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Abstract. The relativistic dyonium system is solved by the path integral approach. The energy
spectra and the discrete as well as continuous wavefunctions are evaluated explicitly.

1. Introduction

Over the past 20 years considerable progress has been made in solving the path integrals
(PI) of the non-relativistic potential problems. It is no exaggeration to say that today we
are able to solve essentially all path integrals in quantum mechanics, which correspond to
problems for which the Schrödinger equation can be solved exactly [1]. However, the same
thing cannot be said for the relativistic potential problems. Only a few problems concerning
relativistic particles have been discussed using PI. In this paper, we perform the path integral
of a relativistic particle with both electric and magnetic charges(e1, g1) moving in the field
created by another charge(e2, g2) located at the centre, i.e. the dyonium system. This result is
an extension of Kleinert’s paper [2] where the relativistic Coulomb system was solved using the
path integral. The corresponding non-relativistic case of this system was studied by different
quantization methods in [3–10].

The method presented in this paper can serve as a prototype for the path integral of arbitrary
relativistic spinless systems.

2. The relativistic path integral

Adding a vector potentialA(x) to Kleinert’s path integral for a relativistic particle in a scalar
potentialV (x) [2], we find that the path integral representation of the fixed-energy amplitude
(Green’s function) of a relativistic particle in an external static electromagnetic field is given
by [11]

G(xb,xa;E) = ih̄

2Mc

∫ ∞
0

dS
∫
Dρ(λ)8[ρ(λ)]

∫
D3x(λ) exp{−AE/h̄}ρ(0) (2.1)

with the action

AE =
∫ λb

λa

dλ

[
M

2ρ(λ)
x′ 2(λ)− i(e/c)A(x) · x′(λ)− ρ(λ)(E − V (x))

2

2Mc2
+ ρ(λ)

Mc2

2

]
.

(2.2)
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This path integral representation arises from the limiting condition of theλ-sliced version

G(xb,xa;E) = lim
n→∞

ih̄

2Mc

∫ ∞
0

dS
N+1∏
n=1

[∫
dρn8(ρn)

]

× 1

(2πh̄εbρb/M)3/2

N∏
n=1

[∫ ∞
−∞

d3xn

(2πh̄εnρn/M)D/2

]
exp

{
−1

h̄
AN
}
ρ(0) (2.3)

where theλ-sliced action

AN =
N+1∑
n=1

[
M(xn − xn−1)

2

2εnρn
− i
e

c
A(xn) · (xn − xn−1)− εnρn (E − V (xn))

2

2Mc2
+ εnρn

Mc2

2

]
(2.4)

with εn = λn − λn−1, λb = λN+1, λa = λ0,xa = x(λ0) andxb = x(λn+1).
In equation (2.1), ¯h/Mc is the well known Compton wavelength of a particle of massM,

E is the system energy andx is the spatial part of the (3 + 1) vectorx = (x, τ ), S is defined as

S =
∫ λb

λa

dλ ρ(λ) (2.5)

whereρ(λ) is an arbitrary dimensionless fluctuating scale variable withρ(0) the terminal point
of the functionρ(λ), and8[ρ(λ)] is some convenient gauge-fixing functional [2, 12, 13]. The
only condition on8[ρ(λ)] is that∫

Dρ(λ)8[ρ(λ)] = 1. (2.6)

For the dyonium system under consideration, the potential is

V (x) = −e
2

r
(2.7)

and the vector potential reads

A(x) = h̄q (x1x̂2 − x2x̂1)x3

rx2
⊥

(2.8)

wherex⊥ ≡ (x1, x2, 0), andx̂i denotes the basis vectors in the Cartesian coordinate frame.
The constantsq ≡ −(e1g2− e2g1)/h̄c ande2 ≡ −e1e2− g1g2 in equations (2.7) and (2.8) are

combinations of the electric and magnetic charges of the two particles, andr ≡
√
x2

1 + x2
2 + x2

3

is the radial distance, as usual. The hydrogen atom is a special case of the dyonium system
with e1 = −e2 = e and q = 0. An electron around a pure magnetic monopole has
e1 = e, g2 = g, e2 = g1 = 0. In the vector potential we have taken the gauge freedom
A → A(x) + ∇3(x) to enforce the transverse gauge∇ · A(x) = 0. In addition, we have
taken advantage of the extra monopole gauge invariance [14] which allows us to choose the
shape of the Dirac string that imports the magnetic flux to the monopoles. The fieldA(x)

in equation (2.8) has two strings of equal strength importing the flux, one along the positive
x3-axis from plus infinity to the origin, and the other along the negativex3-axis from minus
infinity to the origin. As a consequence of monopole gauge invariance, parameterq has to be
an integer or a half-integer number [14], a condition referred to as Dirac’s charge quantization.

To obtain a tractable path integral for the potentialV (x) = −e2/r, we choose the
fluctuating scale variableρn = rn and the gauge-fixing condition∫
Dρ(λ)8[ρ(λ)] = lim

N→∞

N+1∏
n=1

[∫
d(x4)n

(2πh̄εnrn/M)1/2

]
exp

{
−1

h̄

N+1∑
n=1

M

2

(4x4)
2
n

εnrn

}
. (2.9)
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The unity condition is satisfied automatically. With equation (2.9), the path integral of
equation (2.3) turns into

G(xb,xa;E) ≈ ih̄

2Mc

∫ ∞
0

dS
∫

d(x4)b
rb

(2πh̄εbrb/M)2

×
N∏
n=1

[∫ ∞
−∞

d4xn

(2πh̄εnrn/M)2

]
exp

{
−1

h̄
AN
}

(2.10)

where the sign≈ in this equation becomes an equality forN → ∞, andAN is the action of
equation (2.4) in which the constantρ(0) is chosen asrb and the 3-vectorsxn of the kinematic
term are replaced with the 4-vectorsExn. This extends the kinetic action to

ANkin =
N+1∑
n=1

M

2

(Exn − Exn−1)

εnrn
. (2.11)

The path integral can be simplified by the KS transformation [9, 15–17]

dEx = 2A(Eu) dEu. (2.12)

The arrow on the top of thex indicates thatx has become a 4-vector. For symmetry reasons,
the 4× 4 matrixA(Eu) is chosen as

A(Eu) =


u3 u4 u1 u2

u4 −u3 −u2 u1

u1 u2 −u3 −u4

u2 −u1 u4 −u3

. (2.13)

With help of the transformation, the original measure changes into

d4x = 16r2 d4u (2.14)

and the square of the derivative of the 4-vectorEx has the form

Ex ′ 2 = 4Eu2Eu′ 2 = 4r Eu′ 2. (2.15)

The magnetic interaction turns into

A · x′ = − h̄q
r

[
u1u′ 2 − u2u′1

(u1)2 + (u3)2
+
u4u′3− u3u′4

(u3)2 + (u4)2

] [
(u1)2 + (u2)2 − (u3)2 − (u4)2

]
. (2.16)

We obtain a path integral in the continuum limit equivalent to equation (2.10),

G(xb,xa;E) = ih̄

2Mc

∫ ∞
0

dS eSEe
2/h̄Mc2

G(Eub, Eua; S) (2.17)

whereG(Eub, Eua; S) denotes the amplitude

G(Eub, Eua; S) = 1

16

∫
d(x4)b

rb

∫
D4u(λ) exp

{
1

h̄
A

}
(2.18)

with the action

A =
∫ S

0
dλ

[
mEu′ 2

2
− i( EA · Eu′(λ)) +

mω2Eu2

2
− 4h̄2α2

2mEu2

]
(2.19)

and the functional measure in theλ-sliced form∫
D4u(λ) ≈ 1

(2πh̄εb/m)2

N∏
n=1

[∫ ∞
−∞

d4un

(2πh̄εn/m)2

]
. (2.20)
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The parameters are

m = 4M ω2 = M2c4 − E2

4M2c2
. (2.21)

Hereα denotes the ‘fine’-structure constantα ≡ e2/h̄c, and EAn · Eu′ is given by equation (2.16).
Let us analyse the effect which comes from the magnetic interaction in the Coulomb

system. We first express(u1, u2, u3, u4) in terms of Euler angles (e.g. [14]):

u1 = √r cos(θ/2) cos[(ϕ + γ )/2]

u2 = √r cos(θ/2) sin[(ϕ + γ )/2]

u3 = √r sin(θ/2) cos[(ϕ − γ )/2]

u4 = √r sin(θ/2) sin[(ϕ − γ )/2]


 06 θ 6 π

06 ϕ 6 2π
06 γ 6 4π

. (2.22)

Then the action of equation (2.19) reads

A =
∫ S

0
dλ

{
m

2

[
u′ 2 +

u2

4

(
θ ′ 2 + ϕ′ 2 + γ ′ 2 + 2ϕ′

(
γ ′ − 4h̄q i

mu2

)
cosθ

)]
+
mω2Eu2

2
− 4h̄2α2

2mEu2

}
. (2.23)

In terms of canonical momenta the coordinates(u, θ, ϕ, γ ) can be as follows:

u′ = pu

m

θ ′ = pθ

ξ

γ ′ = 1

ξ sin2 θ

[
pγ + ηξ cos2 θ − pϕ cosθ

]
ϕ′ = 1

ξ sin2 θ
[pϕ − ηξ cosθ − pγ cosθ ]

(2.24)

where the variablesη ≡ −4h̄q i/mu2 andξ ≡ mu2/4. Since equation (2.22) transforms dx4

into

dx4 = 2
(
u2 du1− u2 du1 + u4 du3− u3 du4

)
= r(cosθ dϕ + dγ ) (2.25)

the integral
∫
(dx4)b/rb in the measure of equation (2.18) becomes

∫
dγb. This is due to

the x and thus the angles(θ, ϕ) remain fixed during thex4 integration. With the help of
equation (2.24), we obtain the canonical form of the path integral,

ih̄

2Mc

∫ ∞
0

dS eSEe
2/h̄Mc2 1

16

∫ 4π

0
dγb

∫
D4u(λ)

∫ ∞
−∞

D4p(λ)

2πh̄
exp

{
−1

h̄
A

}
(2.26)

where the action is given by

A =
∫ S

0
dλ{−i[puu

′ + pθθ ′ + pϕϕ′ + pγ γ ′] + H } (2.27)

with the Hamiltonian

H = 1

2m

{
p2
u +

4

Eu2

[
p2
θ +

1

sin2 θ

(
p2
ϕ + p2

γ − 2(pγ + h̄q)pϕ cosθ
)]}

+
4

2mEu2

[−2h̄qpγ + h̄2
(
α2 + q2

)]
+ 1

2mω
2Eu2. (2.28)
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In the canonical path integral, the momenta are dummy integration variables so that we can
replace(pγ + h̄q) by pγ . Then the action becomes

A =
∫ S

0
dλ{−i[puu

′ + pθθ ′ + pϕϕ′ + (pγ − h̄q)γ ′] + H̄ } (2.29)

with the Hamiltonian

H̄ = 1

2m

{
p2
u +

4

Eu2

[
p2
θ +

1

sin2 θ

(
p2
ϕ + p2

γ − 2pγpϕ cosθ
)]}

+
4

2mEu2

[−2h̄q(pγ − h̄q) + h̄2
(
α2 + q2

)]
+
mω2Eu2

2
. (2.30)

This differs from the pure relativistic Coulomb system in two ways [2].
First, the Hamiltonian has an extra centrifugal barrier proportional to the charge parameter

q:

V (r) = −2h̄q(pγ − h̄q)
2Mr

. (2.31)

Secondly, the action of equation (2.29) contains an additional term

4A = −h̄q
∫ S

0
dλ γ ′. (2.32)

Fortunately, this is a pure surface term4A = −h̄q(γb − γa). The modification consists of a
simple extra phase factor in the integral overγb so that

G(xb,xa;E) = ih̄

2Mc

∫ ∞
0

dS eSEe
2/h̄Mc2 1

16

∫ 4π

0
dγb e−iq(γb−γa)G(Eub, Eua; S). (2.33)

Since the integral overγb forces the momentumpr in the canonical action (2.29) to take the
valueh̄q. This eliminates the term proportional topγ − h̄q in equation (2.30), therefore the
fixed-energy amplitude inu-space turns into

G(Eub, Eua; S) =
[∫ ∞
−∞
D4u(λ)

]
exp

{
−1

h̄
A

}
(2.34)

with the action

A =
∫ S

0
dλ

{
mEu′ 2

2
+
mω2Eu2

2
− 4(α2 + q2)h̄2

2mEu2

}
. (2.35)

It describes a particle with massm = 4M moving as a function of the ‘pseudo-time’λ in a
four-dimensional harmonic oscillator potential of frequency

ω2 = M2c4 − E2

4M2c2
. (2.36)

The oscillator possesses an additional attractive potential−4(α2 + q2)h̄2/2mEu2 which is
conveniently parametrized in the form of a centrifugal barrier

Vextra= h̄2 l
2
extra

2mEu2
(2.37)

whose squared angular momentum has the negative valuel2extra ≡ −4(α2 + q2). There are
no λ-slicing corrections. This is ensured by the affine connection of KS transformation
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satisfying0 µλ
µ = gµνe λ

i ∂µe
i
ν = 0 and the transverse gauge∂iAi = 0 [16]. The path

integral equation (2.35) can be performed and is given by

G(Eub, Eua; S) = 1

ubua

∞∑
l=0

G(ub, ua; S, l) l + 1

2π2

l/2∑
k1,k2=−l/2

d
l/2
k1,k2

(θb) d
l/2
k1,k2

(θa) eik1(ϕb−ϕa)+ik2(γb−γa)

(2.38)

with the radial amplitude

G(ub, ua; S, l) = mω

h̄ sinhωS
e−(mω/2h̄)(u

2
b+u

2
a) cothωSI√

(l+1)2−4(α2+q2)

(m
h̄

ωubua

sinhωS

)
(2.39)

wheredl/2k1,k2
(θ) eik1ϕ+ik2γ are the representation functions of the rotation group (e.g. [16]). The

integral
∫ 4π

0 dγa e−iq(γb−γa) in equation (2.33) can be easily done. We arrive at the fixed-energy
amplitude of the relativistic dyonium system, now labelled by the subscriptD,

G(xb,xa;ED) = 1√
rbra

∑
lD

G(rb, ra;ED, lD)
lD∑

k=−lD
YlD,k,q(θb, ϕb)Y

?
lD,k,q

(θa, ϕa) (2.40)

whereYlD,k,q(θb, ϕb) are the so-called monopole harmonics

YlD,k,q(θ, ϕ) =
√
l + 1

4π
eikϕd

lD
k,q(θ) (2.41)

andlD is defined asl/2. The radial amplitude for the dyonium is

G(rb, ra;ED, lD) = ih̄

2Mc

1

2

∫ ∞
0

dS eSEDe
2/h̄Mc2

× mω

h̄ sinhωS
e−(mω/2h̄)(rb+ra) cothωSI√

(2lD+1)2−4(α2+q2)

(
mω
√
rbra

h̄ sinhωS

)
. (2.42)

This integral can be calculated by employing the formula∫ ∞
0

dy
e2νy

sinhy
exp

[− 1
2 t (ζa + ζb) cothy

]
Iµ

(
t
√
ζbζa

sinhy

)
= 0((1 +µ)/2− ν)

t
√
ζbζa0(µ + 1)

Wν,µ/2(tζb)Mν,µ/2(tζb) (2.43)

with the range of validity

ζb > ζa > 0

Re[(1 +µ)/2− ν] > 0

Re(t) > 0 | argt | < π

whereMµ,ν andWµ,ν are the Whittaker functions [18] (see p 1087). Thus we complete the
integration of equation (2.42), and find the amplitude forrb > ra in the closed form

G(rb, ra;ED, lD) = ih̄

2Mc

Mc√
M2c4 − E2

D

×
0
(

1
2 + 1

2

√
(2lD + 1)2 − 4(α2 + q2)− EDα/

√
M2c4 − E2

D

)
√
rbra0

(√
(2lD + 1)2 − 4(α2 + q2) + 1

)
×W

EDα/
√
M2c4−E2

D,
√
(2lD+1)2−4(α2+q2)/2

(
2

h̄c

√
M2c4 − E2

Drb

)
×M

EDα/
√
M2c4−E2

D,
√
(2lD+1)2−4(α2+q2)/2

(
2

h̄c

√
M2c4 − E2

Dra

)
. (2.44)
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The energy spectra and wavefunctions can be extracted from the poles of equation (2.44). For
convenience, we define the following variables:

κ = 1

h̄c

√
M2c4 − E2

D

ν = αED√
M2c4 − E2

D

l̃D =
√
(lD + 1/2)2 − (α2 + q2)− 1

2 .

(2.45)

From the poles ofG(rb, ra;ED, lD), we find that the energy levels must satisfy the equality

−ν + l̃D + 1= −nr nr = 0, 1, 2, 3, . . . . (2.46)

After some mathematical manipulation, we have

Enr,lD = ±Mc2

1 +
α2(

1
2 + 1

2

√
(2lD + 1)2 − 4

(
q2 + α2

)
+ nr

)2
−1/2

. (2.47)

The pole positions, which satisfyν = ñlD ≡ n + l̃D − lD (n = lD + 1, lD + 2, lD + 3, . . .),
correspond to the bound states of the relativistic dyonium system. Near the positive-energy
poles, we use the behaviour forν ≈ ñlD ,

0(−ν + l̃D + 1)
M

h̄κ
≈ − (−)

nr

ñ2
lD
nr !

1

ãD

(
ED

Mc2

)2 2h̄Mc2

E2
D − E2

nlD

(2.48)

whereãD ≡ aDMc
2/ED (aD = h̄2/Me2) is the modified energy-dependent dyonium Bohr

radius andn ≡ nr + lD + 1 is the principal quantum number, to extract the wavefunctions of
the dyonium system

G(rb, ra;ED, lD) = − ih̄

2Mc

1

(rbra)

∞∑
n=lD+1

(
ED

Mc2

)2 2h̄Mc2

E2
D − E2

nlD

× 1

[(2l̃D + 1)!] 2

1

ñ2
lD
ãD

(ñlD + l̃D)!

(n− lD − 1)!
e−(rb+ra)/ãDñlD

(
2rb
ãDñlD

2ra
ãDñlD

)l̃D+1

×M(−n + lD + 1, 2l̃D + 2; 2rb
ãDñlD

)M

(
−n + lD + 1, 2l̃D + 2; 2ra

ãDñlD

)
= − ih̄

2Mc

1

(rbra)

∞∑
n=lD+1

(
ED

Mc2

)2 2h̄Mc2

E2
D − E2

nlD

RnlD (rb)R
∗
nlD
(ra) + · · · (2.49)

where we have expressed the Whittaker functionMλ,µ(z) in terms of the Kummer functions
M(a, b; z) [18] (p 1087),

Mλ,µ(z) = zµ+1/2e−z/2M(µ− λ + 1
2, 2µ + 1; z). (2.50)

From this we obtain the radial wavefunctions

RnlD (r) =
1

ñlD ã
1/2
D

1

(2l̃D + 1)!

√
(ñlD + l̃D)!

(n− lD − 1)!

×
(

2r

ãDñlD

)l̃D+1

e−r/ãDñlDM
(
−n + lD + 1, 2l̃D + 2; 2r

ãDñlD

)
. (2.51)
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The normalized wavefunctions are given by

9nlDkq(x) =
1

r
RnlD (r)YlD,k,q(x̂). (2.52)

Before extracting the continuous wavefunction we note that the parameterκ is real for
|ED| < Mc2. For|ED| > Mc2, the square root in equation (2.45) has two imaginary solutions

κ = ∓ik̃ k̃ = 1

h̄c

√
E2
D −M2c4 (2.53)

corresponding to

ν = ±iν̃ ν̃ = EDα

h̄ck̃
. (2.54)

Therefore, the amplitude has a right-handed cut forED > Mc2 andED < −Mc2. For
simplicity, we will only consider the positive energy cut.

The continuous wavefunctions are recovered from the discontinuity of the amplitudes
G(rb, ra;ED, lD) across the cut in the complexED-plane. Hence we have

discG(rb, ra;ED > Mc2, lD) = G(rb, ra;ED + iη, lD)−G(rb, ra;ED − iη, lD)

= − ih̄

2Mc

1

(rbra)

M

h̄k̃

×
[
0(−iν̃ + l̃D + 1)

(2l̃D + 1)!
Wiν̃,l̃D+1/2(−2ik̃rb)Miν̃,l̃D+1/2(−2ik̃ra) + (ν̃ →−ν̃)

]
.

(2.55)

Using the relations [16]

Mκ,µ(z) = e±iπ(2µ+1)/2M−κ,µ(−z) (2.56)

where the sign is positive or negative depending on whether Imz > 0 or Imz < 0, and [18]
(p 1090),

Wλ,µ(z) = eiπλe−iπ(µ+1/2) 0
(
µ + λ + 1

2

)
0(2µ + 1)

×
[
Mλ,µ(z)− 0(2µ + 1)

0
(
µ− λ + 1

2

)e−iπλW−λ,µ(e−iπz)

]
(2.57)

which is valid only for arg(z) ∈ (−π/2, 3π/2) and 2µ 6= −1,−2,−3, . . . . The discontinuity
of the amplitude is found to be

discG(rb, ra;ED > Mc2, lD) = − ih̄

2Mc

1

(rbra)

M

h̄k̃

|0(−iν̃ + l̃D + 1)|2
[(2l̃D + 1)!] 2

×eπν̃M−iν̃,l̃D+1/2(2ik̃rb)Miν̃,l̃D+1/2(−2ik̃ra). (2.58)

Thus we have∫ ∞
Mc2

dED
2πh̄

discG(rb, ra;ED > Mc2, lD)

= 1

2πh̄

∫ ∞
−∞

(h̄c)2k̃ dk̃√
M2c4 + (h̄ck̃)2

discG(rb, ra;ED > Mc2, lD)

= − ih̄

2Mc

1

(rbra)

∫ ∞
−∞

dk̃

(
ED

Mc2

)
Rk̃lD (r)R

∗
k̃lD
(r). (2.59)
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From this, we obtain the continuous radial wavefunction of the relativistic dyonium system

Rk̃lD (r) =
√

1

2π

1[
1 + (ch̄k̃/Mc2)2

]1/2

|0(−iν̃ + l̃D + 1)|
(2l̃D + 1)!

eπν̃/2Miν̃,l̃D+1/2(−2ik̃r)

=
√

1

2π

1[
1 + (ch̄k̃/Mc2)2

]1/2 |0(−iν̃ + l̃D + 1)|
(2l̃D + 1)!

×eπν̃/2eik̃r (−2ik̃r)l̃D+1M(−iν̃ + l̃D + 1, 2l̃D + 2;−2ik̃r). (2.60)

It is easy to check that the result is in accordance with the non-relativistic wavefunction when
we take the non-relativistic limit.

3. Concluding remarks

In this paper, Kleinert’s relativistic path integral with the magnetic interaction is studied. As
an application, we have calculated the path integral of the relativistic dyonium system. The
result is separated into the monopole harmonics and the radial path integral, and the radial
fixed-energy amplitude is found in closed form. The dyonium case serves as a prototype of
the path integral for a relativistic particle in arbitrary potentials. From this problem, we see
the merits of the path integral approach in the treatment of the magnetic interactions. Under
the Dirac’s charge quantization condition, the magnetic interaction just involves the boundary
integration. This procedure is something like that of the path integral treatment of the AB-
effect [19] in which the magnetic interaction is reduced to the sum of the topological winding
number.

It is our hope that our studies will help to achieve the ultimate goal of obtaining a
comprehensive and complete description of quantum mechanics from the point of view of
fluctuating paths.
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