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Abstract. The relativistic dyonium system is solved by the path integral approach. The energy
spectra and the discrete as well as continuous wavefunctions are evaluated explicitly.

1. Introduction

Over the past 20 years considerable progress has been made in solving the path integrals
(PI) of the non-relativistic potential problems. It is no exaggeration to say that today we
are able to solve essentially all path integrals in quantum mechanics, which correspond to
problems for which the Schdinger equation can be solved exactly [1]. However, the same
thing cannot be said for the relativistic potential problems. Only a few problems concerning
relativistic particles have been discussed using PI. In this paper, we perform the path integral
of a relativistic particle with both electric and magnetic char@gesg;) moving in the field
created by another charge, g,) located at the centre, i.e. the dyonium system. This result is
an extension of Kleinert’s paper [2] where the relativistic Coulomb system was solved using the
path integral. The corresponding non-relativistic case of this system was studied by different
guantization methods in [3-10].

The method presented in this paper can serve as a prototype for the path integral of arbitrary
relativistic spinless systems.

2. The relativistic path integral

Adding a vector potentiali (x) to Kleinert's path integral for a relativistic particle in a scalar
potentialV (x) [2], we find that the path integral representation of the fixed-energy amplitude
(Green’s function) of a relativistic particle in an external static electromagnetic field is given
by [11]

G2 £) = gy |85 [ ooe1p] [ Drtirox-Ae Mo (2.1)
¢ Jo
with the action
_ [ M e i ! (E = V(@) Mc?
Ap = A da [Zp(x)m &) —i(e/c)A(x) - ' (A) — p(/\)W +p(/\)7],

(2.2)
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This path integral representation arises from the limiting condition oftkkiced version

) IE 00 N+1
G(ap, x,; E) = lim 2Mc/0 dSL[l[/ dan(pn)}

B S & €I eI P B 0
X(Znﬁebpb/M)"‘/an:[l /;oo (2mhe, pa/ M)P/? Xp{_ﬁ }p() @9

where thek-sliced action
N+1 2 2 2
M(a:n — :17,1_1) L€ (E - V(mn)) Mc
AN= —_— —i-A nl)* n — Ln— — €n n—+ nfn—5
2 [ 261 o A@n) - @ = @uo1) = Eon 7 7 nbn }
(2.4)

n=1

with € = Ap — Ap—1, Ap = An+1, Ag = Ao, Tu = x(Ao) andwb = x(Ayp+1).
In equation (2.1)k/Mc is the well known Compton wavelength of a particle of ma&s
E is the system energy andis the spatial part of the (3 + 1) vector= (x, 7), S is defined as

Abp
s :/ di p(0) (2.5)
ha

wherep (1) is an arbitrary dimensionless fluctuating scale variable y@) the terminal point
of the functionp (1), and®[p (1)] is some convenient gauge-fixing functional [2, 12, 13]. The
only condition on®[p (A)] is that

f Dp()®Lp()] = L (2.6)

For the dyonium system under consideration, the potential is
2
—e

V(z) = — (2.7)
r

and the vector potential reads

— (X122 — x2&1)x3
Al@) =hg—————
r(l:L

(2.8)

wherex | = (x1, x», 0), andx; denotes the basis vectors in the Cartesian coordinate frame.
The constants = —(e1g» — e2g1) /hc ande? = —eqe, — g18» in equations (2.7) and (2.8) are

combinations of the electric and magnetic charges of the two particles,zanyixf +x2+x2

is the radial distance, as usual. The hydrogen atom is a special case of the dyonium system

with e; = —e; = e andg = 0. An electron around a pure magnetic monopole has

e1 = e,g2 = g,e2 = g1 = 0. In the vector potential we have taken the gauge freedom

A — A(x) + VA(x) to enforce the transverse gauge A(xz) = 0. In addition, we have

taken advantage of the extra monopole gauge invariance [14] which allows us to choose the

shape of the Dirac string that imports the magnetic flux to the monopoles. TheAfield

in equation (2.8) has two strings of equal strength importing the flux, one along the positive

xz-axis from plus infinity to the origin, and the other along the negatiraxis from minus

infinity to the origin. As a consequence of monopole gauge invariance, paraptesrtto be

an integer or a half-integer number [14], a condition referred to as Dirac’s charge quantization.
To obtain a tractable path integral for the potentialz) = —e?/r, we choose the

fluctuating scale variablg, = r,, and the gauge-fixing condition

N+1 N+1 2
[ 2ot = tim TT| M}exp:—i %%}. 2.9)

ol (2rhe,ry/ M)Y2 hi= 2 er,
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The unity condition is satisfied automatically. With equation (2.9), the path integral of
equation (2.3) turns into

rp
G(zp, x4; E) ~ —_/ dS/d(m)bm
e Y (210
- n=1 —00 (ZJTEE,,I'”/M)Z P h |

where the sigrx in this equation becomes an equality fér— oo, and A" is the action of
equation (2.4) in which the constamt0) is chosen as, and the 3-vectors, of the kinematic
term are replaced with the 4-vectdis This extends the kinetic action to

N+1 > >
M (xn - xn—l)

AN = - 2.11
kin ] 2 €nln ( )

The path integral can be simplified by the KS transformation [9, 15-17]
dx = 2A(u) du. (2.12)

The arrow on the top of the indicates thak has become a 4-vector. For symmetry reasons,
the 4x 4 matrix A(#) is chosen as

u u u u
aa=| T | (219)
M2 —Ml M4 —I/l3
With help of the transformation, the original measure changes into
d*x = 16-2d*u (2.14)
and the square of the derivative of the 4-veatdras the form
X% =A% = drii'. (2.15)

The magnetic interaction turns into
Eq wl'? — 2wt utu® — uBut
A . :E, = _— +
(ul)Z + (u3)2 (MS)Z + (u4)2

We obtain a path integral in the continuum limit equivalent to equation (2.10),

] [@hH2+@H? - @®? - wh?].  (2.16)

G @y, a3 ) = 5 / dS eEC/ME G iy, iy S) (2.17)
whereG (i, ii,; S) denotes the amplitude
Lo 1 d 1
G iy, fig: S) = _/ (x4)b/D4u(k) expl = A (2.18)
16 rp h
with the action
s mii'? - mwli?  4hla?
A= dr | — —i(A- ')+ - — 2.19
| [2 At )+ ™ Mz] (2.19)

and the functional measure in thesliced form

o0 d*u
4 n
/ Du) <2nheb/m>2 H Uoo <2nﬁen/m>2}' (2.20)
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The parameters are

M?c* — E?
= 4M = 2.21
m @ AM2c2 ( )
Herea denotes the ‘fine’-structure constants ¢2/fic, andA, - i’ is given by equation (2.16).
Let us analyse the effect which comes from the magnetic interaction in the Coulomb
system. We first expregs?®, u?, u®, u*) in terms of Euler angles (e.qg. [14]):

ut = Jr cos8/2) cosfig + y)/2]

w2 = Jroose/2)sinlp+y)/2 | [ OSOST
3 : O<e¢<2r (2.22)
u® = \/rsin(0/2) cosfly — v)/2] 0<y <4r
ut = /rsin6/2) sinf(p — y)/2]
Then the action of equation (2.19) reads
N 2 T i
A:/ d 12 02+¢2+y 242 (3 _4hq cosd
0 2 4 mu
mawlu?  4h%a?
+ _ e 2.23
2 2miu? } (2.23)
In terms of canonical momenta the coordinates, ¢, ) can be as follows:
u =2
m
o =2
§
o1 [py +nE cogo cost | (2.2
YT esie T Pe
, 1
¢ = [Py — né cosd — p,, cosd]

£sino
where the variables = —4hgi/mu? andé = mu?/4. Since equation (2.22) transforms.d
into
dxs =2 (u2 dut — u? dut + u? du® — u® du4)
= r(cost dy + dy) (2.25)

the integral [ (dx4),/r; in the measure of equation (2.18) beconfedy,. This is due to
the  and thus the angle@®, ¢) remain fixed during they integration. With the help of
equation (2.24), we obtain the canonical form of the path integral,

ih * Eez/hMc / / 4 f (k) {_} }
2Mc/o dse’ T dy, | D*un) hA (2.26)

where the action is given by

S
- f A (il putt’ + psb' + po + pyy'I + H) (2.27)
0
with the Hamiltonian

1 4 1 _
H=_—1pi+=|pi+—==(p2+p>—2p,+h cosf
> {pu =2 |:P9 o~y (P2 + p5 — 2(p, +hq)p, cosH)

= [—2hgp, + R? (a2 + qz)] + %mwzﬁz. (2.28)

2mu
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In the canonical path integral, the momenta are dummy integration variables so that we can
replace(p, +hq) by p,. Then the action becomes

S
A= / A {—i[ puu’ + ppb’ + py¢' + (p, —hq)y']+ H} (2.29)
0

with the Hamiltonian
7 1 2 4 2 1 2 2
o= {’”u ' [”9 * gizg Po Py 2y COS))

maw?i?

4 — —
2mii [~2hq(py —Tig) +7? (® +4°)] + 2

This differs from the pure relativistic Coulomb system in two ways [2].
First, the Hamiltonian has an extra centrifugal barrier proportional to the charge parameter

+

(2.30)

q:
—2hq(p, — hq)

Vi) = —1—=~. 2.31
") e (2:31)

Secondly, the action of equation (2.29) contains an additional term

S
AA = —Eq/ dry’. (2.32)
0

Fortunately, this is a pure surface tett = —%q(y, — y,). The madification consists of a
simple extra phase factor in the integral oygiso that

ih
2Mc

00 ] 1 4 ) L.
G(zp, za; E) = / ds eSEeZ/W‘ZE/ dy, €9 G iy, iiy; S). (2.33)
0 0
Since the integral over, forces the momenturp, in the canonical action (2.29) to take the
valuehgq. This eliminates the term proportional 9 — kg in equation (2.30), therefore the
fixed-energy amplitude in-space turns into

- & 1
G iy, iig; S) = U D4u(k)i| exp{—ﬁA} (2.34)
with the action
S mﬁ/Z meﬁZ 4(0[2 +q2)712
A= /o dk{ > + 5~ o2 } (2.35)

It describes a particle with mass = 4M moving as a function of the ‘pseudo-timg’in a
four-dimensional harmonic oscillator potential of frequency
M?c* — E?
2
0= ————. 2.36
AM?2c2 ( )
The oscillator possesses an additional attractive potert@l® + g2)h%/2mii> which is
conveniently parametrized in the form of a centrifugal barrier
_, 12
Vextra - hz_eXtLaz (237)
2mu
whose squared angular momentum has the negative igjue= —4(a? + ¢2). There are
no A-slicing corrections. This is ensured by the affine connection of KS transformation
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satisfyingl',** = g""¢;*9,¢', = 0 and the transverse gauget’ = 0 [16]. The path
integral equation (2.35) can be performed and is given by
1/2

Giiy, iig; §) = 2)%%%&0 LS A ) d 0, @)
Upla = kl Komul/2
(2.38)
with the radial amplitude
Gl ta: 5.1 = ﬁsirz—;)me_(mw/%(uw)Corhws[\/<1+1>2—4<a2+q2> (%::riz)s) (2.:39)
Wherea”/2 ,(0) ghvtiky gre the representation functions of the rotation group (e.g. [16]). The

mtegral[0 dy, e =) in equation (2.33) can be easily done. We arrive at the fixed-energy
amplitude of the relativistic dyonium system, now labelled by the subsbxjpt

G(xp, za; Ep) =

ra; Ep, Ip) Yipkiq b, €6) Y]] 4 g Bas @) (2.40)
) X ‘

whereY;, . (65, ¢») are the so-called monopole harmonics

[+1
nMAawsz;'%ﬁw> (2.41)

andlp is defined a$/2. The radial amplitude for the dyonium is

ih 1/ ds eSEe?/AMe?
2Mc 2

G(rbs Tas ED7 lD) =

MO —(mw/2R)(ry+r,) cothwsS MO\ Tbla
—€ = . 2.42
" Tisinhws V@p+17-4eq?) \ T sinhw S (2.42)
This integral can be calculated by employing the formula

o ezw t ;b;a
/O dysmh exp[—31(Lq + &) cothy] 1, (Sinhy)

C(@A+w/2-
= %Wuwz(ﬁw”hmz(%) (2.43)
with the range of validity
Cb > {a >0
Re[(1+w)/2—v] >0
Re(r) > 0 |argt] <

whereM, , andW, , are the Whittaker functions [18] (see p 1087). Thus we complete the
integration of equation (2.42), and find the amplituderfpr- r, in the closed form
ih Mc

2Mc
 M2c* — E2

r(3+3/@p+12—4a?+q?) — Epa/,/M2c* — E2)
VTl (v (2lp + D2 — 4a? + q2) + 1)

2
2,4 2
XW b MR ER, fCp —diaegD) 12 (h mm)
2
2,4 2
XME a/\/M2C4 E2 «/(21D+1)2 A(a2+q?) /2 (h m}’a> (244)

G(rba ra; EDa lD) =
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The energy spectra and wavefunctions can be extracted from the poles of equation (2.44). For
convenience, we define the following variables:

1
Kk = —/ M2*— E%
hc

E
p= D (2.45)

 M?%c* — E2
Ip=VUp+1/22~ (@?+4?) — 3.

From the poles o6 (r,, r,; Ep, Ip), we find that the energy levels must satisfy the equality

—v+lp+1l=—n, n,=0123,.... (2.46)

After some mathematical manipulation, we have

-1/2

o?

E,., =+Mc* |1+ 5
(1+3/@p+ 12— 4(g?+a?) +n,)

(2.47)

The pole positions, which satisty = 7;, = n + Ip —1Ip m=Ip+L1Iip+2Ip+3..),
correspond to the bound states of the relativistic dyonium system. Near the positive-energy
poles, we use the behaviour for 71;,),

8 M (= 1 [ Ep\2 2hiMc?
T(—v+ip+1l)— ~ — - 2.48
Cvrlo DE S T (MCZ) E2 — EZ_ (2.48)

wheredp = apMc?/Ep (ap = h?/Meé?) is the modified energy-dependent dyonium Bohr
radius andi = n, +Ip + 1 is the principal quantum number, to extract the wavefunctions of
the dyonium system

in 1 X [ Ep\® 2hMc?
G(rbsra;ED7lD):_

2Mc (rpra) | Mc? E% — E?

1=Ip+1 nlp
. 1 1 (71, +1p)! vt A, ( 2ry,  2r, >1n+1
[(ZID + 1)‘]2 ﬁlnaD (l’l - lD - 1)'

aphy, dphy,

2 ~ 2r,
Sl )M<—n+zD+1,21D+2; e >
apny, dapny,
in 1 & [ Ep\? M

2Mc (rpry) Mc? EIZ)—E2

nlD

XM(—n+Ip+1,20,+2

RnlD (rb)R::ID (ra) +-- (249)

n=Ip+1
where we have expressed the Whittaker functin, (z) in terms of the Kummer functions
M(a, b; z) [18] (p 1087),

My (2) = 226 P M (u — A+ 3,20 + 15 2). (2.50)

From this we obtain the radial wavefunctions

1 1 (7, +1p)!
R, (I‘) = = =
P AT @y + D1 (1 —1p — D)

ip+1

2 - - 2
><<~ ]: ) e_’/"“”’DM<—n+lD+1,ZZD+2; ~ i ) (2.51)

apnj, apnj,
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The normalized wavefunctions are given by

1 .
LIlnlnkq (w) - ;Rnlp (r)Yln,k,q (w) (252)

Before extracting the continuous wavefunction we note that the paramétaeal for
|Ep| < Mc?. For|Ep| > Mc?, the square root in equation (2.45) has two imaginary solutions

- 1
— i [ 12 _ ag2.q4
Kk = Fik k = E7 — M?c (2.53)

corresponding to

EDOl
Tick

Therefore, the amplitude has a right-handed cutBer > Mc¢? and Ep, < —Mc?. For
simplicity, we will only consider the positive energy cut.
The continuous wavefunctions are recovered from the discontinuity of the amplitudes
G(rp, ra; Ep, lp) across the cut in the complé,-plane. Hence we have
discG (ry, ra; Ep > Mc?,1p) = G(ry, ra; Ep +in,1p) — G(ry, ra; Ep — in, Ip)
ih 1 M
2Mc (rpry) ﬁ

[F(—iﬁ +ip+1)
X e —

v = +iv v

(2.54)

Wis ipe1/2(— 2ikry) M;; Tpe1j2(— 2ikr,) + (0 — —1)):|

(2 + 1!
(2.55)
Using the relations [16]
M, (z) = 7@ D2y (—2) (2.56)

where the sign is positive or negative depending on whether 0 or Imz < 0, and [18]
(p 1090),

L(n+i+3)
T(2u+1)
r2u+1)
M S i
’ [ O e )

which is valid only for ar@z) € (—n/2, 37/2) and 24 # —1, —2, -3, .... The discontinuity
of the amplitude is found to be

Wk,p. (Z) — einkefin(u+l/2)

e—i“WM(e—‘”z)} (2.57)

in 1 MIT(=ib+Ip+1)?
2Mc () Tk [(20p + 1)']2
XE€ M _i5 1 112 (2ikry) Mg 7 g o (—2ikry). (2.58)
Thus we have

discG(rp, ra; Ep > Mc?,1p) = —

> dEp
—dISCG(rb,ra, Ep > Mc?, 1p)
MC2 27Th

1 (> (Ec)21€d1€
" 21k ,/M2c4 + (k)2

_ | ED *
= (rbra) < )klb(r)Rkl ). (2.59)

discG (ry, ra; Ep > Mc?, Ip)
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From this, we obtain the continuous radial wavefunction of the relativistic dyonium system

1 1 C(—=iv+Ip+1)| _; -
Ry (r) = ‘/—2 - e LNl | | M5 1, 41/2(—2ikr)
T [ 1+ Rk Med?] @p + Dt

1 1 IT(=iD +1p + D)
27 [1+(chk/Mc2)2]"*  (2p+D)!
xe”‘j/ze”;r(—Zi];r)fDﬂM(—ii + ZND +1, ZiD +2; —2il€r). (2.60)

It is easy to check that the result is in accordance with the non-relativistic wavefunction when
we take the non-relativistic limit.

3. Concluding remarks

In this paper, Kleinert’s relativistic path integral with the magnetic interaction is studied. As
an application, we have calculated the path integral of the relativistic dyonium system. The
result is separated into the monopole harmonics and the radial path integral, and the radial
fixed-energy amplitude is found in closed form. The dyonium case serves as a prototype of
the path integral for a relativistic particle in arbitrary potentials. From this problem, we see
the merits of the path integral approach in the treatment of the magnetic interactions. Under
the Dirac’s charge quantization condition, the magnetic interaction just involves the boundary
integration. This procedure is something like that of the path integral treatment of the AB-
effect [19] in which the magnetic interaction is reduced to the sum of the topological winding
number.

It is our hope that our studies will help to achieve the ultimate goal of obtaining a
comprehensive and complete description of quantum mechanics from the point of view of
fluctuating paths.
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