
IEEE TRANSACTIONS ON EDUCATION, VOL. 36. NO. I , FEBRUARY 1993 177

was awarded the Homi Bhabha Prize for research in applied sciences by
the University Grants Commission, India, in 1986, and a National Award
for Excellence in Computer Engineering by the Indian Society for Technical
Education, in 1988. He was a member of the Electronics Commission from

1979- 1982 and is currently a Fellow of the Indian National Science Academy,
Indian Academy of Sciences and Indian National Academy of Engineers, and
an Honorary Professor of the Jawaharlal Nehru Centre for Advanced Scientific
Research.

Computer Operating Systems in Electrical
Engineering Curriculum

Chyan Yang, Senior Member, IEEE

Abstract-Diversified in their background knowledge, electrical
engineering students cover a wide spectrum of strengths and
weaknesses when they first attempt to study the subject of oper-
ating systems. Commonly, students are initially more concerned
with the hardware design of digital systems and, therefore, less
appreciative of the principles of software systems. In light of this,
this paper presents and examines a practical syllabus for a course
on operating systems. It also discusses possible derivations from
this syllabus so as to provide versatility in implementation.

I. INTRODUCTION

HEN the earliest operational electronic computer pro- W vided the first services to mankind, with it came a
set of operating procedures dedicated to the efficient uti-
lization of the computer. First generation computers required
complex procedures to maintain their operations. These pro-
cedures, though usually requiring some human interactions,
were perhaps optimistically labeled as “operating systems.”
With advances in technologies and experiences in computer
organizations, various computer architectures have evolved
through the last three decades. The accompanying operating
systems also have become more sophisticated. Many manual
operating procedures are now automated and the need for
human operations diminishes mainly to policy monitoring
and file backups. Despite the changes, however, the issues
concerning operating systems remain concrete. Although the
relative importance of various issues fluctuates over time,
the fundamental core of operating systems stems from the
coordination of system resources and maximization of perfor-
mance. Comparatively, electrical engineers design computers
much in the same way that mechanical engineers design
cars. We put functional components together to satisfy a
hardware specification. The engineering efficiency of a car,
however, is mainly determined by the entire construction or
architecture of the car and not by the engine alone. Similarly,
the performance of a computer relies not only on the hardware

Manuscript received July 1992.
The author is with the College of Management, National Chiao Tung

IEEE Log Number 9205768.
University, Taiwan, Republic of China.

but also on the operating system that interfaces the hardware
and the users. Many operating-system features may be the
direct consequence of the underlying hardware support and
many hardware specifications come directly from the operating
system requirements. For instance, with indivisible instruction
support, an operating system can provide concurrency control
whereas an optimized compiler may call for a hardware design
specification of register windows. The relationship between an
operating system and its underlying hardware may sometimes
appear as a chicken-and-egg problem: whether the hardware
specification came from the operating system requirements or
the operating system requirements came from the hardware
reality? One could stake a convincing argument on either or
both cases. In order to appreciate the wonder they set out
to design, electrical engineering students must understand the
importance and ramifications of operating systems.

11. WHAT TO LEARN AND HOW MUCH?

It is not difficult to explain a CPU (central processing
unit) to students of electrical engineering if they have had
digital systems as their major. With a major in digital systems
most students should have taken at least a course that uses
the assembly language of some microprocessors. Instruc-
tion set architectures, macro definitions, and conventional
branch instructions are terms covered in a standard syllabus
of microprocessor programming. In addition, even students
majoring in circuits and electronics, electromagnetics, control
or communications commonly have knowledge of at least one
high-level programming language. Be it as it may, not every
student attending a class on operating systems is equipped with
a proper background in basic computer organization. From
experience, the understanding of the CPU functionality is a
crucial part that cannot be skipped. Just as with an engine alone
one cannot drive, with a lone CPU one cannot compute. An
overall computer organization has to be reviewed. Hopefully,
the functional components of a computer system can be
covered within one lecture depending on the background of
students. Only a few novices may have problems in this area.

0018-9359/93$03.00 0 1993 IEEE

178 IEEE TRANSACTIONS ON EDUCATION, VOL. 36, NO. 1, FEBRUARY 1993

TABLE I 111. METHODOLOGY OF LEARNING
COURSE OUTL~NE

Subject Reading

Why do we need an operating system? (1.1)
History of OS (1.2)

Fundamentals (1.3)
System Calls (1.4)
OS Structure (1.5)
Processes and Communication (2.1)
Mutual Exclusion (2.2)
Semaphores (2.2)
Event Counters and Monitors (2.2)
Message Passing (2.2)

Minimal skills for reading C programs and using UNIX handouts

Classical IPC Problems
Process Scheduling
1/0 Hardware
I/O Software
Deadlocks
Disks
Terminals
Memory management
Virtual Memory
Page Replacement Algorithms
Design Issues for Paging Systems
Segmentation Systems

File Systems Design
File Servers and Network File Systems
Security
Protection Mechanisms

(5.1 and 5.2)
(5.3)
(5.4)
(5.5)

Comparable to exception handling, these students can be dealt
with on an individual basis.

Table I lists a typical operating systems course outline for
a quarter. Subject items and the associated reading sections
are taken from Tanenbaum’s book [9]. When adopting mother
textbooks, the reading sections in Table I should change to
reflect the chosen texts although most of the subject items
can still remain intact. The author has tried the same syllabus
on different textbooks [1]-[5], [l l] , [12] while periodically
supplementing them with handouts as required.

How much should an average engineering student know
about the computer operating systems? This depends heavily
on the preparation of students. The same subject may be
covered at different depths in accordance to the variety of
background knowledge. Absolute coverage of all materials can
never work well. Students in each institution show different
learning styles and tolerate different expectations from instruc-
tors. The actual level of details, regardless of the textbook
chosen, depends on the preparation of students. It is to the
benefit of both the instructor and students to adjust their level
of detail dynamically and consistently. Dynamic adjustments
come from the feedback of students: exercises, examinations,
and questions. Consistency must be maintained in communi-
cating the main issues of each subject. Additionally, the time
span of instruction also plays an important role; one quarter’s
appetite is inherently more intensive than a semester’s dose
since most instructors tend to cram all essential subjects
in rapid sessions. The temptation of lecturing faster than
necessary can be avoided when one regulates the progression
by observing a well-tested schedule.

To cook one meal for many and please everyone is possible
only when carefully designed: know the preparation of stu-
dents. There is no universal ‘average’ electrical engineering
student when designing a course. Each department of each
school has its own ‘average’ student. This student may not
exist in reality yet the curriculum must be catered to a standard
coverage. At the school where the author teaches, the rule of
thumb is to teach students at the 80th percentile. Yes, some
students may be bored and some may be lost. Confucious
insisted on the same rule in his educational philosophy: there
is not much ?ne can do for those outside the normal range,
either too bright or too dim.

UNIX’ operating systems are commonly available in to-
day’s universities. Due to its wide availability and the design
philosophy of reusability, UNIX is a good example operating
system to explain and to learn in schools. Advanced work-
stations or personal computers can now run UNIX operating
systems. Assignments may be designed around the UNIX
systems. Therefore, it is assumed that UNIX operating system
is available to the instructors and students in the following
discussions. The method of having two phases of performing
assignments are tested and have proven successful. The first
phase is to familiarize oneself with UNIX as a user. The second
phase is to do some projects with UNIX as a designer.

A minimum set of UNIX commands is introduced to
students right after the elements of computer organization are
covzred. Meanwhile, the instructor has to explain the function
of a command interpreter. A command interpreter provides
part of the view that an operating system is an extended ma-
chine to users. Having explained how a command interpreter
works, an instructor may start the assignment of shell scripts.
Programming UNIX shell scripts is basically programming the
command language in other commercial machines.

Shell programming is the best exercise with which to
cultivate a good user since it forces students to study rele-
vant commands by browsing through manuals. The author’s
favorite shell programming assignments always require the use
of ‘awk’ commands. New users of UNIX operating systems
generally find their first few hours’ experiences miserable and
dissatisfying. Like many software tools, this uncomfortable
learning hurdle will soon fade. With the experiences of using
‘awk’ students come to appreciate the terseness of manual
pages and the reusability of programs. If a strange command
name ‘awk’ can be accepted, any other command names in
UNIX are reasonable. Besides, awk is the first command in
the UNIX manual. It has been noted that many students later
write their own shell scripts for their research work since there
are so many tasks that can be automated and many UNIX
programs are reusable.

During shell programming, the concept of ‘pipe’ is also
introduced. The usage of pipes will help in explaining con-
current processes. Since time is at premium, students are
not expected to read the entire UNIX manual. Becoming a
good user is a continual effort and shell programming is
just a spark to jump start students’ enthusiasm in learning

‘UNIX is a trademark of Bell Laboratories.

IEEE TRANSACTIONS ON EDUCATION. VOL. 36, NO. I , FEBRUARY 1YY3 179

the operating systems. Moreover, shell programming helps in
explaining UNIX system calls. Covering system calls early
shows students how an operating system can be used. Having
covered the fundamentals, an instructor may start launching
the enumeration techniques of process management to moti-
vate students’ interest and humble their distaste of the ‘soft’
science. Soon students will find process management is a
difficult subject. When most students have a tough time in
learning process management, an instructor is under pressure
to explain it well.

With experience as a user, students should at least have
learned part of the operating system’s functions. Namely,
several processes can be running concurrently, several useful
programs are already available. To be a good designer one
must be capable of performing logical reasoning, an indispens-
able ingredient of a good programmer. Although not everyone
will be future designer of operating systems, the training of
design principles undisputedly provides the students with a
system perspective of computers.

Today’s textbooks in operating systems are abundant and
the fundamental issues are well understood. The key to design
principles exhibits no exception to other engineering disci-
plines: coordination and management of various components
and resources in a computer system. Students have to be
reminded repeatedly on why the subjects are important and
where they fit in the broader perspective.

Homework problems should be assigned and selective ones
discussed in class. By doing homework problems students
are given the opportunity to reread the text and to think.
Programming assignments are the best tools to experiencing
how important and how realistic certain design principles are.
Again, the temptation of giving sizable programming assi n
ments may jeopardize students’ appetite. If the programming
assignments are not handled with care, many students later
may only remember sleepless nights of doing the programming
assignments and can not recall specifically what the basic
issues of operating systems are. A single, large, comprehensive
programming assignment may be good in some computer
science departments. In electrical engineering departments,
however, several small programming assignments might be
a better choice. Recall that in learning to be a good user, an
assignment of shell programming was given which can gener-
ally be completed within a week. Similarly, each programming
assignment should be done within one or two weeks.

E -

I v . VARIANTS AND ENHANCEMENTS

Instructors may emphasize different aspects of the modern
operating system according to the needs of succeeding courses.
In electrical engineering education, it is most likely that there
would be a necessary follow-on course on computer networks.
However, it is entirely possible for one to have the course
of operating systems as the terminal course in computer
engineering. For this possible exception, one needs to cover
some tertiary subjects. Three main subjects whose relative
importance will emerge in the coming decade are parallel
processing, distributed systems, and computer security. A brief
discussion on these three subjects is given in this section.

A. Parallel Processing

One example of parallel processing is the use of iPSC/2*
(Intel Personal Super Computer). Readers interested in details
should consult technical manuals [6]. In an iPSC/2 system,
a number of processors or nodes work concurrently on parts
of a problem. An iPSC/2 system consists of compute nodes
and a front-end processor called the host. A typical iPSC/2
application has a host program that runs on the host and a
node program that runs on a group of allocated nodes called a
cube. The host program executes in the UNIX environment as
a process. It initializes the application, provides any necessary
human interfacerand loads the node program onto the nodes.
Generally, a node program performs calculations, exchanges
messages with other nodes, and sends the results back to the
host. There are several useful language constructs for parallel
programming in the form of as system calls in iPSC/2. These
system calls allow each node to communicate with other nodes
within a parallel computer.

B. Distributed Systems

A stand alone computer generally runs a single operating
system. With a multitude of computers within an organization,
possibly dispersed geographically, there may be many different
operating systems. What is the best strategy for resource
sharing and load balancing? How should a file system be
organized? Several subjects covering this avenue are system
perforpance, process migration, file systems, file recovery,
synchronization and concurrency control.

The collection of networks and gateways which use the
TCP/IP3 protocol suite and function as a single, cooperative
virtual network is normally called internet. The internet al-
lows researchers around the world to share information by a
program called ftp (file transfer protocol). All formal specifi-
cations of internet can be found as ‘Request For Comments’
(RFC documents) and are stored on-line at many sites. If
students can access the internet, it is very instructive to have
short assignments on using internet commands. For example,
using ftp to get RFC1094 [9] and study the network file
systems. Alternatively, one may ftp RFC1057 [8] and study
the remote procedure calls. There are several sites open to
public ftp. One site with complete archive is ftp.nisc.sri.com.

C. Computer Security

Why computer security? Although some computer systems
are still operated in the same mode of one or two decades ago,
today’s computers are no longer a set of huge boxes locked in
an airconditioned room. With the advent of internetworking
of computers, most computers are reachable from outside
the machine room; generally a computer is reachable from
remote locations. One may illustrate the following possibility
to students: with a built-in modem, a personal computer can
access numerous computers around the world by. dialing a

’iPSCI2 is a trademark of Intel Corporation.
‘Defense Advanced Research Project Agency (DARPA) has funded in-

ternetworking research. The DARPA technology includes a set of network
standards and conventions of how computers communicate and networks
interconnect. This technology is commonly named TCPiIP internet. TCP
(Transmission Control Protocol) and IP (Internet Protocol) are the two main
protocols among many protocols in the internet.

http://ftp.nisc.sri.com

180 IEEE TRANSACTIONS ON EDUCATION, VOL. 36, NO. 1, FEBRUARY 1993

local number. For engineering students, the hardware aspects
that make the above scenario possible have to be sorted
out. Having motivated the importance of computer security,
an instructor may cover the subject in different depth and
breadth. In a regular course on operating systems computer
security may take from one to two hours of lectures. A list of
possible subjects related to computer security are: password
security, data encryption, digital signatures, privacy-enhanced
electronic mail, and network file systems [lo]. The first three
items in the list are basics.

V. EVALUATION
Evaluation through tests in a class is a two-way measure and

should be treated differently from the qualifying examinations.
Except for the final examination, results of midterm tests can
be used for modifying the lecture style. Different levels of
difficulty and complete coverage are two important factors
for measuring the capability and knowledge of students. The
grades should conform to the standard set in the course
syllabus. ‘Difficulty’ is a relative term.

Easy problems are those asking for facts or simple il-
lustrations. Answers can be found either directly from the
textbook or course notes with minimum derivation. Explaining
technical terms and computing basic measures are thought
of as easy problems. Average problems are those asking for
some logical reasoning as opposed to simple memorization.
Answers can be found indirectly from textbook or course
notes with some computation. Problems that may fail about ten
percent of students, on the average, are thought of as average
problems. Difficult problems are those requiring sequences of
logical reasoning or a series of computations. Answers usually
cannot be found from the textbook or course notes. ‘Difficult’
sometimes means that the success rate is relatively lower and
does not merely imply that the idea is difficult to grasp. As
an engineer, one is expected to perform a series of correct
computations. Problems that only about ten percent of students
can correctly answer, on the average, are thought of as difficult
problems.

VI. CONCLUSIONS

In this paper, a practical course syllabus for operating
systems that can be used for electrical engineering students

is examined. Methodology that can achieve the instructional
goals and possible derivatives from the syllabus are also
discussed. Most guidelines discussed in this paper can be used
equally well in other curricula.

ACKNOWLEDGEMENT
The author would like to thank Prof. M. Cotton for sharing

a concurrent class as well as many fruitful discussions. The au-
thor is grateful to all former students in the classes; especially
P. Nguyen for his assistance in the preparation of this paper.

REFERENCES
*

[I] L. Bic and A. Shaw, The Logic Design of Operating Systems. Engle-
wood Cliffs, NJ: Prentice-Hall, 1988.

[2] P. Brinch Hansen, Operating System Principles, 2nd ed. Englewood
Cliffs, NJ: Prentice-Hall, 1973.

[3] D. E. Comer, Operating System Design-The XINU Approach. Engle-
wood Cliffs, NJ: Prentice-Hall, 1984.

[4] H. M. Deitel, An Introduction to Operating Systems, 2nd ed. Reading,
MA: Addison-Wesley, 1990.

[SI A. N. Habermann, Introduction to Operating System Design. Chicago:
Science Research Associates, 1976.

[6] Intel Corporation, iPSCi2 User’s guide, Order Number 31 1532-004,
Beaverton, OR, Oct. 1989.

[7] A. Kelly and I. Pohl, A Book on C, 2nd ed. Reading, MA: Addison-
Wesley, 1991.

[8] Network Working Group, RFC1057, RPC: Remote Procedure Call
Protocol Specification, vol. 2, June 1988.

[9] Network Working Group, RFC 1094, NFS: Network File Systems
Protocol Specification, Mar. 1989.

[IO] C. P. Pfleeger, Security in Computing. Englewood Cliffs, NJ: Prentice-
Hall, 1989.

[ll] A. Silberschatz, J. Peterson, and P. Galvin, Operaring System Concepts.
3rd ed.

[12] A. S. Tanenbaum, Operating Systems Design and Implementation. En-
glewood Cliffs, NJ: Prentice-Hall, 1987.

Reading, MA: Addison-Wesley, 1991.

Chyan Yang (S’86-M’87-SM’90) received the
Master’s degree in information and computer sci-
ence from Georgia Institute of Technology, Atlanta,
GA, and the Ph.D. degree in computer science from
the University of Seattle, WA.

He was an Assistant Professor of Electrical and
Computer Engineering at the US Naval Postgrad-
uate School from 1987 thru 1992. He is currently
an Associate Professor of College Management, at
National Chiao Tung University where he carries
out research in computer networks and distributed

systems. He is a member of ACM.

