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Abstract

This article describes the process evolution support in concurrent software process language (CSPL) environment. Process evolution refers
to dynamically changing process programs during process enactment. It is required in process-centered software engineering environment
(PSEE) because: (1) parts of a software process may be unclear during process modeling, and (2) processes may change during enactment. In
CSPL, process evolution can be achieved through (1) meta-process or (2) process program change. This article also describes object
decomposition in CSPL, which relates to process evolution. CSPL allows decomposing large objects (software products) into sub-objects.
With this, the schedule, budget, and developer of each sub-object development can be separately assigned and controlled.q 1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Software becomes more and more complicated, which in
turn complicates software processes (software development
processes). To facilitate controlling software processes,
process-centered software engineering environments
(PSEEs) have been developed [1–15].

A PSEE manages software process components such as
activities, developers, tools, objects (software products),
exceptions, and so on. It is generally composed of a process
language to represent the processes, a process interpreter to
enact (execute) the processes, and an object management
system to manage the objects. A PSEE called concurrent
software process language (CSPL) environment has been
developed in our laboratory [3,16,17]. It provides an
Ada95-like process language called CSPL. Processes are
modeled in CSPLprocess programsthat can be enacted
in the CSPL environment. In the past years, we have applied
CSPL to model and enact object-oriented methods [18].
From the past experiences, the following problems are iden-
tified:

1. Some parts of a software process may be difficult to
define during project planning. For example, the testing

strategy (e.g. black box or white box strategy) may be
unclear during project planning. Therefore, the testing
process is difficult to define at that stage.

2. A process may change during enactment. For example,
suppose a specification is originally planned to be
formally reviewed. However, when the review starts,
customers have trouble with understanding the specifica-
tion. The analysts, thus, decide to apply rapid prototyping
technique such as that in [19] instead of reviewing the
specification. This decision results in changing the
review process.

3. The activity for developing a large object may take a
long time. For example, implementing an operating
system may take years. In software development, large
objects are often decomposed into sub-objects, each
developed by a developer. With this, the developer, sche-
dule, and budget of each sub-object can be separately
defined and controlled. Moreover, the sequence of sub-
object development can be explicitly defined and
controlled. For example, in a bottom-up unit test process,
program modules at the bottom of a program structure
should be tested first. Using a PSEE that does not model
object decomposition may cause difficulties in control-
ling developers, schedules, budgets, and development
sequences.

To solve the first two problems, processes should be
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allowed to evolve during enactment. Accordingly, a process
language should possess the reflective feature that allows
process programs to be dynamically changed during process
enactment [20]. To solve the third problem, a PSEE should
model object decomposition. However, decomposing
objects may be difficult to model during process planning,
because developers cannot decide on the decomposition at
that time. Therefore, object decomposition should be better
modeled through process evolution. For example, a process
program originally defines an analysis process only. Having
enacted the process, a specification is developed and the
decomposition of the system can be modeled. Thus, the
process program can be evolved to contain the decomposi-
tion and the relevant design process.

The CSPL environment was enhanced to support the
process evolution and object decomposition. This article
describes these two new CSPL features. Section 2 gives a
CSPL overview. Section 3 describes process evolution in
CSPL. Section 4 describes object decomposition in CSPL.
Section 5 depicts an example. Section 6 discusses related
work. Finally, Section 7 gives the conclusions and future
work.

2. Concurrent software process language overview

CSPL is a Unix-based PSEE with client/server architec-
ture. It is composed of the following components: (1) the
CSPL language, (2) a CSPL compiler, (3) a CSPL server, (4)
an object management system (OMS) server, (5) multiple
CSPL clients, and (6) multiple OMS clients. Fig. 1 shows

the CSPL architecture. Among the components, a CSPL
client and an OMS client constitute a developer (client)
site. The CSPL compiler, CSPL server, and OMS server
constitute the server site.

The CSPL language is used to write process programs.
The CSPL compiler translates process programs into C shell
scripts, which can be enacted in the CSPL server. During
process enactment, CSPL server assigns work to developers
by interacting with CSPL clients, and accesses objects and
object relationships via the OMS server. Moreover, a CSPL
client accesses objects (e.g. browses objects) by invoking an
OMS client.

The CSPL language is an Ada95-like procedural
language. It provides constructs to specify software process
components including roles, tools, objects, object relation-
ships, packages, tasks, task communication, exceptions, and
so on. For encapsulation purpose, packages are composed of
their specifications and bodies. The general structure of a
CSPL process program is shown in Fig. 2.

Example 1. Tool and role definitions.

– tool definition
tool ToolSet is

editorU ‘‘vi’’;
AnalysisToolU ‘‘ROSE’’;
ReviewToolU ‘‘RTool’’;

end;
– role definition
role analyst is

analyst1U ‘‘scchou’’;
analyst2U ‘‘syjan’’;

end;

Toolsand roles are defined at the beginning of a CSPL
process program. With tool definitions, the intended tools
can be bound and invoked during enactment. For instance,
in Example 1, ‘‘vi’’ will be used as an editor. With role
definitions, work can be assigned to right developers. For
instance, in Example 1, analysis work will be assigned to
‘‘scchou’’ and ‘‘syjan’’. Note that tools and roles defined
here can be used in the entire process program.

Example 2. Package specification.

– Package specification
package CAI_analysis is

– object type definition
type Specification is new DocType with record
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LanguageSpec: TextType;
Notation: NonTextType;

end record;
procedure GenSpec(CAI_requirement: in Requirement,

CAI_specification: in out Specification);

function ReviewSpec(CAI_requirement: in Require-
ment,

CAI_specification: in Specification) return integer;

end CAI_analysis

Package specificationsdefine object types and opera-
tions, in which two kinds of operations, namely procedures
and functions, can be defined. Regarding object types, CSPL
provides built-in ones, such as ‘‘DocType’’, ‘‘TextType’’,
‘‘NonTextType’’, and so on. CSPL allows new object types
to be defined by inheriting existing ones. Example 2 is a
package specification defining the object type ‘‘Specifica-
tion’’, the procedure ‘‘GenSpec’’, and the function
‘‘ReviewSpec’’. The object type ‘‘Specification’’ inherits
the built-in type ‘‘DocType’’ and adds two new attributes.
Object types defined in a package specification can be
instantiated. For example, the following statement instanti-
ates an object from the type ‘‘Specification’’, where the
object name is ‘‘CAI_specification’’ and the object is stored
in the file ‘‘CAI_specification.doc’’:

CAI_specification: SpecificationU ‘‘ CAI_specifica-
tion.doc’’

Example 3. Package body.

– Package body
package body CAI_analysis is

procedure GenSpec(CAI_requirement: in Requirement,

CAI_specification: in out Specification) is
begin

2 analyst edit CAI_specification referring to

CAI_requirement using AnalysisTool;

end;
function ReviewSpec(CAI_requirement: in Require-
ment,

CAI_specification: in Specification) is

begin

review_result: integer;
all reviewer review CAI_specification referring to

CAI_requirement using ReviewTool resulted in
review_result;

return review_result;

end;

end CAI_analysis

Package bodiesspecify the details of procedures and
functions (see Example 3). The most important statement
used in a package body is the ‘‘edit’’ statement. It assigns
work to developers, binds tools, indicates object(s) for refer-
ence, and requires the developers to create an object. An
example ‘‘edit’’ statement is as follows:

2 analyst edit CAI_specification referring to CAI_re-
quirement using AnalysisTool;

this statement assigns the analysis work to two analysts. The
bound tool is ‘‘AnalysisTool’’. The object for reference is
‘‘CAI_requirement’’. And the object to be created is
‘‘CAI_specification’’.

The ‘‘Data definitions’’ section (see Fig. 2) defines the
data used in the entire process program. Various data types
such as ‘‘integer’’ can be used. Moreover, object types
defined in package specifications can also be used as data
types. That is, objects can be defined by instantiating object
types. The instantiation relationships between object types
and objects are then managed by the OMS server.

Example 4. CSPL task.

task body CAI_RequirementAnalysis is
begin

loop

accept start;
CAI_analysis.GenSpec(CAI_requirement, CAI_speci-
fication);
review_resultU

CAI_analysis.ReviewSpec(CAI_requirement, CAI_
specification);

If review_result� 1 then

CAI_analysis.PlanEnactDesign(DesignProcess);

end if;

end loop;

end;

A CSPL task groups related activities that are enacted
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sequentially, in which activities constitute a process. Tasks,
though, can be enacted concurrently. Therefore, activities
that can be enacted in parallel should be assigned to differ-
ent tasks. Example 4 depicts a CSPL task.

During the enactment of concurrent tasks, communica-
tion among them is needed. For example, analysis task
should be completed before design task starts. The tasks
should thus communicate to synchronize their execution.
CSPL providesentry callandevent informfor synchronous
and asynchronous communications, respectively (see Fig.
3). In Fig. 3(a), task ‘‘A’’ synchronously communicates
with task ‘‘B’’ by the statement ‘‘B.start’’. Task ‘‘A’’ can
proceed only after the entry call is accepted. In Fig. 3(b),
task ‘‘C’’ asynchronously communicates with task ‘‘D’’ by
the statement ‘‘inform D to set OK’’, where ‘‘OK’’ is an
event defined in task ‘‘D’’. In this case, task ‘‘C’’ proceeds
without waiting for task ‘‘D’’.

Exceptions and their handlers are used to model
activities that cannot be regularly controlled. For exam-
ple, requirement change may occur at any time during
software development. It, thus, cannot be controlled
regularly and should be modeled as an exception. The
following statements depict the handler of the exception
‘‘RequirementChange’’:

exception

when RequirementChange)
output ‘‘Requirement change, redo the analysis
work!!’’;
Analysis.start;

When the exception occurs, CSPL environment outputs
‘‘Requirement change, redo the analysis work!!’’, and then
re-starts the analysis work.

During process enactment, CSPL environment first
creates objects according to the declarations in the ‘‘Data
definitions’’ section of a process program. Object creation is
accomplished through instantiating object types. Next,
CSPL lists the process program’s exceptions on the screen
of the project manager, who can raise them if necessary.
Then, CSPL enacts the process program’s tasks, which
will assign work to developers and bind tools to objects.
During enactment, CSPL keeps process program states in
its OMS server. The states are primarily used for process

evolution, details of which will be described in Section
3.2.1.

Unlike the languages with late binding feature [6,21–22],
binding in CSPL is completed in compilation time. There-
fore, CSPL does not support the concepts of process types
and instances [6,21]. That is, only one copy of a process
program exists during process enactment. This characteris-
tic affects process evolution support in CSPL, as described
in Section 3.2.

3. Process evolution in concurrent software process
language

Process evolution in CSPL is described in this section.
First, the requirement of a simplified computer aided
instruction (CAI) system, which is used as an example
throughout this article, is described below:

The CAI system plays the role of a teacher. Class
notes and their associated review questions and
answers are stored in a database. The class notes are
for teaching purposes. The questions and answers test
whether a student understands the lesson he/she
studied. If he/she passes the test, he/she can proceed
to the next lesson. Otherwise, he/she should go back to
the previous lesson(s).

The system provides interface for storing new class
notes and their associated review questions and
answers. In addition, the interface allows teachers to
update testing rules.

Bearing this requirement in mind, let us start describing
process evolution, which can be classified as predictable or
unpredictable as described bellow:

1. Predictable evolution.As described before, some parts of
a software process may be unclear during project plan-
ning. Usually the parts will become clear during process
enactment. For example, the testing strategy may be
unclear during project planning and will become clear
after programs are implemented. To write a process
program, the unclear parts are difficult to specify
correctly. Therefore, the process program is predicted
to evolve during enactment.
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2. Unpredictable evolution.An enacting process program
may evolve according to exceptions. For example, sche-
dule or budget overrun may result in exceptions which
trigger process evolution. This kind of evolution is dyna-
mically caused by developers during process enactment.
Therefore, it is regarded as unpredictable.

In CSPL, predictable process evolution can be accom-
plished through meta-processes, which are processes that
create and enact other processes. That is, when writing a
process program, meta-processes are used to model the
unclear parts. When these parts become clear, the meta-
processes are enacted to create process programs for the
parts. According to the preceding description, process
evolution using meta-processes will not change the enacting
process programs. It, however, will create and enact new
process programs. Regarding the unpredictable process
evolution, it can be accomplished through process program
change, in which enacting process programs will be chan-
ged if necessary. In the following subsections, process
evolution through meta-processes and that through process
program change are respectively described.

3.1. Evolution through meta-process

At stated before, a meta-process is a process that creates
and enacts processes. The relationship between a meta-
process and the software process it creates is shown in
Fig. 4. If necessary, multiple levels of meta-processes can
be used as shown in Fig. 5. Also, levels of meta-processes
can be extended to be a tree-like structure (see Fig. 6).

Example 5. Meta-process example.

– Tool definition
tool ToolSet is

editorU ‘‘vi’’;

end;
– Role definition
role ProcessProgrammer is

ProcessProgrammer1U ‘‘scchou’’;

end;
– Data definition
AnalysisProcess: TextTypeU ‘‘analysis.cspl’’;
DesignProcess:TextTypeU ‘‘design.cspl’’;
…
task meta_waterfall is

entry start;

end;
task body meta_waterfall is
begin

loop

accept start;
ProcessProgrammer1 edit AnalysisProcess using
editor;
enact AnalysisProcess;
ProcessProgrammer1 edit DesignProcess using editor;
enact DesignProcess;
…

end loop;

end;
– Start the process
begin

meta_waterfall.start;

end;

CSPL meta-processes are defined using the statements
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‘‘edit’’ and ‘‘enact’’. The statement ‘‘edit’’ requires a
developer to create a process program. The statement
‘‘enact’’ then informs CSPL environment to enact the
newly created process program. In that enactment, the
CSPL compiler first checks the syntax of the process
program. If syntax errors occur, the environment will
require a developer to correct the errors. If semantic errors
are identified during enactment, the project manager should
raise an exception to change the process program (see
Section 3.2 for details about process program change).
Example 4 shows a meta-process that creates and enacts
the (partial) waterfall software process model. The meta-
process task ‘‘meta_waterfall’’ in Example 5 creates and
enacts an analysis process and other processes in sequence.

Example 6. Mixing software process with meta-process.

– Tool definition
tool ToolSet is

editorU ‘‘vi’’;
AnalysisToolU ‘‘ATool’’;
ReviewToolU ‘‘RTool’’;

end;
– Role definition
role ProcessProgrammer is

ProcessProgrammer1U ‘‘scchou’’;

end;
role analyst is

analyst1U ‘‘scchou’’;
analyst2U ‘‘syjan’’;

end;
– Data definition
Requirement: TextTypeU ‘‘requirement.doc’’;
Specification: TextTypeU ‘‘specification.doc’’;
DesignProcess: TextTypeU ‘‘design.cspl’’;
task mix_process is

entry start;

end;
task body mix_process is
begin

loop

accept start;
all analyst edit specification using AnalysisTool refer-
ring to requirement;
all analyst review specification using ReviewTool;
ProcessProgrammer1 edit DesignProcess using editor;
enact DesignProcess;

end loop;

end;

– Start the process
begin

mix_process.start;

end;

A process program can include meta-processes only (as
shown in Example 5) or mix software processes with meta-
processes (as shown in Example 6). The task ‘‘mix_pro-
cess’’ in Example 6 mixes an analysis process with a
meta-process. The analysis process includes two activities:
‘‘edit specification’’ and ‘‘review specification’’, while the
meta-process creates and enacts the process ‘‘DesignPro-
cess’’. Mixing software processes with meta-processes
increases CSPL flexibility. With meta-process support,
process programs can be evolved according to the following
guidelines:

1. Use normal software processes to model well-known
processes.

2. Use meta-processes to model processes with high uncer-
tainty, such as processes that are currently unclear, those
that are changeable, those that will be enacted a long time
later, and so on.

During process enactment, process programs and those
they create are enacted simultaneously. For example,
suppose process program ‘‘A’’ creates and enacts process
program ‘‘B’’. Then, ‘‘A’’ and ‘‘B’’ will be enacted simul-
taneously. This reflects the needs in software development
as described in the following:

1. Tasks defined in both the creating and the created process
programs should execute concurrently. For example,
when analysis tasks are partially completed, the design
process can be created and enacted by a meta-process.
The relationship between the creating and the created
process programs is shown in Fig. 7. Here, the design
tasks in the created process program and other analysis
tasks in the creating process program are enacted concur-
rently.

2. Tasks in the created process programs may invoke tasks
in the creating process programs. For example, in Fig. 8,
when the design tasks in the created process program are
enacting, an exception for requirement change may
occur. Under this situation, analysis tasks in the creating
process program will be invoked to re-analyze system
requirements.

The CAI example is used here to explain evolution
through meta-process. Fig. 9 depicts the CAI system devel-
opment process. During process planning, developers have
no idea about how the CAI system will be decomposed, or
about which modules should be implemented. Therefore,
only the analysis process (i.e. Step1 in Fig. 9) can be
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planned. Other processes should be planned after the analy-
sis task is completed. Meta-processes can be used here. The
process program template will look like that in Fig. 10 (see
Appendix A for the process program).

After the analysis process, the CAI system specification
was created and reviewed. Suppose the analysts decompose
the system specification into three subsystem specifications:
(1) ‘‘UI’’ for user interface, (2) ‘‘Reasoning’’ for checking
whether a student passes a test, and (3) ‘‘DBAccess’’ for
database access. Based on this decomposition, the design
process is planned. At this point, however, the implementa-
tion and test process cannot be planned, because the soft-
ware modules were not yet designed. Therefore, the process
program created by the meta-process in Fig. 10 will look
like the one shown in Fig. 11 (see Appendix C for the
process program). After the design process, the design docu-
ment was produced and reviewed. Suppose the CAI system
architecture is designed as shown in Fig. 12, where:

1. ‘‘UI’’ is for user interface,
2. ‘‘Storing’’ is for storing class notes, questions, answers,

and testing rules,

3. ‘‘Retrieving Course’’ is for retrieving class notes and
questions,

4. ‘‘Retrieving Answers’’ is for retrieving answers for the
questions,

5. ‘‘Grading’’ is for grading a test,
6. ‘‘Retrieving Rules’’ is for retrieving testing rules,
7. ‘‘Reasoning’’ is for checking whether a student passes a

test, and
8. ‘‘DBI’’ is the interface to the database management

system.

Based on the architecture, the implementation and test
process can be planned.

3.2. Evolution through process program change

Process evolution through meta-process depends on the
assumption:the enacting process programs never change.
However, this is not always true. For example, suppose that
in the analysis process of the CAI system, the specification
is originally planned to be formally reviewed. However,
when the review starts, customers have trouble in under-
standing the specification. The analysts thus decide to use
a rapid prototyping technique for the review. The process
program containing the analysis process should thus be
changed.
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CSPL allows changing process programs during enact-
ment. It uses exceptions to control the change. It automati-
cally creates an exception for each enacting process
program, which can be raised by the project manager. Rais-
ing the exception allows changing the process program and
resuming it later. In managing process program change, the
following features should be defined: (1) change policy [23],
(2) process program state, and (3) impact analysis and hand-
ling [24]. These features are closely related to the following
CSPL characteristics:

1. Owing to the constraints of language paradigm, CSPL
does not support late binding [6,21,22]. That is, concepts
of process types and instances [6,21] are not utilized in
CSPL.

2. The name scope of CSPL process program seems rather
global. For example, tools and roles defined in the begin-
ning of a process program can be used all over the
program. And, data defined in the ‘‘Data definitions’’
section (see Fig. 2) can be used by all tasks in the entire
process program. Changing a process program with
global name scope appears to be more difficult than chan-
ging one with localized name scope.

According to the characteristics, the aforementioned
three features are managed as described in the following:

1. Change policy. A change policy may be eager, lazy, or
somewhere in between [23]. In an eager policy, the
effects of change are handled immediately. However, a
lazy policy delays the handling. A lazy policy can be
used in PSEEs that provide late binding features
[6,21,22], in which processes are defined as types for
instantiation. In these PSEEs, changing a process type
and then instantiating it will not affect the enacting
instances of that type [6,21]. CSPL, however, does not
support late binding. That is, only one copy of a process

program exists during enactment. Therefore, changing a
part of an enacting process program will immediately
affect the entire program. CSPL thus uses an eager policy
for process program change.

2. Process program state. According to global name scope,
changing a part of a CSPL process program is expected
to affect the entire program. The change should thus be
under careful control. CSPL controls the change by
managing process program states, which primarily
show: (a) enactment status of process programs, and
(b) products that have been created.

3. Impact analysis and handling. Before changing a process
program, some activities in the program may have been
completed and some objects created. What activities and
objects will be affected by the change? Which activities
should be enacted after the program is resumed? Which
objects should be changed or discarded? All these ques-
tions relate to impacts caused by the change, which
should be analyzed and handled before resuming the
program. CSPL utilizes process states for this purpose.

CSPL keeps process program states during process enact-
ment. When an exception for changing a process program
occurs, CSPL immediately interrupts the program for
change. CSPL then analyzes and handles change impacts
using the program’s state. After the change, CSPL resumes
the process program. In the following subsections, (1)
process program state, (2) impact analysis and handling,
and (3) process program resumption are described.

3.2.1. Process program state
Process program states are primarily used in managing

process evolution. To decide what should be included in a
process program state, the followings are taken into consid-
eration:
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1. A changed process program may have created and
enacted other process programs through meta-processes.
Process change is expected to affect those directly or
indirectly created, which may need to be killed, changed,
or enacted. A process state should facilitate managing the
affected process programs when a process program is
changed.

2. Before changing a process program, some activities in
the program may have been completed and some objects
created. After resumption, some completed activities
should be redone, but not the others. Moreover, some
created objects should be discarded, some reused, and
some others changed. A process state should facilitate
deciding which activities should be enacted and which
objects should be discarded or changed after process
resumption.

With these considerations, CSPL keeps in its OMS server
the following as process program state: (1)process program
enactment treesto manage the affected process programs,
and (2) relationships between process programs and objects
to manage objects created before process change. Moreover,
CSPL language providesresume blocksto indicate which
activities should be enacted after process resumption.
Process program enactment tress and relationships between

process programs and objects are respectively described in
the following. The resume block will be described in
Section 3.2.3.

1. Process program enactment tree. A process program
enactment tree shows the creating and enacting relation-
ships between process programs. For example, Fig. 13
shows that ‘‘Process program A’’ creates and enacts
‘‘Process program A1’’ and ‘‘Process program A2’’.
Moreover, ‘‘Process program A1’’ creates and enacts
‘‘Process program A11’’ and ‘‘Process program A12’’.
A process program enactment tree can be traced to iden-
tify the affected process programs when a process
program is changed. The affected can then be reported
to CSPL users, who should decide which of the affected
must be killed, changed, or kept enacting.

2. Relationship between process program and object. Rela-
tionships between process programs and objects indicate
which process program creates which objects. For exam-
ple, Fig. 14 shows that ‘‘Process program1’’ creates
‘‘object11’’, ‘‘object12’’, ‘‘object1n’’, and so on. More-
over, ‘‘Process programn’’ creates ‘‘objectn1’’,
‘‘objectn2’’, ‘‘objectnm’’, and so on. The relationships
can be traced to identify objects created by a changed
process program. The objects can then be reported to
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CSPL users, who should decide which objects should be
reused, changed, or discarded.

3.2.2. Impact analysis and handling
Changing a process program will affect: (1) the process

programs created, (2) the objects created, and (3) the activ-
ities in the process program. To analyze the change impact,
CSPL identifies (1) the affected process programs by tracing
process program enactment trees (see Fig. 13), and (2) the
affected objects by tracing relationships between process
programs and objects (see Fig. 14). CSPL then reports the
affected process programs and objects to CSPL users. The
users then decide the handling of the affected process
programs and objects. Regarding activities in the changed
process program, the CSPL users should decide which must
be enacted after process resumption by using CSPL resume
block, as described in Section 3.2.3.

In handling the affected objects, CSPL removes those that
should be discarded and informs the corresponding devel-
opers to change those that should be changed. In handling an
affected process program, if it should be changed accord-
ingly, CSPL initiates the change by raising an exception. If
an affected process program should be killed, CSPL stops its
enactment and removes the objects it created.

3.2.3. Process program resumption
After change, the changed process program can be

resumed. However, as some activities may have been
completed before the change, a mechanism should be avail-
able to indicate which activities should be enacted after the
resumption. CSPL language providesresume blockfor this
purpose. As shown in Example 7, a resume block starts and
ends with the statements ‘‘resume block is’’ and ‘‘end
resume block’’, respectively. Statements inside resume
blocks will be enacted after process resumption.

Example 7. Process program with resume block.

task body CAI_RequirementAnalysis is
begin

loop

accept start;
CAI_analysis.GenSpec(CAI_requirement, CAI_speci-
fication);
– Statements inside resume block will be enacted by
the ‘‘resume’’ command
resume block is

review_result U CAI_analysis.ReviewSpec(CAI_re-
quirement,CAI_specification);
if review_result� 1 then

CAI_analysis.PlanEnactDesign(DesignProcess);

end if;

end resume block;

end loop;

end;
– Begin of the process
begin

resume block is

CAI_RequirementAnalysis.start;

end resume block;

end;

4. Object decomposition in CSPL

An activity to develop a large object could take a long
time. To well control large object development, the decom-
position of object and the assignment of sub-objects to
developers should be explicitly modeled in a process
program. Decomposing large objects has the following
advantages:

1. The schedule and budget of each sub-object development
can be separately assigned and controlled. This facilitates
project monitoring and control.

2. Clearly defining responsibilities between developers and
sub-objects facilitates document maintenance. For exam-
ple, suppose that the sub-objects of an object are expli-
citly assigned to three developers. Then, if the object
should be changed, each developer will be informed to
change the sub-object for which he/she is responsible.

3. The sequence for developing sub-objects can be defined
and controlled. For example (see Fig. 12), to test the CAI
system with a bottom-up testing procedure, the module
‘‘DBI’’ should be tested before others.

Example 8. Structure block

structure is

CAI_specification subsume UI_specification, DBAc-
cess_specification,

Reasoning_specification;

end structure;

To model object decomposition, CSPL language provides
structure block, which starts and ends with the statements
‘‘structure is’’ and ‘‘end structure’’, respectively. Inside the
block, the ‘‘subsume’’ statement is used to define the
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decomposition relationships. For example, the structure
block in Example 8 decomposes the CAI system specifica-
tion into three subspecifications: (1) ‘‘UI_specification’’,
(2) ‘‘DBAccess_specification’’, and (3) ‘‘Reasoning_speci-
fication’’.

As object decomposition may be unclear during process
modeling, it is better modeled through process evolution.
For example, while modeling the CAI system development
process, the developers have no idea about how to decom-
pose the system. Therefore, the original process program is
composed of an analysis process and a meta-process, which
looks like Fig. 10. After the analysis, the CAI system speci-
fication was defined and the system can be decomposed. The
process program can thus be evolved to contain the decom-
position and design processes, which may look like Fig. 11.

5. The CAI system example

In this section, the CAI system example is used to show
process evolution and the corresponding object decomposi-
tion. During project planning, the developers cannot decide
on the decomposition of the system. Therefore, only an
analysis process, which includes the activities to define
and review specification, is planned. The design process
will be created and enacted by a meta-process after analysis.
The process program containing the analysis process and the
meta-process is shown in Appendix A. Note that in order to
improve understandability of the appendix, parts irrelevant
to process evolution are replaced by ‘‘…’’.

The process program in Appendix A is then enacted.
Suppose that after the CAI specification has been created
and the review starts, the reviewers decide to change the
specification review strategy from formal review to a rapid
prototyping technique. The process program should thus be
changed. Appendix B shows the process program after
change, in which the function ‘‘ReviewSpec’’ is changed.
In the resume blocks near the end of Appendix B, one can
see that the review activity and the meta-process for creating
the design process should be enacted after process resump-
tion.

After the specification is reviewed, decomposition of the
CAI system can be determined. Therefore, the design
process can be created through a meta-process. Appendix
C shows the process program containing the design process,
in which the CAI system specification is decomposed into
these three subspecifications: (1) ‘‘UI_specification’’, (2)
‘‘DBAccess_specification’’, and (3) ‘‘Reasoning_specifica-
tion’’. The subspecifications are then designed by three
concurrent tasks. Having finished the design, subdesign
documents are combined and reviewed. Then, according
to the system architecture as shown in Fig. 12, the imple-
mentation and test process can be created and enacted using
a meta-process. As the creation of implementation and test
process is similar to that of the design process, it is not
described here.

6. Related work

The need for process evolution is widely recognized
[23,25]. Researches of process evolution can be roughly
classified into the following two categories: (1) those
providing techniques to collect and analyze data, and then
evolve a process according to the analysis results, and (2)
those providing techniques to support process evolution
during process enactment in a PSEE. Some related works
in the two categories are briefly discussed in the ensuing
paragraphs.

6.1. Techniques that collect and analyze data, and then
evolve processes

The quality improvement paradigm (QIP) technique [26]
is an evolutionary concept for learning and improvement. It
utilizes the goal/question/metric (GQM) [27–28] paradigm
to set project goals and define metrics. During process
execution, metric data are collected and analyzed. The
analysis results are then used for process improvement.
And, the experiences obtained are packaged for future
projects.

In the helical model [29], an existing process is first eval-
uated by: (a) subjective and/or qualitative information, and
(b) objective measurement and feedback data. The evalua-
tion results are then used to develop the desired process,
which is then executed and monitored. The helical model
can be recursively applied to a process for continuing
improvement.

In the method by Bhandari et al. [30], the defect-based
process improvement is used. The method is composed of
these activities: (a) defect classification, and (b) defect
analysis and feedback. The feedback can then be used to
improve processes.

The improvement method by Basilli et al. [31] is also
based on defect analysis. It is composed of the steps to:
(a) characterize approaches/environments, (b) set up goals,
questions, and data for successful project development and
improve over previous project development, (c) choose
appropriate methods and tools for the project, (d) perform
software development, collect and validate data, and feed-
back, and (e) analyze data for process improvement.

6.2. Techniques to support process evolution during process
enactment in a PSEE

SPADE [22] provides a reflective, Petri-net based process
language SLANG [32–33]. During process enactment, a
process model is enacted by multiple process engines, in
which an engine enacts an activity. Before the enactment
of an activity, an active copy should be prepared based on
the activity and the object types it uses. This allows late
binding between activity definitions and invocations.
Process evolution can thus be accomplished by changing
active copies of activities. The change is normally defined
as a meta-process.
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EPOS [24,34] provides a rule-based process language
SPELL [4]. During process enactment, meta-classes,
classes, and instances of objects and process models are
stored in a database called EPOSDB [24]. Contents in
EPOSDB are all subject to change. Process evolution can
be accomplished by changing meta-classes, classes, or
instances of process models. The process model (PM)
manager manages process change. When a change request
occurs, the PM manager checks whether the change is
allowed. If so, the PM manager analyzes the impacts of
the change. It then interacts with users to solve the problems
resulting from the impacts.

OPSIS [35] decomposes a process model into various
views such as role, product, and so on. It provides techni-
ques to: (1) extract views from a process model, and (2)
compose views. In OPSIS, process evolution focuses on a
set of views instead of on the whole process model. The
authors believed that expressing process evolution on a set
of views is more accurate and convenient than on a single
huge process model.

In Process Weaver [6], process models can be instantiated
as instances for enactment. Through the feature of late bind-
ing, a process model can be changed dynamically during
enactment. Therefore, process models need not be comple-
tely defined during enactment. Process Weaver provides a
mechanism for dynamic changing the process models being
enacted. Through the mechanism, the process instances that
are scheduled for future enactment can be changed.

In the Tempo technique [21], processes are modeled as
types which can be instantiated as instances for enactment.
Process evolution is accomplished by changing a process
type, and then instantiating the type. The process instances
being enacted will not be affected by the change, which
corresponds to a lazy change policy [23]. Tempo also
supports process evolution through dynamically changing
role during enactment. As different roles perform different
activities on the same product, changing role corresponds to
changing process.

In the Hdev process of the OBM environment [36],
processes operating on a product is defined as the product’s
methods, where product types are modeled as abstract
objects using the object-oriented paradigm. Process evolu-
tion is accomplished by changing the methods of abstract
objects. Method change is accomplished by invoking the
method ‘‘changeself’’. Therefore, the OBM language can
be considered a reflective language that facilitates process
change.

In the research by Gugola et al. [37–38], the observed
process is allowed to diverge from the modeled process.
With this, process evolution can be accomplished by toler-
ating process deviation. The technique models process
enactment as state transitions. Each transition is associated
with pre-conditions, and each state is associated with
constraints. A state transition fulfilling its pre-conditions
can fire. This corresponds to a process that does not diverge.
A state transition fails to meet its pre-conditions that can

also fire. After this firing, if the state constraints are not
violated, the state is safe. This corresponds to process devia-
tion that is tolerable. If any constraint is violated, the state is
unsafe. This corresponds to process deviation that is not
tolerable. On the occurrence of an unsafe state, data
(objects) produced should be discarded. This results in an
activity ‘‘pollution analysis’’, which is similar to impact
analysis.

The Agile software process (ASP) model [39] is based on
an incremental-delivery and evolutionary model by which
products are incrementally delivered. An ASP model is thus
composed of a number of light-weight processes. With this,
an ASP model can quickly adapt the change in require-
ments. The need for process evolution can thus be reduced.

Process evolution support in CSPL belongs to the second
category described before. That is, CSPL environment
supports process evolution during process enactment.
When comparing our technique with techniques in the
same category, the followings are obtained:

1. Unlike Process Weaver and Tempo, CSPL process
programs cannot be instantiated. That is, only a single
copy of a process program is enacted. Therefore, process
evolution in CSPL is not accomplished by late binding.
Instead, it is accomplished by meta-processes and
process change.

2. Process evolution in CSPL takes an eager policy [23].
That is, CSPL immediately propagates the change effects
to the affected process programs. This policy is expected
to prevent the changed process programs from producing
too many incorrect products. Regarding the technique
mentioned before, Tempo and Process Weaver seem to
take a lazy policy. Others may take a policy somewhere
between the eager and lazy policies.

3. CSPL supports both meta-process and process program
change for process evolution. Regarding the techniques
mentioned before, SPADE support meta-processes.
EPOS, OPSIS, Process Weaver, Tempo, and Hdev
allow process program change, where EPOS limits the
change to those being allowed [24]. Note that process
change in Process Weaver and Tempo is accomplished
by the late binding feature.

4. After process change, CSPL facilitates: (a) identifying
which process programs should be killed or changed
accordingly, (b) identifying which products should be
modified or even discarded, and (c) indicating which
activities should be enacted after process resumption.
This corresponds to impact analysis and handling.
Among the techniques mentioned before, it seems that
only EPOS and the research by Gugola et al. support this
analysis and handling.

7. Conclusions and future work

Process evolution refers to dynamically changing process
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programs during process enactment. It is needed in PSEE
because: (1) parts of a software process may be unclear
during process modeling, and (2) processes may change
during enactment. CSPL environment provides the follow-
ing two mechanisms for process evolution:

1. Evolution through meta-process. CSPL provides meta-
processes to create and enact other process programs.
Software processes with high uncertainty, such as those
that are currently unclear, those that are changeable, and
those that will be enacted a long time later, need not be
defined during process modeling. Instead, they can be
created and enacted by meta-processes after the uncer-
tainty is resolved.

2. Evolution through process program change. CSPL
allows an enacting process program to change. When
an exception for changing a process program occurs,
CSPL immediately interrupts the program for change.
It then identifies the affected process programs and
objects by examining the process program’s state. In
handling the affected objects, CSPL removes those that
should be discarded and informs corresponding develo-
pers to change those that should be changed. In handling
the affected process programs, CSPL raises exceptions to
change those that should be changed and stops those that
should be killed. It also removes the objects created by
the process programs that should be killed. After change,
CSPL resumes the process program. CSPL provides
resume block to indicate which activities should be
enacted after resumption.

CSPL also allows modeling object decomposition. With
this, the schedule, budget, and developer for each sub-object
can be separately assigned and controlled. Moreover, the
sequence for sub-object development can be defined and
controlled. As object decomposition of a system may be
unclear during process modeling, it is better modeled
through process evolution.

We have advised our students to use CSPL in developing
their term projects. From their usage, the following experi-
ences about process evolution were obtained:

1. Processes do evolve. Process evolution in the student
projects occurred frequently. A process program might
evolve according to changing roles or tools, modifying
activities or tasks, and so on. The frequent evolution
seems to be caused by poor project planning. Therefore,
we do not suppose that processes in commercial software
projects will evolve frequently. However, we do believe
that processes will evolve according to schedule or
budget overrun, requirement change, and so on.

2. Meta-processes can be used to develop and enact process
programs incrementally. In monitoring student projects,
we were surprised that some students did not plan their
project. Their strategy was to put the easy-to-identify
activities in a process program and used a meta-process
for other parts. Having completed the easy-to-identify

activities, the meta-process was enacted, in which the
students applied the same strategy mentioned earlier to
create a process program. The strategy was recursively
applied until occasionally the project was finished.
This kind of usage notified us that process programs can
be created and enacted incrementally through meta-
processes. This usage is especially valuable in a project
with high uncertainty.

3. Process program change requires heavy human engage-
ment. The change and resumption of a process program
is accomplished through the interaction of developers
and CSPL environment. When a process program is
changed, CSPL reports the affected process programs
and objects to developers. The developers then direct
CSPL to handle those affected. Meanwhile, developers
should modify the process program and use resume
blocks to indicate CSPL about the enactment of activities
after resumption. According to the preceding description,
process program change requires heavy human engage-
ment.

In the future, our research is expected to complete the
following works:

1. Enhance CSPL to tolerate minor evolution. From the
third experience mentioned before, we believe that the
frequency of process program change should be reduced.
Therefore, in the future we will enhance CSPL to tolerate
minor process evolution. For example, the change of
tools or roles can be tolerated by CSPL, and therefore
no process program change is needed in these cases.

2. Design metrics for process program performance and a
technique to collect and analyze data. During process
enactment, feedback can be obtained from developers
or customers, with which process performance can be
evaluated. According to the evaluation, a poor performed
process program should be evolved. Therefore, feedback
and its evaluation are key factors in effective process
evolution. To facilitate the evaluation, in the future we
will: (a) design metrics for process program perfor-
mance, and (b) design a technique to collect and analyze
metrics data.

3. Enhance CSPL to facilitate process program change
control. Currently, process program change in CSPL is
controlled by a project manager. That is, the manager
raises exceptions to change process programs according
to developer feedback. This, however, may increase the
workload of the manager, because he/she should coordi-
nate developers for that change. In the future, we will
enhance CSPL to facilitate controlling the change.
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Appendix A

The CAI system analysis process is listed below:

– To improve understandability, parts irrelevant to evolu-
tion are replaced by ‘‘…’’.
– tool definition
…
– role definition
…
– Packages specification
package CAI_analysis is

– Type definitions
…
procedure GenSpec(CAI_requirement: in Requirement,
CAI_specification: in

out Specification);

function ReviewSpec(CAI_requirement: in Require-
ment, CAI_specification: in

Specification) return integer;

procedure PlanEnactDesign(DesignProcess: out Text-
Type);
– The procedure ‘‘PlanEnactDesign’’ is a meta-
process. It plans and enacts
– the design process.

end CAI_analysis

– Package body
package body CAI_analysis is

procedure GenSpec(CAI_requirement: in Requirement,
CAI_specification: in

out Specification) is

begin
…
end;
function ReviewSpec(CAI_requirement: in Require-
ment, CAI_specification: in

Specification) is

begin

review_result: integer;
all reviewer review CAI_specification referring to
CAI_requirement using

ReviewTool resulted in review_result;

return review_result;

end;

procedure PlanEnactDesign(DesignProcess: out Text-
Type) is

begin

1 ProcessProgrammer edit DesignProcess using editor;
enact DesignProcess;

end;

end CAI_analysis

with CAI_analysis
procedure StartTask is
– Data definitions
…
– Task specifications
task CAI_RequirementAnalysis is

entry start;

end;

– Task bodies
task body CAI_RequirementAnalysis is
begin

loop

accept start;
CAI_analysis. GenSpec(CAI_requirement, CAI_speci-
fication);
review_resultU

CAI_analysis. ReviewSpec(CAI_requirement, CAI_
specification);

if review_result� 1 then

CAI_analysis.PlanEnactDesign(DesignProcess);

end if;

end loop;

end;

– Begin of the process
begin

CAI_RequirementAnalysis.start;

end;

Appendix B

After changing the specification review process, the
process program is listed below:

– tool definition
…
– role definition
…
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– Packages specification
package CAI_analysis is

– Type definitions
…
type Prototype is new DocType with record

FormalSpecification: TextType;

end record;
– ‘‘Prototype’’ is a new object type
procedure GenSpec(CAI_requirement: in Requirement,
CAI_specification: in

out Specification);

function ReviewSpec(CAI_requirement: in Require-
ment, CAI_specification: in

Specification) return integer;

procedure PlanEnactDesign(DesignProcess: out Text-
Type);
– The procedure ‘‘ PlanEnactDesign’’ is a meta-
process. It plans and enacts the
– design process.

end CAI_analysis

– Package body
package body CAI_analysis is

procedure GenSpec(CAI_requirement: in Requirement,
CAI_specification: in

out Specification) is

begin
…
end;

– The function ‘‘ReviewSpec’’ has been changed
function ReviewSpec(CAI_requirement: in Requirement,
CAI_specification: in

Specification) is

begin

review_result: integer;
CAI_prototype: PrototypeU ‘‘CAI_prototype.doc’’;
1 analyst edit CAI_prototype referring to CAI_specifi-
cation using

PrototypeTool;

all reviewer review CAI_prototype referring to CAI_
requirement using

PrototypeTool resulted in review_result;

return review_result;

end;

procedure PlanEnactDesign(DesignProcess: out Text-
Type) is
begin

…

end;

end CAI_analysis

with CAI_analysis;
procedure StartTask is
– Data definitions
…
– Task specifications
task CAI_RequirementAnalysis is

entry start;

end;

– Task bodies
task body CAI_RequirementAnalysis is
begin

loop

accept start;
CAI_analysis.GenSpec(CAI_requirement, CAI_speci-
fication);
– Statements inside resume block will be enacted after
process
– resumption.
resume block is

review_resultU

CAI_analysis.ReviewSpec(CAI_requirement, CAI_
specification);

if review_result� 1 then

CAI_analysis. PlanEnactDesign(DesignProcess);

end if;

end resume block;

end loop;

end;

– Begin of the process
begin

resume block is

CAI_RequirementAnalysis.start;

end resume block;

end;
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Appendix C

The design process created by the meta-process in
Appendix A is listed below:

– tool definition
…
– role definition
…
package CAI_design is
– Type definitions
…
procedure GenDesign(subspecification: in Specification,
subdesign: in out

DesignDocu, specific_developer: in designer, deadline:
in time);

procedure CombineDesign(CAI_design: out Design-
Docu, UI_design: in

DesignDocu, DBAccess_design: in DesignDocu,
Reasoning_design: in
DesignDocu);

function ReviewDesign(CAI_specification: in Specifica-
tion, CAI_design: in

DesignDocu) return integer;

procedure PlanEnactImplTest(ImplTestProcess: out
TextType);
– The meta-process ‘‘PlanEnactImplTest’’ plans and
enacts the
– implementation and test process.
end CAI_design;

package body CAI_design is

procedure GenDesign(subspecification: in Specifica-
tion, subdesign: in out

DesignDocu, specific_developer: in designer, deadline:
in time) is

begin

…

end;

procedure CombineDesign(CAI_design: out Design-
Docu, UI_design: in

DesignDocu, DBAccess_design: in DesignDocu,
Reasoning_design: in
DesignDocu) is

begin

…

end;

function ReviewDesign(CAI_specification: in Specifi-
cation, CAI_design: in

DesignDocu) is

begin

…

end;

procedure PlanEnactImplTest(ImplTestProcess: out
TextType) is
begin

1 ProcessProgrammer edit ImplTestProcess using
editor;
enact ImplTestProcess;

end;

end CAI_design;

with CAI_design;
procedure StartTask is
– Data definitions
…
– Definition of object decomposition
structure is

CAI_specification subsume UI_specification, DBAc-
cess_specification,

Reasoning_specification;

end structure;

…
task bodyUI_design_task is
begin

…

end;

task body DBAccess_design_task is
begin

…

end;

task body Reasoning_design_task is
begin

…

end;
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task body review_design_task is
UI_design_end: event;
DBAccess_design_end: event;
Reasoning_design_end: event;
begin

loop

waitfor UI_design_end and DBAccess_design_end and

Reasoning_design_end;

CAI_design.CombineDesign(CAI_design, UI_design,
DBAccess_design,

Reasoning_design);

review_resultU CAI_design.ReviewDesign (CAI_spe-
cification,

CAI_design);

if review_result� 1 then

CAI_design.PlanEnactImplTest(ImplTestProcess);

end if;

end loop;

end;

– Begin of the process
begin

– Concurrently start the three design tasks
…

end;
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