a method to enumerate the integer
solutions y of the MILP problem so as to check link conflicts for a
variable V with its associated data dependence vector dV . As y �

 ÿ qdV in the MILP problem where 
 2 Qn�1 and q 2 Q,
enumeration of the integer solutions y is not a straightforward
task. Thus, we derive a representation for the integer solutions y.
Based on this representation, all integer solutions y 2 diff�J� can
be enumerated systematically.

4.1 A Representation of the Integer Solutions

In order to enumerate the integer solutions y, we represent y as an
integer linear combination of some vectors. First, we expressed

 � y� qdV as a linear combination of some integer vectors as
follows. Denote NULL�T � � fx j Tx � 0g, the null space of the
space-time mapping matrix T . Since T
 � 0 in the MILP problem,
we have 
 2 NULL�T �. Thus, 
 can be expressed as a linear
combination of the vectors of a basis spanning NULL�T �. In order
to find a basis of the NULL�T �, we introduce the notion of the
Hermite normal form.

Definition 4.1. A matrix is unimodular if and only if it is integral and

the absolute value of its determinant is one.

Theorem 4.1 (Hermite normal form) [21, p. 45]. Let T 2 Z�k�1��n

and rank�T � � k� 1. Then, there exists a unimodular matrix W 2
Zn�n such that TW � H � �L;0� (0 denotes a zero matrix), where

L 2 Z�k�1���k�1� is a nonsingular and lower triangular matrix.
Matrix H is called the Hermite normal form of T .

From Theorem 4.1, we have T � HWÿ1. Let W � �w1; � � � ; wn�.
T h e n , T
 � 0 c a n b e r e w r i t t e n a s HWÿ1
 � 0. L e t
� �Wÿ1
 � ��1; � � � ; �n�T . Then, we have the following lemma.

Lemma 4.2 [15].


 � �wk�2; � � � ; wn�

�k�2

:
:
:
�n

266664
377775;

where �i 2 Q, i � k� 2; � � � ; n.

Proof. After simple manipulation, the lemma follows. End of
proof. tu

L e t M � �dV ; wk�2; � � � ; wn� 2 Zn��nÿk�. B y L e m m a 4 . 2 ,
wi 2 NULL�T �, i � k� 2; k� 3; � � � ; n. I n a d d i t i o n , s i n c e
j det�W� j� 1, wk�2; � � � ; wn are linear independent vectors. More-
over, since SdV 6� 0, we have TdV 6� 0. Thus, dV 62 NULL�T �. As a
consequence, rank�M� � nÿ k. Let

r � �ÿq; �k�2; � � � ; �n�T 2 Q�nÿk��1:

We have y �Mr where M is an integer matrix and r a rational
vector. Since y is a rational linear combination of the columns of
matrix M , vectors y cannot be enumerated. Thus, we must select
another set of linear independent vectors such that vector y can be
expressed as an integer linear combination of those vectors. To
achieve this, the notion of the Smith normal form is introduced.

Theorem 4.3 (Smith normal form) [21, p. 50]. Given a matrix

A 2 Zn�m, there exist two unimodular matrices U 2 Zn�n and V 2
Zm�m such that

UAV � S�A� �

s1 0 � � � 0 0 � � � 0
0 s2 � � � 0 0 � � � 0
� � � � � � � � � � � � � � � � � � � � �
0 0 � � � sm0 0 � � � � � �
0 0 0 0 0 0 0
� � � � � � � � � � � � � � � � � � � � �
0 0 0 0 0 0 0

2666666664

3777777775
:

S�A� is called the Smith normal form of matrix A, S�A� is unique,

s1; � � � ; sm0 are positive integers satisfying s1 j s2 j � � � j sm0 , �k
i�1si,

k � 1; � � � ;m0, is the greatest common divisor of subdeterminants of

order k of the matrix A, and m0 is the rank of the matrix A.

Now, let S�M� 2 Zn��nÿk� be the Smith normal form of the
matrix M 2 Zn��nÿk�. Then, there exist two unimodular matrices
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U 2 Zn�n and V 2 Z�nÿk���nÿk� such that S�M� � UMV . Denote

Uÿ1 � �u01; � � � ; u0n�. The following theorem shows that integer

vector y can be expressed as an integer linear combination of the

first nÿ k columns of matrix Uÿ1.

Theorem 4.4.

y � �u01; � � � ; u
0
�nÿk��

z1

:
:
:

znÿk

266664
377775;

where zi 2 Z, i � 1; � � � ; nÿ k.

Proof. In this proof, we use the notation An�m to indicate that

matrix A is of size n�m. Since

S�M�n��nÿk� � Un�nMn��nÿk�V�nÿk���nÿk�

and

y �Mn��nÿk�r�nÿk��1;

we have

Un�nyn�1 � S�M�n��nÿk���nÿk��1;

where

��nÿk��1 � V ÿ1
�nÿk���nÿk�r�nÿk��1:

Since yn�1 must be an integer vector and Un�n is a unimodular

matrix, we have Un�nyn�1 2 Zn�1. As a consequence, we have
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S�M�n��nÿk���nÿk��1 2 Zn�1. Remember that rank�M� � nÿ k.

And, diagonal entries si; i � 1; � � � ; nÿ k of the matrix S�M� are

positive integer numbers. This implies that �i � zi=si, zi 2 Z,

i � 1; � � � ; nÿ k. Thus, after simple manipulation, y can be

expressed as an integer linear combination of the first nÿ k
columns of matrix Uÿ1. This completes the proof. tu
Notice that we place the data dependence vector dV in the first

column of the matrix M. Let g be the greatest common divisor of

the entries of vector dV . By the restriction of the algorithm, g is

equal to one. Now, by the construction of Smith normal form S�M�
[21, p. 50], its (1, 1) entry s1 should divide all entries of dV .

Therefore, s1 � 1. Since dV is the first column of M with g � 1,

vector dV can be brought into e1 � �1; 0 � � � ; 0�T after suitable row

operations applied on M. In other words, there exists a

unimodular matrix U such that the first column of UM is equal

to e1. Thus, to make the first column of S�M� � UMV equal to e1,

we can choose a unimodular matrix V such that its first column is

equal to e1. Now, since Uÿ1S�M� �MV , by comparing their first

columns, we have the following theorem.

Theorem 4.5. There exist two unimodular matrices U , V such that first

columns of UMV and V are both equal to e1; and the first column u01
of Uÿ1 is equal to dV .

4.2 Enumeration of the Integer Solutions

In Theorem 4.4, we have expressed all integer vectors y in the

MILP problem as an integer linear combination of integer vectors.

But, only integer vectors y 2 diff�J� need to be checked for link

conflicts of two tokens of a variable. Notice that the index set J can

be expressed as a set of linear inequalities, i.e.,

J � fx j li � aTi x � ui; ai 2 Zn�1; x 2 Zn�1;

li; ui 2 Z; ui > li; i � 1; � � � ; ag:
Since diff�J� � f�xÿ x0� j x; x0 2 Jg, we have

diff�J� � fx j li ÿ ui � aTi x � ui ÿ li; ai 2 Zn�1;

x 2 Zn�1; li; ui 2 Z; ui > li; i � 1; � � � ; ag:
Thus, we see that diff�J� is symmetric with respect to the origin

and can be expressed as the set

fx j Ax � b0; b0 > 0; A 2 Z2a�n; b
0 2 Z2a; x 2 Zn�1g:

Since y 2 diff�J�, we have Ay � b0. Let U 0 � �u01; � � � ; u0nÿk�, and

z � �z1; � � � ; znÿk�T . By Theorem 4.4, we have y � U 0z. By substitut-

ing y � U 0z in Ay � b0, the integer vectors y can be enumerated by

finding the bounds zmini and zmaxi of the values zi, i.e., zmini � zi �
zmaxi for i � 1; ; nÿ k such that AU 0z � b0. Since the convex

polytope R defined by AU 0z � b0 is symmetric with respect to the

origin, 0 2 R and zmini � ÿzmaxi . Since R is a convex polytope, the

enumeration of the feasible z (or the integer solutions y � U 0z of the

MILP problem) terminates in a finite number of steps. The

enumeration procedure is terminated as soon as a nonzero integer

solution y is found such that y 6� z0dV for any integer z0 since, in this

case, a link conflict is found.
Notice that, as described in Section 3, y � z0dV for some integers

z0 are solutions of the MILP problem. The relation of these ys and

the link conflicts is stated in the following theorem.

Theorem 4.6. Let T � �
S

� �
be a space-time mapping with SdV 6� 0. Let

y � �u01; � � � ; u0nÿk��z1; � � � ; znÿk�T be a nonzero integer solution of the

MILP problem. Then, there is no link conflict for the tokens of the

variable V if and only if all of zi for i � 2; � � � ; nÿ k have zero values

only.

Proof. Notice that y � z1dV � �u02; � � � ; u0nÿk��z2; � � � ; znÿk�T by The-

orems 4.4 and 4.5. Since token�i� and token�i0� represent two

different tokens if and ony if i 6� i0 � zdV for z 2 Z, and y �
iÿ i0 represents link conflicts of two tokens at any two index

points i and i
0
, the theorem follows. End of the proof. tu

From Theorem 4.6, we see that if there exists a nonzero integer

vector z � �z1; z2; � � � ; znÿk� which has a form other than

��; 0; � � � ; 0�, then there is a link conflict. Let R be the convex

polytope defined by Ay � AU 0z � b0. To check whether there is an

integer vector z which has a form other than ��; 0; � � � ; 0�, we need

to enumerate the integer vectors z in R. Since R is symmetric with

respect to the origin, only half space of R needs to be enumerated.

To enumerate it, first, we construct a minimal hypercube C

containing the half space of R. The minimal hypercube C is

C � f�z1; z2; � � � ; znÿk� j 0 � z1 � �1;ÿ�i � zi � �i; 2 � i � nÿ kg;
where �i � bzmaxi c and zmaxi is found by solving the following linear

program: fmax zi j AU 0z � b0; zi 2 Qg. Then, integer vectors z 2 C
are enumerated in lexicographical order. For the special case

k � nÿ 2, the enumeration of integer vectors is not necessary as

stated by the following theorem.

Theorem 4.7. Link conflicts on mapping an n-dimensional uniform

dependence algorithm into an �nÿ 2�-dimensional processor array

can be checked by solving two linear programs in one variable.

Proof. Since the processor array is �nÿ 2�-dimensional, solution

space R is a convex polytope in the space spanning by vectors

dV and u02 by Theorem 4.4 and Theorem 4.5. Notice that y �
z1dV � z2u

0
2 and y 2 diff�J� � fiÿ i0 j i; i0 2 Jg. These observa-

tions imply that the convex polytope R defined by AU 0z �
Ay � b0 have at least three integer solutions y � ÿdV , 0, and

�dV ; otherwise, the computation in each index point in index

set J uses (generates) a value of the variable to be input (output)

from (to) the host. Since R is a convex polytope and symmetric

with respect to the origin and contains three integer points

�ÿ1; 0�T , �0; 0�T , and �1; 0�T , R must contains an integer point

�z1; 1� if R contains rational point �z1; z2�T such that j z2 j� 2.

Thus, link conflicts can be checked by testing whether R

contains an integer point �z1; 1�. In other words, solve the

following two linear programs: fmin z1 j AU 0�z1; 1�T � b0; z1 2
Qg and fmax z1 j AU 0�z1; 1�T � b0; z1 2 Qg. If those linear

programs have optimal solutions such that bzmax1 c � dzmin1 e,
there is a link conflict. Otherwise, there is no link conflict. This

completes the proof. tu

5 TIME COMPLEXITY ESTIMATION

Now, we compare the time complexity of our method to that of Lee

and Kedem [13], [14] and that of Xue [16], [18] or Ganapathy and

Wah [19], [20]. Let N be the problem size parameter for the n-

dimensional uniform dependence algorithm. To check link con-

flicts, Lee and Kedem [13], [14] enumerated all pairs of index

points in the index set J . Since J is of size O�Nn�, the time

complexity is O�N2n�. Xue [16], [18] (or Ganapathy and Wah [19],

[20]) examined the I/O space instead of the whole index set. In

order to check the link conflicts exactly, all index points in the I/O

space need to be enumerated. Thus, the time complexity is

O�Nnÿ1�. By our approach, as argued below, only O��2N�nÿk�
integer vectors needed to be enumerated, where k is the dimension

of the processor array.
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Recall that the convex polytope R is defined by AU 0z � b0. Since

each component of b
0

is of size O�N� (see the first paragraph of

Section 4.2) and AU 0 is an integer matrix, the number of zis to be

enumerated is O�2N�. Therefore, the total number of integer

vectors to be enumerated is O��2N�nÿk�. The additional cost that

we pay for it is the time taken to find a representation of the integer

solutions. To find the representation, we need to compute the

Hermite normal form of space-time mapping matrix T � �
S

� �
and

the Smith normal form S�M� of matrix M corresponding to the

data dependence vector dV . Using the algorithms in [22] and [23,

appendix A], both forms can be computed in polynomial time.

Consequently, the representation of the integer solutions can be

found in polynomial time.

6 CONCLUSION

In this paper, a new formulation for the checking of link conflicts
on mapping the uniform dependence algorithms into lower
dimensional processor arrays with link connection between
neighboring PEs is proposed. The formulation is a mixed integer
linear program (MILP) and an integer solution of it can represent a
link conflict of two tokens of a variable. To check the existence of
nonzero integer solutions of the MILP, the integer solutions are
represented as an integer linear combination of basis vectors. By
this representation, we found that the integer vectors can be
enumerated in O��2N�nÿk� time complexity, where N is the
problem size, n and k are dimensions of the algorithms and
processor arrays, respectively. (Previous methods to check link
conflicts require an enumeration of the index set or I/O space
whose size are O�N2n� or O�Nnÿ1�, respectively.) We have shown
that the basis vectors can be found in ploynomial time complexity.
For the special case, k � nÿ 2, we have shown that link conflicts
can be checked by solving two linear programs in one variable.

A closed related work on mapping the n-dimensional uniform
dependence algorithms into lower dimensional arrays was
proposed in [15]. However, there is a main difference in
implementation requirements between our method and that in
[15]. First, they allow the data arrive before the time of their usage
at the PE. Thus, a large bandwith is required between neighboring
PEs to support the necessary data movement. For our method, the
data must arrive at the PE at the time of their usage. And, the
buffer size between neighboring PEs can be derived when the
design is complete. Second, if a large bandwith is not possible,
their method does not guarantee free of link conflicts for some
designs. For more details, see [24]. But, all the designs produced by
our method are free of link conflicts.

The applicability of our method can be seen by the following
arguments: First, our method can be applied to uniform
dependence algorithms with arbitrary convex index sets. Second,
using the approach proposed in [13], our method can also be
applied to the case that the components of the dependence vector
are not relative-prime. Their approach is the use of a modified
array model. For details, see their paper [13, pp. 68-69]. Third, since
synthesizing processor arrays from algorithms is divided into two
main steps, uniformization step [25] and mapping step, our
method can be used in the mapping step after the algorithm is
uniformized.
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