S Information
ﬁ Processing
Letters

ELSEVIER Information Processing Letters 70 (1999) 255-257

www.elsevier.com/locate/ipl

In-place random list permutations

Wen-Ping Hwang*, Ching-Lin Wand*!
@ Department of Computer and Information Science, National Chiao Tung University, Hsinchu, Taiwan
b Department of Computer Science and Information Engineering, Tamkang University, Tamsui, Taiwan

Received 10 February 1999; received in revised form 10 June 1999
Communicated by K. lwama

Abstract

We give two algorithms to randomly permute a linked list of length place using @: logn) time and Qlogn) stack space
in both the expected case and the worst case. The first algorithm uses well-known sequential random sampling, and the secon
uses inverted sequential random sampling.999 Published by Elsevier Science B.V. All rights reserved.

Keywords:Algorithms; Data structures

1. Classic algorithm lengthn as the last element of the permuted list. It
then splits the remaining — 1 elements into two

Consider the problem of permuting a list uniformly sublists according to a sequencerof 1 coin tosses.

at random. The classic swapping algorithm [1] for The two sublists are then recursively permuted in a

randomly permuting an array can be adopted to solve like manner, and the resulting two permuted sublists

this problem: Randomly choose an element out of a are appended to form the first— 1 elements of the

list of lengthn as the last element of the permuted list, permuted list.

and recursively permute the remaining list of length Much like the randomized quicksort algorithm,

n — 1 in a like manner to form the firat — 1 elements Ressler’s algorithm takes@logn) time and Qlogn)

of the permuted list. stack space in the expected case. But in the worst case,
Due to the need of traversing the list to locate the it takes Qn?) time and stack space.

randomly chosen element, the algorithm runs n®

time and @1) auxiliary space in both the expected

case and the worst case. 3. Random permutations with random sampling

2. Ressler’s algorithm Our first algorithm makes use of sequential random
sampling. Given a list of lengthh > 1, select a random
Like the classic algorithm, Ressler’s algorithm [2] sample of [#/2] elements and place the selected
first randomly chooses an element out of a list of elements in one sublist and the rejected elements in
another. Recursively permute the two sublists in a like
* Corresponding author. Email: wphwang@cis.nctu.edu.tw. manner and then append the two permuted sublists
1 Email: ciwang@cs.tku.edu.tw. into a permuted list.

0020-0190/99/$ — see front matteér1999 Published by Elsevier Science B.V. All rights reserved.
PIl: S0020-0190(99)00076-9

256 W.-P. Hwang, C.-L. Wang / Information Processing Letters 70 (1999) 255-257

It is easily seen by induction that the algorithm pro- dom sampling procedure may yield the sample and re-
duces each of! permutations with equal probability. jected sequences, awite versa
Forn < 1, the result is obvious. Suppose that the al- As an example, Algorithm§ of Knuth, the best-
gorithm produces a random permutation for any list of known sequential random sampling algorithm, can
length less tham. Then any permutation of a list of be inverted by undoing the selection and rejection
lengthn is obtained with probability operations, as shown in Algorithst?.
1 1 1 1 . IR .
— . . =, Algorithm S—+. /* Compute a random population
(I_n/ZJ) [n/2]t [n/21! n! sequence from a sample sequencenoitems and a
rejected sequence of-m items, where < m <n.*/
1. [Generatd/] Generate a random numbg&rthat is
uniformly distributed between 0 and 1.
2. [Test] IfnU > m, go to step 4.
3. [Unselect] Select the next item from the sample
sequence for the population, and decreasadm
by 1. If m > 0, go to step 1; otherwise,
[Unreject] select each of the remaining items, if
any, in the rejected sequence for the population, and
then terminate the algorithm.
[Unreject] Select the next item from the rejected
sequence for the population, decreasey 1, and
go to step 1.

where the first term is the probability of obtaining
an |n/2]-combination of the list and the second
and the third terms are assured by the induction
hypothesis.

The random sampling step can be done {(n Qime
in both the expected case and the worst case using
Algorithm S of Knuth [1, p. 142]. The concatenation
of the two permuted sublists can be done D
time. Alternatively, the concatenation step can be
eliminated by the standard technique of using an
accumulating parameter to accumulate the required
permuted list [2]. It follows that the algorithm takes
O(n logn) time in both the expected case and the worst
case. As for the space complexity, it is easily seen that

) . It is not hard to see that Algorithmsand S~ are
O(logn) stack space is required.

inverse to each other in the sense that

P[S™(S(pn,m)) = p]

4. Random permutations with inverted random 1
sampling = P[S(S (Sms Fn—m), m) = (Sm, rn—m)]

=1 ”)
Central to our first algorithm is the fact that any /<m
combination ofm elements of a list has equal prob- whereS(p,, m) is the pair of them-element sample
ability of occupying the firstn positions, regardless sequence and th@ — m)-element rejected sequence
of the order, of a random permutation of the list. Con- produced by AlgorithmS on the n-element popula-
versely, any combination of: positions of a random tion sequence,, andS=(s,., rn—m) is then-element
permutation of a list has equal probability of being oc- population sequence produced by Algorittsm! on
cupied by the firsiz elements, regardless of the order, the pair of them-element sample sequengg and
of the list. This observation leads to the next algorithm the (n — m)-element rejected sequenge.,,. Further-
that uses ‘inverted’ sequential random sampling. more, like Algorithms, Algorithm S~ produces an

A sequential random sampling procedure produces unbiased population sequence with probabililjn";l)
a random sample sequence and a rejected sequencand runs in @Qu) time in both the expected case and
from a population sequence. On the other hand, an the worst case.
inverted sequential random sampling procedure pro- Our second algorithm is as follows. Given a list
duces a random population sequence from a sam-of lengthn > 1, split it at the middle to obtain two
ple sequence and a rejected sequence. Intuitively, ansublists. Recursively permute the two sublists in a like
inverted sequential random sampling procedure pro- manner. Treat the two permuted sublists as sample and
duces, with equal probability, any of the population se- rejected sequences, respectively, and apply an inverted
quences from which the corresponding sequential ran- sequential random sampling procedure to obtain a

W.-P. Hwang, C.-L. Wang / Information Processing Letters 70 (1999) 255-257 257

random population sequence, which is the desired References
permuted list.

It is easily seen by induction that this algorithm [1] D-E.Knuth, The Art of Computer Programming, Vol. 2: Semi-
produces any permutation of the list unbiasedly at l\NA“Amfggg' Algorithms, 3rd edn., Addison-Wesley, Reading,
_random. Furt_hermore’the algorlthm undo_Ubtedly runs [2] E.K. Ressler, Random list permutations in place, Inform.
in O(nlogn) time and Qlogn) stack space in both the Process. Lett. 43 (1992) 271-275.

expected case and the worst case.

