
Information Processing Letters 70 (1999) 255–257

In-place random list permutations

Wen-Ping Hwanga,∗, Ching-Lin Wangb,1

a Department of Computer and Information Science, National Chiao Tung University, Hsinchu, Taiwan
b Department of Computer Science and Information Engineering, Tamkang University, Tamsui, Taiwan

Received 10 February 1999; received in revised form 10 June 1999
Communicated by K. Iwama

Abstract

We give two algorithms to randomly permute a linked list of lengthn in place using O(n logn) time and O(logn) stack space
in both the expected case and the worst case. The first algorithm uses well-known sequential random sampling, and the second
uses inverted sequential random sampling. 1999 Published by Elsevier Science B.V. All rights reserved.

Keywords:Algorithms; Data structures

1. Classic algorithm

Consider the problem of permuting a list uniformly
at random. The classic swapping algorithm [1] for
randomly permuting an array can be adopted to solve
this problem: Randomly choose an element out of a
list of lengthn as the last element of the permuted list,
and recursively permute the remaining list of length
n− 1 in a like manner to form the firstn− 1 elements
of the permuted list.

Due to the need of traversing the list to locate the
randomly chosen element, the algorithm runs in O(n2)

time and O(1) auxiliary space in both the expected
case and the worst case.

2. Ressler’s algorithm

Like the classic algorithm, Ressler’s algorithm [2]
first randomly chooses an element out of a list of

∗ Corresponding author. Email: wphwang@cis.nctu.edu.tw.
1 Email: clwang@cs.tku.edu.tw.

length n as the last element of the permuted list. It
then splits the remainingn − 1 elements into two
sublists according to a sequence ofn− 1 coin tosses.
The two sublists are then recursively permuted in a
like manner, and the resulting two permuted sublists
are appended to form the firstn − 1 elements of the
permuted list.

Much like the randomized quicksort algorithm,
Ressler’s algorithm takes O(n logn) time and O(logn)
stack space in the expected case. But in the worst case,
it takes O(n2) time and stack space.

3. Random permutations with random sampling

Our first algorithm makes use of sequential random
sampling. Given a list of lengthn > 1, select a random
sample of bn/2c elements and place the selected
elements in one sublist and the rejected elements in
another. Recursively permute the two sublists in a like
manner and then append the two permuted sublists
into a permuted list.

0020-0190/99/$ – see front matter 1999 Published by Elsevier Science B.V. All rights reserved.
PII: S0020-0190(99)00076-9



256 W.-P. Hwang, C.-L. Wang / Information Processing Letters 70 (1999) 255–257

It is easily seen by induction that the algorithm pro-
duces each ofn! permutations with equal probability.
For n 6 1, the result is obvious. Suppose that the al-
gorithm produces a random permutation for any list of
length less thann. Then any permutation of a list of
lengthn is obtained with probability

1(
n
bn/2c

) · 1

bn/2c! ·
1

dn/2e! =
1

n! ,

where the first term is the probability of obtaining
an bn/2c-combination of the list and the second
and the third terms are assured by the induction
hypothesis.

The random sampling step can be done in O(n) time
in both the expected case and the worst case using
Algorithm S of Knuth [1, p. 142]. The concatenation
of the two permuted sublists can be done in O(n)

time. Alternatively, the concatenation step can be
eliminated by the standard technique of using an
accumulating parameter to accumulate the required
permuted list [2]. It follows that the algorithm takes
O(n logn) time in both the expected case and the worst
case. As for the space complexity, it is easily seen that
O(logn) stack space is required.

4. Random permutations with inverted random
sampling

Central to our first algorithm is the fact that any
combination ofm elements of a list has equal prob-
ability of occupying the firstm positions, regardless
of the order, of a random permutation of the list. Con-
versely, any combination ofm positions of a random
permutation of a list has equal probability of being oc-
cupied by the firstm elements, regardless of the order,
of the list. This observation leads to the next algorithm
that uses ‘inverted’ sequential random sampling.

A sequential random sampling procedure produces
a random sample sequence and a rejected sequence
from a population sequence. On the other hand, an
inverted sequential random sampling procedure pro-
duces a random population sequence from a sam-
ple sequence and a rejected sequence. Intuitively, an
inverted sequential random sampling procedure pro-
duces, with equal probability, any of the population se-
quences from which the corresponding sequential ran-

dom sampling procedure may yield the sample and re-
jected sequences, andvice versa.

As an example, AlgorithmS of Knuth, the best-
known sequential random sampling algorithm, can
be inverted by undoing the selection and rejection
operations, as shown in AlgorithmS−1.

Algorithm S−1. /∗ Compute a random population
sequence from a sample sequence ofm items and a
rejected sequence ofn−m items, where 0<m6 n. ∗/
1. [GenerateU ] Generate a random numberU that is

uniformly distributed between 0 and 1.
2. [Test] IfnU >m, go to step 4.
3. [Unselect] Select the next item from the sample

sequence for the population, and decreasen andm
by 1. Ifm> 0, go to step 1; otherwise,
[Unreject] select each of the remaining items, if
any, in the rejected sequence for the population, and
then terminate the algorithm.

4. [Unreject] Select the next item from the rejected
sequence for the population, decreasen by 1, and
go to step 1.

It is not hard to see that AlgorithmsS andS−1 are
inverse to each other in the sense that

P
[
S−1(S(pn,m))= pn]
= P [S(S−1(sm, rn−m),m

)= (sm, rn−m)]
= 1

/(n
m

)
,

whereS(pn,m) is the pair of them-element sample
sequence and the(n−m)-element rejected sequence
produced by AlgorithmS on then-element popula-
tion sequencepn, andS−1(sm, rn−m) is then-element
population sequence produced by AlgorithmS−1 on
the pair of them-element sample sequencesm and
the(n−m)-element rejected sequencern−m. Further-
more, like AlgorithmS, Algorithm S−1 produces an
unbiased population sequence with probability 1/

(
n
m

)
and runs in O(n) time in both the expected case and
the worst case.

Our second algorithm is as follows. Given a list
of lengthn > 1, split it at the middle to obtain two
sublists. Recursively permute the two sublists in a like
manner. Treat the two permuted sublists as sample and
rejected sequences, respectively, and apply an inverted
sequential random sampling procedure to obtain a



W.-P. Hwang, C.-L. Wang / Information Processing Letters 70 (1999) 255–257 257

random population sequence, which is the desired
permuted list.

It is easily seen by induction that this algorithm
produces any permutation of the list unbiasedly at
random. Furthermore, the algorithm undoubtedly runs
in O(n logn) time and O(logn) stack space in both the
expected case and the worst case.

References

[1] D.E. Knuth, The Art of Computer Programming, Vol. 2: Semi-
Numerical Algorithms, 3rd edn., Addison-Wesley, Reading,
MA, 1998.

[2] E.K. Ressler, Random list permutations in place, Inform.
Process. Lett. 43 (1992) 271–275.


