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This article presents a design and experimental study of navigation integration of an
intelligent mobile robot in dynamic environments. The proposed integration architec-
ture is based on the virtual-force concept, by which each navigation resource is
assumed to exert a virtual force on the robot. The resultant force determines how the
robot will move. Reactive behavior and proactive planning can both be handled in a
simple and uniform manner using the proposed integration method. A real-time
motion predictor is employed to enable the mobile robot to deal in advance with
moving obstacles. A grid map is maintained using on-line sensory data for global path
planning, and a bidirectional algorithm is proposed for planning the shortest path for
the robot by using updated grid-map information. Therefore, the mobile robot has the
capacity to both learn and adapt to variations. To implement the whole navigation
system efficiently, a blackboard model is used to coordinate the computation on board
the vehicle. Simulation and experimental results are presented to verify the proposed
design and demonstrate smooth navigation behavior of the intelligent mobile robot in
dynamic environments. Q 1999 John Wiley & Sons, Inc.

1. INTRODUCTION

To be useful for accomplishing practical tasks, a
mobile robot must be able to navigate smoothly in
the real world, where unexpected changes in its
surroundings occur. There are many prospective

* To whom all correspondence should be addressed.

applications for such an intelligent, autonomous
robot: a few examples include transferring material
in automated factories, cleaning in hotels, or deliv-
ering meals or patient records in hospitals.1 In such
applications, the robot must reach one or more
destinations and perform some kind of task there.
While traveling to the destination, it must take care
to avoid collisions with various fixed or moving
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Ž .objects such as people or other mobile robots . The
sensor-based navigation algorithm is, therefore, very
important for using mobile robotic systems.

Early approaches to mobile-robot navigation
broke the overall job into subtasks that could be

Ž .handled by sense-model-plan-act SMPA functional
modules. The main problem with such approaches
is high computation costs, especially in the percep-
tual portions of the systems. Brooks believed that
intelligence could be achieved without traditional
representation schemes,2 so he proposed a frame-
work called the subsumption system,3 often re-
ferred to as the behavioral system. In Brooks’
approach, navigation was first decomposed into
task-achieving behaviors controlled by an algorithm
tying sensing and action closely together. Control-
system layers were built up to let the robot operate
at increasing levels of competence. Although Brooks
proposed that intelligence can be achieved without
representation, he did not rule out representation
and admitted that it is sometimes needed to build
and maintain maps.4 For instance, planning a short-
est path based on a map can help the robot reach its
destination more efficiently. Therefore, researchers
have recognized that representational and behav-
ioral systems should be combined to deal with more
complicated tasks.5

A representational system often plans paths for
mobile robots according to a world model. Com-
monly used world-modeling approaches include

Žgrid maps, cell trees, and roadmaps which are
.often constructed from geometric maps . In plan-

ning paths, search methods such as AU or bidirec-
tional search algorithms can be used in conjunction
with these representations. Jarvis6 proposed the dis-

Ž .tance transform DT methodology for path plan-
ning with a grid map. Borenstein and Koren7 pro-
posed a vector]field]histogram method based on a
histogramic grid map. The potential field method
can work with a world model for path planning,
especially with a grid map.8

The behavioral approach lets a mobile robot
deal with unexpected obstacles in the immediate
environment by using onboard sensory information.
This is usually considered a reactive scheme. Re-
cently, researchers have been interested in how to
prevent robots from colliding with other moving
objects. Several methods9 ] 11 have been proposed to
solve such dynamic motion-planning problems, but
most of them have not been actually implemented
in real mobile robots. It might be that sensory sys-
tems can hardly provide desired motion informa-
tion in real time. The frequently used ultrasonic

sensors provide little information and cannot obtain
the comprehensive obstacle-motion information re-
quired for these proposed reactive navigation meth-
ods. CCD cameras provide far more sensory infor-
mation, but the longer times required for image
processing make real-time operation very difficult.
To resolve the sensor-system problem, Chang and
Song12 proposed extracting simple implicit motion
information from multiple rangefinders. A neural
network predictor was developed to estimate the
next-time readings of a ring of ultrasonic sensors.
This information is equivalent to the next-time posi-
tion of an obstacle’s nearest point relative to the
robot. Using such projected information, they pro-
posed applying a virtual-force method13 to change
the robot’s motion. This prediction-based virtual-
force guidance was found to be quite useful in
navigating a mobile robot among multiple moving
obstacles.

As can be seen from the description above,
there are two different strategies for autonomous
navigation: representational and reactive; an opti-
mal combination of them is therefore important.
Some researchers have proposed using a hierarchi-
cal architecture with layers of SMPA modules.
Lower SMPA layers provide quicker reaction, and
higher layers perform more complicated sensor pro-
cessing and world modeling based on lower-layer
results. Vandorpe et al.14 developed a hierarchical
navigation system in which lower-layer action deci-
sions depended on the higher-layer ones. Hu and
Brady15 let every control layer generate commands
and then used a command selection module to
determine the final motion commands. Stentz and
Hebert16 used a weighted average method to com-
bine the results from a global navigator and a local
navigator. Some other systems extended the behav-
ioral approach by elaborately incorporating suitable
representations and planning. Mataric17 integrated a
topological representation into a subsumption-based
mobile robot. Payton et al.18 transformed an inter-

Ž .nalized plan a gradient field and reflexive behav-
iors into fine-grained actions with activation values.
The action with the highest weighted-sum activa-
tion value was chosen as the command. Arkin19

Žused world models to select motor schemes behav-
.iors . Each schema is associated with a potential

field, and the resultant potential navigates the robot.
Although integrating reactive navigation and repre-
sentation-based planning for intelligent mobile
robots has been the object of considerable research
attention, no specific approach can yet be recog-
nized as being optimal in terms of generality and
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effectiveness. Therefore, designing a suitable archi-
tecture for integrating the two strategies deserves
further attention.

This article presents a new integration method
that can navigate a robot in an unstructured envi-
ronment, build and update maps, plan and execute
actions, and adapt the robot’s behavior to environ-
mental changes. The proposed integrated navigation
system is based on a virtual-force concept. In this
method, navigation resources related to desired be-
haviors and constraints are converted to virtual-force

Ž .sources Fig. 1 . The resultant force changes the
robot’s motion to the desired manner. Virtual-force
guidance was originally used for reactive naviga-
tion in dynamic environments.13 Its principal force
sources come from an ANN sensory predictor,12

which provides implicit information about obsta-
cles’ motions. In the integrated navigation system, a
path planner is another resource for navigation.
Subgoals are extracted from the planned path and
each produces a virtual force in sequence. In this
article, a bidirectional distance]transform method is
proposed for path planning. It is based on a grid
map that uses a digital filter to fuse sensory data.

Figure 1. Integrated navigation structure using virtual-
force concept.

This method is fast and thus aids in developing an
on-line path modifier.

The next section presents an efficient method
for world modeling. The bidirectional distance]
transform method and on-line plan modification are
presented in Section 3. Section 4 describes how the
virtual-force approach integrates reactive navigation
and path planning. Section 5 shows simulation re-
sults with an emulated fast mobile robot. Section 6
presents experimental results with a laboratory-con-
structed robot, and Section 7 offers the conclusion.

2. GRID MAP BUILDING

A mobile robot should maintain a world model to
navigate efficiently. If a mobile robot does not have
a map of the external world, it can only react to its
immediate surroundings without considering over-
all navigational performance. Two types of world
models are used extensively: symbolic or categorical
representation and analogical representation.20 In
the authors’ system, an analogical representation, a
grid map, is used. Grid maps are easy to plan with
and maintain.

Grid maps are commonly used with sonar data
and maintained by certainty values. In formal prob-
abilistic approaches,21, 22 two maps are needed: an
occupied map and an empty map. This approach
requires much calculation and memory space. Ori-
olo et al.23 proposed using fuzzy reasoning instead,
but it also needs two maps. Borenstein and Koren’s
method24 is fast, but it considers fewer ultrasonic
sensor characteristics. Song and Chen25 proposed

Ž .the heuristic asymmetric mapping HAM , a com-
promise between computational cost and probabilis-
tic meaning.

The method described below is extended from
the HAM approach and uses a ring of ultrasonic
sensors. A cell in the grid map has a value showing
the probability of that cell being occupied by an
obstacle. The values range from y1 to 1; the closer
to 1 a value is, the more likely the cell is occupied.
When an ultrasonic sensor obtains a distance read-
ing d, it is very likely that cells within the ultrasonic
beam at distances less than d are empty, and cells
within the beam at distances around d are occupied.
Therefore, empty regions and occupied regions can
be represented as shown in Figure 2. The mapping
algorithms for cells in these two regions are similar.
First, a sensor reading indicates a possibility of a
cell in these regions. Then, it is merged into the map
through a digital filter to generate a certainty value.
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Figure 2. Occupied region and empty region.

For an occupied cell A1, the certainty value
given by the k th measurement is given as follows:

Ž . Ž .g k sk ?k , 1A1 d u 1

where

dyd¡ min
1y for d -d-dmin max~ Ž .k s a ? d ydd max min¢
0 otherwise

Ž .2

and

2¡ u1
< <1y for u -u~ 1 m1 Ž .k s 3ž /uu1 b¢

0 otherwise.

In the above expressions, d is the raw sensory data,
d and d are the maximum and minimummax min
effective ranges of the ultrasonic sensor, respec-
tively, a is a parameter that keeps g in a desiredA
range, u is the angle of cell A1 relative to the1
centerline of the sensor, u is the beam angle of theb
sensor, and u is the maximum angle for admittingm1
occupancy. Value g is then merged into the mapA1

Ž .to give the certainty value for cell A1 p using aA1
first-order digital filter:

Ž . Ž . Ž . Ž . Ž .p k sk ?g k q 1yk ?p ky1 , 4A1 g1 A1 g1 A1

where k is the weighting factor related to theg1

speed of convergence. Its value must be greater
than 0 and less than 1 for convergence.

For the cells in the empty region, negative cer-
tainty values are used to represent empty probabili-
ties. Two conditions are considered. First, if d-
maximum effective range, the certainty value of an

empty cell A2 from k th measurement is

Ž . Ž .g k syk ?k , 5A 2 d u 2

where

2¡ u2
< <1y for u -u~ 2 m2 Ž .k s 6ž /uu 2 b¢

0 otherwise.

u is the angle of cell A2 relative to the centerline of2
the sensor, and u is the maximum angle for ad-m2
mitting emptiness. The following digital filter is
then employed to merge g into the map to give aA2

Ž .certainty value for cell A2 in the map p :A2

Ž . Ž . Ž . Ž . Ž .p k sk ?g k q 1yk ?p ky1 7A 2 g 2 A 2 g 2 A 2

where k is the weighting factor in the emptyg 2
region. Second, if dGmaximum range, it means that
there is either no obstacle in the detection area or
that a specular reflection has occurred. Considering

Ž .that it may be a specular reflection erroneous data ,
a modified formula must be used to update the
cell-certainty value:

Ž . Ž . Ž . Ž . Ž .p k sk ?g k q 1yk ?p ky1 , 8A 2 g 3 A 2 g 3 A 2

where k is a weight factor smaller than k .g 3 g 2
The following considerations have been taken

into account in designing the parameters in these
formulas.

1. k , the distance factor. Normally, a speculard
reflection leads to a measured distance
greater than the actual distance. Therefore,
the credit must be smaller when the mea-
sured distance is larger. Thus, k is set to ad
suitable range such that g is from 0.4 to 1A1
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Žand g is from y0.4 to y0.1 where theA2
value 0.4 is the threshold for distinguishing

.whether or not a cell is occupied .
2. k and k , the direction factors. An object isu u1 2

easier to detect when it is located in the
Ž .centerline of the ultrasonic beam. Eqs. 3

Ž .and 6 reflect this fact.
3. k , k , and k , the weighting factors. Theg1 g 2 g 3

weighting factor is related to the conver-
gence of the digital filter. The smaller the
value is, the slower the convergence speed.
A computer simulation was used to deter-
mine suitable values. If one takes 0.7 as the
average certainty value for occupied cells
and -0.7 as that for empty cells, then one’s
design goal can be set as follows: four con-
secutive data that indicate occupancy with
the average certainty values will change an
empty cell into an occupied cell. This can be

Ž .checked by employing 4 . Solving this equa-
tion by the numerical method, one finds that
k is about 0.35. On the other hand, theg1
authors hope for three consecutive data that
indicate emptiness will change an occupied
cell into an empty cell. Similarly, k is foundg 2

to be about 0.09 and k 0.022. Note that ag 3
preference for an empty cell is adopted in
this design, allowing more free space for
path planning.

This digital filter reasonably interprets current
as well as historical sensory data. Past measured
data also contribute to the cell’s current certainty
value. However, the present measurement takes rel-
atively higher weight, while the older ones will
finally take nearly zero weights. The formal struc-
ture of traditional filters, such as Kalman or Wiener
filters, is not adopted here. The authors’ structure is
more heuristic to match the characteristics of the
sensor employed. This is also simpler compared
with the formal structures. Furthermore, the Gauss-
ian noise premise for Kalman filters does not exist
in the dynamic environment. For instance, a for-
merly occupied cell may be identified as being
empty simply because the obstacle has moved away.

This map-building method can be used with
other types of sensors which give range information
about obstacles. However, because of different sen-
sor models, the parameters discussed above should
be modified. One merit of this present design is that
its grid map does not record moving obstacles since
they do not stay at fixed locations very long. It can

Ž .be seen from 4 that the digital filter does not allow
one or two sensor inputs to elevate the cell certainty
value so high as to change its status. After moving
obstacles have passed, the cell values decrease be-
cause the next sensor inputs indicate the absence.

ŽRecording only static obstacles which may change
.positions, however fulfills navigational require-

ments because moving obstacles do not stay at fixed
locations and should not affect path planning.

3. PATH PLANNING AND
PLAN MODIFICATION

In this integrated design, the path planner works to
provide a reference path for the robot to travel to
the goal according to the current grid map. The
planned path is suboptimal in terms of distance.
Before path planning begins, the grid map is first
divided into occupied and empty areas, according
to the 0.4 threshold value. This produces a binary
map. Then, occupied areas are expanded by the
radius of the mobile robot. This simplifies the path
planning problem to a point on the map. The next
section proposes a path planning method using the
DT concept.

3.1. Path Planning Using Bidirectional
Distance Transform

Distance transform is essentially the propagation of
Ždistance away from a set of core cells zero-distant

.from themselves in a tessellated space. For robot
path planning, this propagation flows around obsta-

Ž .cles occupied areas from the start or goal posi-
tions. In a 2-dimensional representation, each cell
has eight neighboring cells to propagate the dis-
tance. The global distance of a cell from the core cell
is computed from the local distance between two
neighbors. The distance between horizontalrvertical
neighbors is denoted d1, and the distance between
diagonal neighbors is denoted d2. Different distance
proportions between d1 and d2 have been utilized.
Borgefors26 found that when d2rd1 equals about
1.351, the error between the transformed distance
and the Euclidean one has a minimum upper bound.

In the authors’ method, d1 and d2 are set to
integers 3 and 4, respectively, to speed up computa-
tion. Bidirectional DT, in which distances are propa-
gated simultaneously from the robot’s position and
the goal, is proposed to cut both search space and
computation time by about half. The DT from the
goal takes positive values, while the DT from the
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robot’s position takes negative ones. When a cell is
marked as having positive and negative values, it is
termed a meet cell and the propagation stops. The
shortest path can be found by backtracking from the
meet cell to the robot’s position and goal using
steepest gradient ascent and descent algorithms,
respectively. Figure 3a shows an example of path
planning employing bidirectional DT. In this figure,
distances are propagated from S and G, where S
denotes the robot’s start position and G denotes the
goal position. The propagation stops at the bold-
lined cell, which is marked as having both positive
and negative values. Subgoals, which are the turn-
ing points of the path and denoted by SG, should be
extracted because they will be used for integration

Ž .with reactive navigation see next section . Note
that the extraction of subgoals can be realized in the

Ž .Figure 3. a An example of bidirectional DT-based plan-
Ž .ning. b An example of plan modification when previous

plan is found to be improper.

backtracking phase with little extra computational
loading.

3.2. On-Line Plan Modification

The preplanned path may become invalid because
the environment may change after the robot moves.
If this variation is considerable, replanning is often
the best policy, although reactive navigation may
also be able to maneuver the robot to the goal.
Nevertheless, complete replanning requires too
much calculation and is not preferable. Stentz27 pro-
posed a DU algorithm that can amend improper
plans resulting from the environment changes; how-
ever, the algorithm itself is much more complicated
than the DT-based approaches. Vandorpe et al.14

adopted a reactive planner that uses a DT-based
approach within a local window covering two con-

Ž .secutive intermediate via-points subgoals . Their
method costs too much computation time because
the reactive planner must be applied repeatedly.
Even so, it still is not guaranteed to produce the
best plan because of the limited search window.

This article’s plan modification method utilizes
information from the original plan since most of the
world model remains the same except for the local
changes detected by the sensors. In the original

Ž .plan, numbers distances marked in the cells by
applying DT from the goal are still valid if they are
not larger than the positive numbers in the changed
parts of cells. If all the changed cells have negative
numbers, then all the positive numbers marked by
the original plan remain valid. To amend the plan, it

Ž .is only necessary to 1 clear improperly marked
numbers, including the negative ones marked by
DT from the robot’s start position and positive ones
that are greater than the smallest positive numbers

Ž .of the changed cells and 2 propagate the negative
number from the robot’s current position to a cell
with a positive value previously marked by DT
from the goal. Figure 3b shows an example of path
modification, in which a new obstacle is found on

Ž .the previously planned path Fig. 3a . In this case,
the new obstacle occupies cells that were marked
with 9 and 10, so the cells marked with 10 are
cleared. All cells with negative numbers are also
cleared. Then negative DT numbers propagate from
the robot’s current position until it reaches a cell
with a positive value. The replanned path is there-
fore updated. This plan modification scheme pro-
vides the shortest path and requires much less com-
putation time than does complete replanning.
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Because of the limitation of motion directions,
path planning using the DT-based approach is in-
herently crude. To boost navigation performance
while cutting traveling distance, check if there is a
clear path between the robot’s current position and
the next subgoal. If the path is free from obstacles,
then the robot discards the current subgoal and
moves toward the next one. This way one can make
up for the movement direction limitations.

4. INTEGRATION WITH
REACTIVE NAVIGATION

It is desirable for the path planner to be integrated
with a reactive scheme that responds to immediate
obstacles to make a complete navigation system.
There are, however, two problems in performing

Ž .this integration: 1 the command formats are differ-
Ž .ent; and 2 the proactive and reactive navigation

methods are totally independent. This section pro-
poses the virtual-force method to solve both prob-
lems. First, the planned path and reactive behaviors
are transformed into virtual forces exerted on the
mobile robot. Then, the two types of navigation can
be merged by calculating the resultant force. This
force determines the way the robot changes its mo-
tion according to Newton’s second law of motion.
Because the relationship between force and motion
change is obvious, it is easy to design forces to
match desired behaviors. In the present system,
virtual forces are designed so they can deal with
intelligent but possibly careless moving obstacles.
This means that the moving obstacle itself can take
half the responsibility for preventing collision, but
might not do so because of carelessness. Moreover,
if any new navigational resources are added or new
behaviors desired, appropriate virtual forces can be
created and added to the system. The following
paragraph introduces the virtual forces for reactive
navigation. Then, integration with the planned path
is presented.

4.1. Virtual Force for Reactive Navigation

It is important for an intelligent mobile robot to
react to previously unrecorded obstacles in the im-
mediate environment. Moreover, to cope with mov-
ing obstacles, the robot needs to know their motions
to avoid them safely. The authors’ mobile robot is
equipped with a ring of 16 equally spaced ultra-
sonic rangefinders for detecting obstacles. These
sensors are fired sequentially in four groups. The

Ž .error-eliminating-rapid-ultrasonic-firing EERUF
method proposed by Borenstein and Koren28 was
adopted for this study. A complete set of 16 sensor
measurements takes only 140 ms. However, range-
finders have difficulty identifying obstacles, and
their motion estimation will have large degrees of
uncertainty. In the authors’ reactive navigation
scheme, rangefinders are not used to identify the
precise shapes and positions of obstacles. Instead,
the sensory system only tells the robot what area
will be occupied by obstacles. This is an implicit
form of considering the motions of obstacles. Such
information can be obtained by predicting future
sensor readings employing an artificial neural net-
work.12 The authors’ prediction theorem is based on
the knowledge that the measurement from any given
sensor must have a relationship to historical mea-
surements from sensors nearby. As illustrated in
Figure 4, sensor readings of present and previous
sample instants are sufficient to predict the next

Žone. Raw data from four neighboring sensors two
.on the left and two on the right and the given

sensor itself are used to predict next-time sensor
reading. Since the mobile robot is equipped with a
ring of 16 ultrasonic sensors, the entire predictor is
constructed from 16 identical ANNs. The ANN was
trained off-line using training data generated by an
environment-configuration simulator. At the run
time, the ANNs predict future sensory data on-line
in real time. Thus, future positions of obstacles are
used to form virtual-force sources to let the robot
respond to anticipated changes in environment.

In this design, it is assumed that a point obsta-
cle is located in the sensory direction and at the
predicted distance. For each obstacle, three force
zones were established around it. When the robot
enters these zones, virtual forces will be generated
to make it behave in a certain manner. The resultant
force is determined to change the robot’s velocity
and make it easily. avoid moving and static obsta-
cles.

The first force zone around an obstacle is termed
the deceleration zone. In it, the robot decreases its

Figure 4. Structure of sensory predictor.
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speed. It is usually desirable that the robot de-
creases its speed to a certain range within a preset
time interval. Consequently, viscous force is a suit-
able choice in such a situation because it has the
effect of decreasing the robot’s speed in proportion
to its current speed. Note that even when the robot
is at a location covered by the deceleration zones of
many obstacles, it is sufficient to count only one
viscous force.

The second force zone is the push-away zone.
When the robot somehow gets closer to an obstacle,
it is necessary to exert a relatively large force against
it to prevent a collision. Eventually the force will be
large enough to push the robot away from the
obstacle. A virtual spring installed between the robot
and the obstacle is suitable for this purpose because
the spring force exerted on the robot directs it away
from the obstacle. Consequently, as the robot pen-
etrates deeper into the push-away zone, an in-

creasing push-away force will exert against it. By
properly choosing the spring constant, this force
guarantees the robot will never collide with a static
obstacle.

The third force zone around an obstacle is the
drive-aside zone, which makes the robot avoid
moving obstacles moving toward it. This force also
helps to avoid static obstacles more smoothly. The
virtual force generated in this zone, which is termed
the drive-aside force, drives the robot away in a
lateral direction. Note that a drive-aside action can
make the robot move left or right. The robot will
choose the one that will move closer to the goal.
Figure 5 depicts the forces that affect the robot’s
motion in different zones. The extents of three force
zones around an obstacle can be seen in this figure.

The virtual force strength should be determined
according to the kinematic parameters of the mobile
robot. The kinematic constraints for this study’s

Figure 5. Virtual forces used for the integrated navigation: subgoal force works every-
where, but may be suppressed; three forces from obstacles work within the correspond-
ing zones. Robots receive different forces in different areas. Robot A is far away from the
obstacle; only the subgoal force affects it. Robot B is in the deceleration and drive-aside
zones of the obstacle; subgoal force is suppressed. Robot C is in the push-away,
deceleration, and drive-aside zones of the obstacle; subgoal force is also suppressed.
Robot D is in the drive-aside zone of the obstacle; subgoal force is not suppressed here.
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experimental robot, which has two drive wheels,
Ž .include maximum wheel speeds v , maximummax

Ž .speed change d v during a sampling periodmax
Ž .T , and maximum speed difference between thes

Ž .two drive wheels Dv . Thus, these constraintsd, max
are adopted as references when the virtual force
system is designed. During derivation of the virtual
force parameters, the SI unit system was used.
However, the system can be more easily described
by simplifying the correlation between the force and
the motion command. Denoting the robot’s velocity
change during a sampling period as d v, the mass of
the robot as m, and the acceleration as a, the force is
then

d v
Ž .fsmasm 9

Ts

Ts Ž .d vs f . 10
m

One can correlate the force with the velocity by
properly assigning units of virtual force such that

Ž .d vsF , 11

where F is the measure of force in the newly as-
signed unit.

The range of force zones depends on the robot’s
motion capacity and can be set by the designer. The
virtual viscosity coefficient and the spring constant
are determined in an iterative manner. The drive-
aside force lets the robot detour around obstacles.
Its strength must be large enough to move the robot
a safe distance away from its original path before
the robot is too close to an obstacle. Notably, the
range of each zone is expressed in terms of the
predicted distances between the robot and obstacles.
Thus, appropriate parameters are selected, and the
resultant virtual force can guide the mobile robot
through a dynamic environment. When there is no
obstacle around, the robot is drawn to the goal
Ž .subgoal by goal force. When it encounters an ob-
stacle, the viscous force makes it slow down so it
can react smoothly to prevent a collision. The spring
force guarantees that the robot does not collide with
an obstacle. If necessary, it will run away from the
obstacle. The drive-aside force makes the robot edge
off the set path to avoid an obstacle on the way. If
there is more than one obstacle, the drive-aside
forces from different obstacles will cancel each other
if they are contradictory. Spring force from different
obstacles all push the robot away, so the resultant

force will guide the robot toward a free space, if one
exists.

4.2. Virtual Force for Planned Paths

In an integrated navigation system, a planned path
can help the mobile robot reach its destination more
efficiently. However, the planned path cannot al-
ways be followed exactly because the environment
is dynamic and the robot has to avoid unexpect-
ed obstacles. Consequently, in this approach the
planned path is used simply as a guide from which
subgoals are extracted. The mobile robot only needs

Ž .to almost reach each subgoal in sequence; in be-
tween, the trajectory can be flexible to avoid unex-
pected moving and stationary obstacles. In general,
the mobile robot can still reach the destination along
a suboptimal yet short route. Thus, the plan is
employed to provide sequential subgoals which pull
the robot with virtual force.

When the robot arrives at a subgoal has a clear
path to the next one, the next subgoal is then taken
into the virtual force guidance system. The subgoal
force is designed according to situations encoun-
tered. When no obstacle is predicted to be around
the robot, this force can take any desired form.
Normally a constant attraction is suitable. When the
robot is close to a subgoal, the force is designed to
navigate it toward the subgoal at a moderate speed
so it will move smoothly from the current subgoal
to the next one. On the other hand, when an obsta-
cle is predicted to be close to the robot’s course
toward the subgoal, the subgoal attraction will be
suppressed by a decay factor. This factor is deter-
mined by the angle measured from the robot’s cur-
rent position to the locations of the obstacle and
subgoal. Examples of the normal and suppressed
subgoal forces are shown in Figure 5.

5. SIMULATION RESULTS

Figure 6 illustrates the blackboard system for imple-
mentation of the proposed navigation integration. A
blackboard system29 inherently uses its knowledge

Ž .sources KSs very flexibly. In this application, sen-
sors are regarded as KSs, and the sensory data can
be employed easily for various functions. This archi-
tecture coordinates different functions, including
new functions in the future work. The blackboard in
the middle of the figure holds computational and
current-state data needed by and produced by the

Ž .KSs see the data-flow paths . These blackboard
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Figure 6. The blackboard structure for navigation realization.

data are represented as attribute]data pairs. The
KSs on the two sides of the blackboard are sets of
domain knowledge used to solve subproblems in
navigation. They are dispatched by an event-based

Ž .control module see the control-flow paths accord-
ing to the states shown in the blackboard.

Computer simulations have been carried out to
verify the integrated navigation performance. The
simulated mobile robot is cylindrical with a radius
of 30 cm. It is equipped with a ring of 24 ultrasonic
sensors, each having a beam opening angle of 22.58
and an effective range from 30 to 600 cm. The
simulated sensor reading is the nearest distance to
an obstacle within the sensor’s beam angle, zero-
mean Gaussian noise with 1% distance-proportional
standard deviation plus 1 cm standard deviation.30

Specular reflection is also simulated. It occurs when
the wave incident angle is larger than 238. In this
case, the ultrasonic wave may echo back after multi-
ple reflections or may not come back at all, which

depends on the configuration of obstacles around.
However, because it is difficult to model the actual
specular reflection among real-world objects, the
authors adopted a stochastic model according to
their experimental data. It is assumed that there is a
10% chance the distance measurement is the real
one multiplied by a random number with a Gauss-
ian distribution of mean 3.5 cm and standard devia-
tion 0.5 cm and a 90% chance the measurement is
the maximum sensing range. In the simulation, the
robot’s maximum speed is 200 cmrs, but it is lim-
ited to 160 cmrs when not avoiding an obstacle.
The sampling time for navigation is 500 ms. The
simulation results presented below are for an indoor
environment measuring 33=21 m.

The simulation environment is depicted in Fig-
ure 7a, which originally was not recorded for the
mobile robot. Given 11 reference paths as shown in
the figure, the robot moved along these paths em-
ploying the integrated navigation system four times.
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It then built the world model shown in Figure 7b
from learning. Figure 7c depicts a path planned for
a given task based on the binary map. Note that in
Figure 7d, five moving obstacles denoted by Mo1 to
Mo5 appeared, static obstacle Ob1 changed its posi-

tion, and the originally recorded Ob2 disappeared.
In Figure 7d, the positions of the robot and moving
obstacles are depicted in black and gray circles,
respectively, at every sampling instant. The robot
positions at every 10 samples are depicted in solid

Figure 7. Simulation showing that the integrated system can build and update maps,
Ž .deal with moving obstacles, and adapt to environmental changes. a Original environ-

Ž .ment and exploration path. b World model built on-line for the originally unknown
environment.
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lines. The numbers in the figure indicate the sam-
pling moments at which the positions of the robot
and moving obstacles were recorded.

The robot first accelerated to pass Mo1 because
of goal attraction and the drive-aside force from

Mo1. Note that the robot found there were straight
clear paths to the second and third subgoals at the
first and second sampling instants, so the source of
subgoal-force moved to the second and third sub-
goals. At the 8th sampling instant, the force from

Ž . Ž .Figure 7. c Initial planned path. d Trajectory of motion shows the robot can avoid
Žmoving as well as static obstacles smoothly and safely speed of Mo1 was 100 cmrs, of

Mo2 was 130 cmrs, of Mo3 was 90 cmrs, of Mo4 was 88 cmrs, and of Mo5 was 165
.cmrs .
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Mo2 made the robot turn right. At the 13th sam-
pling instant, the force from Mo3 made the robot
turn left to prevent a collision with Mo3. At the 17th
sampling instant, the robot passed Mo3 and turned
back toward the third subgoal. At the 18th sampling

instant, Mo4 was predicted to be in the robot’s path,
and its force made the robot begin to turn right to
pass it. At the 22nd sampling instant, the drive-aside
force from Mo4 accelerated the robot so it left Mo4’s
course quickly. The robot continued curving around

Ž .Figure 7. e Updated world model, from which the tracks of moving obstacles can be
Ž . Ž .seen. f Binary map converted from e , which is close to the new environment.
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the circular obstacle Ob1. The plan was modified
around this area, and the robot slowed down at the
26th sampling instant because it was close to a
newly planned subgoal. At the 31st sampling in-
stant, Mo5 was predicted to be in the robot’s path,
and the robot turned right to avoid it. However,
unlike when it met Mo4, before it could move fast,
Mo5 suddenly intruded and then passed its course.
At the 36th sampling instant, it turned slightly left
to avoid Mo5. After the 38th sampling instant, the
robot moved toward the goal smoothly. Figure 7e
depicts the updated map, in which Ob1’s position
had been corrected and Ob2 had been eliminated, as
expected. The tracks of moving obstacles can be
seen on the grid map, but they are invisible on the

Ž .binary map Fig. 7f .
In this simulation, the robot controlled its mov-

ing direction and speed so well that it was close to a
human’s behavior. It accelerated to pass slow obsta-
cle Mo1, took slight turns to keep safe distances
from Mo2 and Mo3, took a sharp turn to avoid
oncoming obstacle Mo4 and static Ob1, then re-
planned its path, and finally decelerated to wait for
quick Mo5 pass. The whole path was so smooth and
nearly every turn or speed change was necessary.
Humans with the same sensing capability could
hardly do better.

6. EXPERIMENTAL RESULTS

Figure 8 shows the experimental mobile robot de-
veloped in the authors’ laboratory. Its diameter is 60
cm and it is about 110 cm high. It has two indepen-
dent drive wheels and two casters for balance. Its
maximum speed is 40 cmrs. A ring of 16 ultrasonic
sensors is installed around it at alternating heights
of 30 cm and 75 cm with equal angle spans. The
effective range of each sensor is 43 to 300 cm. A
cycle of all 16 ultrasonic sensor measurements takes
about 140 ms. The sampling time for a navigation
command is 560 ms. Two encoders attached to the
drive wheels and a gyroscope are used for self-
localization. The control and computation tasks are

Ždistributed among two HCTL-1100s for servo mo-
. Žtor control , an Intel 8751 for ultrasonic sensor

. Žmeasurements , and an Intel 80486-33 for other
.tasks .

The experiments were conducted in corridor of
Žthe authors’ laboratory. Only part of the floor 33=

.12 m was utilized in the experiments, and its origi-
nal map is as shown in Figure 9a. This is a simpli-
fied map in which the details of doors and objects

Figure 8. Picture of the experimental mobile robot.

are not illustrated. Figure 9a also shows a path
planned in corridors for a given task. Note that
there was a long wall in the goal direction at the
beginning. The robot could hardly attain its goal
without the plan because the goal attraction would
be canceled by the virtual forces from the wall.

ŽThree previously unrecorded static obstacles car-
. Ž .tons and two moving obstacles persons were pre-

sent in the experimental environment. Ob3 just
blocked the preplanned path. A static obstacle
recorded in the previous map had been taken away.
Figure 9b illustrates the trajectories of the robot and
moving obstacles. Because the speeds of the robot
and moving obstacles were relatively low, depicting
their positions every sampling instant would be too
dense to read. The authors depicted every 4th sam-
pling instant and with dark shading every 20th
sampling instant, to make them easier to read.

In the beginning, the robot moved toward its
first subgoal. A slight directional change occurred at

Žthe 4th sampling instant due to a door frame prom-
.inent in a plane wall at its left front. From the 44th
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to 92nd sampling instants, the robot smoothly
passed a slowly moving person. From the 108th to
144th sampling instants, it moved along a straight
line at a constant speed in the corridor, a difficult
task for general potential field methods. The virtual

force system is able to do this because each force is
associated with a behavior, and therefore it is easier
to design appropriate force. It is also worth noting
that the trajectory of the robot during this stage was
farther away from the wall than the preplanned

Figure 9. Experiment showing that the mobile robot can deal with unexpected obstacles
Ž .and update its world model in real-time operation. a Initial world model and planned

Ž .path. b Trajectory of motion showing the robot avoiding unexpected moving and static
Ž Ž .obstacles smoothly speed of Mo1 was 14 cmrs and of Mo2 was 36 cmrs. c Updated

grid map, in which previously unknown obstacles are reported.
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path, resulting in safe navigation. The robot turned
right at the 144th sampling instant because of a
closed door at its left front. It then traveled around
Ob2 and Ob3 through the middle of the free area.
At the 196th sampling instant, the robot began turn-
ing right because of Mo2. However, Mo2 moved
fast, and the robot had no chance to move toward
the goal in front of Mo2. Consequently, it began to
turn left again at the 208th sampling instant and
then moved toward the goal after Mo2 no longer
blocked its path. The updated map is depicted in
Figure 9c. Figure 10a shows the binary map con-
verted from Figure 9c. It was observed that three
previously unknown static obstacles were recorded,
and an old static obstacle had been removed from
the map because it was not present in the environ-
ment. The closed doors were also perceived. Part of
Mo1’s track was recorded in the map because it
moved slowly. However, this was only temporary.

Continuing the experiment, this time the robot
traveled back to the previous starting point. The

Ž .planned path Fig. 10a was not blocked by any
position-changed static obstacles. With this correct
plan resulting from map-learning, the robot moved
faster than its previous journey, especially when

Ž .traveling around Ob3 Fig. 10b . At the 84th sam-
pling instant, the robot predicted Mo1 would be
close and turned left to avoid it. Mo2 came along
later, and the robot turned right to avoid it at the
104th sampling instant. Because the robot had been
very close to Mo1 and Mo2, the spring force from
Mo1 and Mo2 pushed it away at the 92nd and 112th
sampling instants, respectively. After the robot
passed Mo2, it traveled smoothly to the goal. Note
that, without the reactive part, the robot would
have collided with the moving obstacles. The up-
dated map is shown in Figure 10c and 10d. Note
that the track of Mo1 in the last experiment has

Figure 10. Experimental results showing the mobile robot moves faster around a
recorded obstacle because the reference path was planned according to the updated

Ž . Ž .world model. a Initial planned path. b Trajectory of motion showing the mobile robot
moving faster around Ob3 after it learned the new environment. Also shown are different

Žways to avoid moving obstacles speed of Mo1 was 26 cmrs and of Mo2 was 24 cmrs.
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Ž .Figure 10. c Updated world model from which the track of the slowly moving obstacle
Ž . Ž .in the previous experiment has been removed. d Binary map converted from c .

disappeared. This experiment reveals that the robot
can navigate safely and smoothly in a dynamic
environment. The proactive and reactive navigation
algorithms are integrated to give satisfactory re-
sults. Because of the accumulated errors, the posi-
tioning errors at the final positions in this round-trip
experiment were 15 and 17 cm, respectively. A
landmark approach can be employed to compensate
for this accumulated error. Compared to the travel-
ing distance over 30 m, these small errors implied
that the robot can run a long distance without
losing its position if only a few landmarks are
available.

7. CONCLUSIONS

This paper presents an integrated navigation system
for an intelligent autonomous mobile robot in dy-
namic environments. A new method is proposed for

integrating local reactive navigation with a proac-
tive plan. This method is based on the virtual-force
concept, which assumes that each navigational re-
source exerts virtual force on the robot to produce
desired motion changes. This approach has the ad-
vantage of integrating various resources with differ-
ent degrees of abstraction in a uniform manner. To
deal with moving obstacles, a real-time sensory
predictor is used so that the robot can react to
environmental changes more efficiently. A grid map
is maintained for path planning by using a first-
order digital filter, a simple, effective way to update
the map on-line. Consequently, the robot always has
an up-to-date world knowledge whenever it plans a
global reference path. Bidirectional DT has been
developed for fast path planning based on a re-
corded grid map. This method has the advantage of
employing previously planned information to find
new global paths when the robot needs to replan
because of considerable environmental changes.



v Journal of Robotic Systems—1999404

Simulation and experimental results reveal that the
integrated navigation system can cope with com-
plex, changing environments. However, more reli-
able navigation performance still depends on the
resources employed. Problems involving the robot’s
perception capabilities still need to be overcome.
Currently, studies are being conducted to add a
vision system to compensate for the ultrasonic sen-
sors employed for navigation. With a vision system,
self-localization of the robot can also be made more
accurate, which will help overcome the accumu-
lated error problems. All these extensions can be
realized using the proposed architecture.

This work was supported by the National Science
Council of Republic of China under Grant NSC 84-
2212-E-009-029.
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