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Summary & Conclusions - This paper presents a non- 
parametric regression accelerated life-stress (NPRALS) model 
for accelerated degradation data wherein the data consist of 
groups of degrading curve data. In contrast to the usual para- 
metric modeling, a nonparametric regression model relaxes as- 
sumptions on the form of the regression functions and lets 
data speak for themselves in searching for a suitable model for 
data. NPRALS assumes that various stress levels affect only 
the degradation rate, but not the shape of the degradation 
curve. An algorithm is presented for estimating the compo- 
nents of NPRALS. By investigating the relationship between 
the acceleration factors and the stress levels, the mean time to 
failure estimate of the product under the usual use condition 
is obtained. The procedure is applied to a set of data obtained 
from an accelerated degradation test for a light emitting diode 
product. The results look very promising. The performance of 
NPRALS is further checked by a simulated example and found 
satisfactory. We anticipate that NPRALS can be applied to 
other applications as well. 

1. INTRODUCTION 
Acronyms' 

LED 
' ADT 

LLR 
PC 

PCA 
PCBF 
MTTF 
SAFT 

SL 
SLI 

NPRALS 

light emitting diode 
accelerated degradation test 
local linear regression 
principal component ' 

PC analysis 
PC basis function 
mean time to failure 
scale accelerated failure time 
stress level 
standardized light intensity 
the model in this paper 

In many experiments in life sciences and engineering, 
the collected data are samples of response curves. Growth 
data of children is an example, and degradation data of 

'The singular & plural of an acronym are always spelled the same. 

a product-performance measure is another. How to ana- 
lyze such data has become important in recent statistical 
research. 

Due to rapid advances of technology and to quality im- 
provement efforts, many products are so reliable that tra- 
ditional life tests are not feasible in estimating the lifetimes 
of these products. In such circumstances, accelerated tests 
are widely used to shorten the life of products or hasten 
the degradation of their performance. The aim of such 
tests is to collect data quickly so that desirable informa- 
tion on product life or on performance under usual use can 
be obtained in a reasonable time by appropriate modeling 
and analysis. 

This study focuses on accelerated degradation tests 
(ADT) data analysis. Most of the ADT analyses use para- 
metric regression models to estimate the lifetime of the 
product under usual use. To relax the assumptions on the 
form of regression functions and let data speak for them- 
selves in searching for a suitable model for data,,we pro- 
pose a nonparametric regression model to analyze ADT 
data in this paper. 

Nonparametric regression techniques are useful in ob- 
taining a smooth fit to noisy data, to describe the re- 
lationship between response variables and s-independent 
variables. These smoothing techniques are powerful tools 
in statistical data-analysis because of the, 

model flexibility, - appealing look of the fitted curves (or surfaces). 
Several books were published in recent years on smoothing 
techniques, eg, [2 - 6, 131. 

1.1 Relevant Works 
Recently, many researchers have paid much attention to 

modeling & analyzing degradation data. Nelson [ll] pro- 
vided a fairly thorough survey on ADT, which included ar- 
eas of applications, statistical models, and data analyses. 
Meeker & Escobar [8] reviewed recent research in acceler- 
ated testing. Lu & Meeker [7] used a non-linear mixed- 
effects model with degradation data to estimate the life 
distribution. Meeker, Escobar, Lu [lo] presented meth- 
ods for analysis of accelerated degradation data. They 
used approximate maximum likelihood estimation to es- 
timate model parameters from the assumed mixed-effects 
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nonlinear regression model; and they suggested methods 
for estimating lifetime distributions for various situations. 
Meeker & Escobar (91 presented many up-to-date statisti- 
cal methods for analyzing reliability data. 

In life sciences, Capra & Muller [l] proposed an acceler- 
ated time model for cohorts of female Mediterranean fruit 
flies that may age faster or slower, depending on inher- 
ent genetic dispositions or external factors like varying 
temperature and humidity. A nonparametric regression 
method was used to estimate the mean mortality function 
under usual conditions. 

For more research on this topic, see [l, 7 - 111. 

1.2 The Motivated Application 
Our research was motivated by a set of ADT data on 

LED. LED have been widely used in many fields, rang- 
ing from consumer electronics to optical fiber transmis- 
sion systems. LED has many nice features, such as less 
power consumption, small volume, good visual effect, and 
long lifetime. Applications include electronic boards on 
highways and on streets, smoke sensors on ceilings, night 
lights, and traffic lights. LED products are gradually re- 
placing traditional light bulbs in many places. Because of 
the very-high-reliability of LED products, it is difficult to 
obtain information on product life under usual use in a 
short time. 

Yu & Tseng [14] proposed an on-line procedure for ter- 
minating an ADT experiment. They applied the procedure 
on a set of ADT data of an LED product with electric 
current as the accelerating variable. This study analyzes 
another set of ADT data of the same LED product with 
temperature as the accelerating variable. Our goal is to es- 
timate the MTTF of the product under usual use. Section 
4 describes this LED data set in more detail. 

1.3 Overview 
Section 2 introduces the NPRALS model. Section 3 pro- 

poses an algorithm for estimating the components of this 
model. Section 4 performs a data analysis on a set of ADT 
data of an LED product based on NPRALS. Section 5 has 
a simulation study to explore the effectiveness of NPRALS 
and reports the results. Section 6 discusses the resulting 
situation. 

Notatzon 
m number ofSL 
i 

n, 
j 
p 
k 

tk 

&, j ,k  

tz,j,k 

T 

index for SL, i = 1,. . . , m 
number of test items for SL i 
index for test items, j = 1 , .  . . , n, 
number of measurements for each test item 
index for the measurements, k = 1, .  . . , p  
measurement time for measurement k of 

measurement for item j under SL i at tk 
measurement time for Xz,3,k; tz,j,k = tk for 

a closed interval of time 

each test item 

each i , j  

A implies an estimate 

acceleration factor (or relative acceleration 

rescaled time for ti,j,k according to & 
measurement corresponding to t : , j ,k ;  

stochastic process of quality characteristic, 

factor after scaling) for SL i 

x,!,j,k = Xi,j,k 

mean function of X (.) 
stochastic process with mean zero, and T ( . ,  .) 
covariance of W (  .) 
measurement/experimental error 
index for PCBF; q = 1,. . . , L 
number of PCBF 
PCBF q of X ( . )  for SL i 
random coefficient of 
sample covariance matrix for SL i 
MTTF under SL i 
absolute temperature for SL i 
unknown parameters of the Arrhenius 

relationship between M, and T, 
unknown parameters of the Arrhenius 

relationship between a, and T, 
simulated data of X2,j ,k 
kernel function in the LLR model 
bandwidth 

for curve j 

- . K ( h )  1 
h 
coefficients.of the LLR model 
weight of observation i in LLR smoothing 

n 

i= l  
sum of ni measurements at tk at SL i 
average of ni measurements at tk at SL i 

AN ACCELERATED LIFESTRESS 
DEGRADATION MODEL 

NPRALS has 2 important aspects: - degradation path of the product characteristic (modeled 

- relationship between the rate of acceleration and the SL 
as a stochastic-process).2 

of the product characteristic. 

2.1 Stochastic-Process Model for Curve Data 
Assumptions I 

The sample degradation path of each experimen- 
tal subject (or test item) is a realization of an underlying 
{ X ( t ) , t  E T } ,  T > 0. 

1. 
' 

2. The model for X ( t )  is: 

X ( t )  = P(t )  + W t )  + 4 t h  (1) 

p(t)  E [ X ( t ) ] ; 3  

21n recent years, this approach has been used to model curve data 
in other applications. For more information, see (121 and references 
therein. 

3Mean degradation curve of the product. 
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Figure 1: a. p(t) ,  b. p( t )  + W ( t ) ,  c. p(t )  + W ( t )  + ~ ( t )  

W ( t )  = a stochastic process with mean O;4 

~ ( t )  
r ( s , t )  Z E  Cov[W(s), W(t ) ] ;  

uncorrelated error terms with E[E(~)]  = 0 ’ 

and Var[~(t)] = (T’.~ 4 

NPRALS is illustrated by a simulated example in fig- 
ure 1. Figure l a  shows p ( t ) ;  figure l b  shows a group of 
sample paths of p( t )  + W(t ) ;  figure IC shows the same 
group of sample paths as in figure lb ,  but with experi- 
mental/measurement errors added. 

2.2 An Acceleration Model and Acceleration Factor 

With time & cost limitations, failures of highly reliable 
products are not always observa.ble. Hence, ADT is a use- 
ful technique to speed up the degradation process. 

4The subject effect. 
5Experimental and/or measurement error at time t .  

Assumptions 

rate, not the shape of the degradation curve. 
3. The acceleration stress affects only the degradation 

4 

- - - _  - - - -_  - c ._ 

0 9 1  I I 
0 ‘ 5  10 15 20 25 30 

t at 

Figure 2: p(t) (solid) and p ( a .  t )  (dashed), for some a > 1 

Figure 2 illustrates assumption #3. The solid curve is 
p(t) .  The dashed curve is p ( a .  t ) ,  where a is the accelera- 
tion factor. The usual baseline (unaccelerated) process for 
defining the acceleration factor is the usual-use process; 
thus usually a > 1 for an accelerated process. The same 
value of the quality characteristic is observed at, 

t for the accelerated curve, - t’ = a .  t for the unaccelerated curve. 
Thus the lifetime - defined as the time the degrada- 
tion path crosses a specified degradation level - of the 
accelerated-test item is the lifetime of the product under 
usual use divided by a. Consequently, investigation of the 
relationship between the SL and the acceleration factors, 
results in the mean lifetime of highly reliable products un- 
der usual use. This model is called the scale accelerated 
failure time (SAFT) model in [lo]. 

The form of the acceleration time in assumption #3 is 
a special kind of acceleration model that might not be 
adequate to describe the effect of the accelerating variable 
on time for some problems. See, for example, [9: chapter 
181 for other models. 

2.3 An Accelerated Life-Stress Degradation Model 

There are m SL in the experiments. For SL i, 1zt ex- 
perimental units are used. The product characteristic is 
measured at t l ,  . . . , t, for each experimental unit. Using 
the functional PC technique, consider the accelerated life- 
stress degradation model in (2) to describe data: 

Thus the random component of (l), W(t)+E(t), is modeled 
by a random combination of functional PC, 
{P i ,qC) ,  4 = 1 , .  . . 1 L) .  
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2, 

3. ESTIMATION OF THE MODEL COMPONENTS 
This section presents an algorithm for estimating p(.) 

and a1 , . . . , a,. These a, are not estimable since we do not 
have data from the unaccelerated process (usual use). We 
choose the group with the largest acceleration factor as the 
baseline process. The reason for this choice is that we then 
can use all the data points in the analysis in the pooling 
step of the algorithm. Then without loss of generality, let 
0 5 a1 5 . .. 5 a ,  = 1. After scaling, the a, are no 
longer acceleration factors. In this section, they are called 
'relative acceleration factors'. 

Estimate a,, for each i = 1, . . . , m, by solving the mini- 
mization problem: 

r n ;  1 
(3) 

bm(a, . t )  is an estimate of p,( t ) ,  for i = 1,. . . , m. Es- 
timates of p,(.) and {a,, i = 1,. . . , m} are obtained as 
follows. 

{ X m , j , k ,  j = 1,. . . ,n,, k = I,. . . , p }  on 
{ t m , l , k , j  = 1,. . . ,n,, k = 1,.  . . , p }  to obtain an initial 
estimate of p m ( . ) .  This step can be done more efficiently 
by smoothing 
{ x m , k ,  k = 1,. . . , p }  on 

1. Smooth 

{ t m , j , k ,  k = 1,. . . , p } ,  

The derivation is given in the appendix. 
2. To estimate a,, search over (0,l) to find the minimizer 

of (3); this estimate is 6%.  
3. Since all p z ( . )  are just time-scaled functions of p,(.), 

pool all the data points in m groups together to estimate 
p,(.). The data are compiled by mapping each data point 

( t w , k ,  x w , k )  to ( t : , j , k ,  X2' , j ,k)r  

a2 

am 
&,k E t k  ' (T), 

x,',j ,k = X z , j , k .  

4. Then obtain fi ,( .)  by smoothing 
{ X ~ , 3 r k ,  i = 1,. .. ,m, j = 1,. . . , n 2 ,  k = l , . .  . , p }  on 
{ t : , j , k ,  i = I,.. . ,m, j = 1,. . . ,n,, k = 1,. . . ,p} .  
Figure 3 shows the result of the compilation of all data 
points for an example. 

5. Solve (3) to obtain a new set of 6:. Repeat steps 2 - 
4 

Next, investigate the covariance structure of X ( . ) .  Com- 

4 until values of 6, converge. 

pute: 
ni 

for 1 5 k ,  s, r 5 p .  

Let 

Pt,q E ( i j z , q ( t l ) ,  . . . 1 i j z , q ( t p ) ) T  , 
f o r i =  1, . . .  ,m  

be the eigenvector corresponding to the qth largest eigen- 
value A,,q of V,, for q = 1,. . . ,p .  

Estimate: 

* a:, by xz,q, 

' pz,q(') by smoothing { / % , q ( t k ) ,  1,. . . ,P} 
on { t k ,  k = 1,. . . , p } .  
Remarks 

1. In practice there is no need to estimate a,  since a, 
is known to be 1. The 6 ,  is computed simply to check 
whether the proposed estimating procedure works. An 
6, too far off from the true value 1 indicates that the 
estimates obtained should not be trusted. 

2. The smoothing technique in this paper is the LLR 
smoothing for ease of implementation; it is briefly de- 
scribed in the appendix. Other techniques such as smooth- 
ing splines can be used as well. The bandwidth selection 
in smoothing is important in practice. We presume that 
any reasonable method applies here. 

on {t: , l ,k} directly, might be slow 
because there are many data points in the compiled data. 
The appendix derives an efficient way to reduce the com- 

4 

This estimation procedure is summarized in the Algorithm. 

3. Smoothing 

puting time by a large factor. 

Algori t h m . 
1. Obtain an initial estimate f i m  of p, by smoothing 

2. For each i = 1,. . . , m, obtain initial estimates by 

3. Compile m groups of data by time-scaling according 

{ X m , k ,  k = 1 , .  . . , p }  On { t k ,  k = 1,. . . , p } .  

minimizing ( 3 ) .  

to 6i: 

X : , j , k  ,= X i , +  
6i 

t! z , j , k  . = - 6, . t .  2,Jpk. and 

4. Obtain fi, by smoothing { X i , j , k }  on { t i , j , k } .  

5. Repeat steps 2 - 4 until all 6i converge. 
End-Algorit hm 



SHIAWLIN: ANALYZING ACCELERATED DEGRADATION DATA BY NONPARAMETRIC REGRESSION 153 

4. REAL-DATA ANALYSIS 
The Algorithm is demonstrated by analyzing a set of real 

ADT data of an LED product. Items of an LED product 
were randomly selected for this ADT experiment. The 
experiment was conducted up to 9998 hours for each SL. 
The key quality characteristic is the SLI which degrades 
over time. This quality characteristic was measured at 59 
time points for each test item. Thus a response curve was 
collected for each test item. 

The accelerating variable is temperature. Three levels 
of temperature, 25"C, 65"C, 105OC, were chosen by engi- 
neers. The usual use condition is 20°C. 

The goal is to estimate the MTTF of the product at  
the usual use condition. The 16, 18, 19 response curves 
were collected for the accelerated conditions, 25"C, 65"C, 
105"C, respectively. Figure 4 shows the data. The step- 
by-step data analysis is shown. 

1. The fastest degrading group is group #3 in figure 4c. 
Let a3 = 1. Apply the Algorithm: 
61 = 0.116726, 62 = 0.353575, 63 = 0.999995. 
b3 ( t ) .  

2. Estimate the mean curves of group #1 by 

bl(t) = b 3  . (2 . t )  

and that of'group #2 by 

b2(t) = b3 . (2 . t ) .  

To see how well the estimation is, compare f i , ,  z = 1 , 2 , 3 ,  
with the corresponding averaged curve obtained by aver- 
aging n, curve data at each of the 59 time points for each 
group. The results are in figure 5. 

Figure 5 shows that: b, fits the averaged-curve i quite 
well. 

3. Let a0 be the relative acceleration factor under the 
usual use condition (20°C). To estimate ao, consider find- 
ing a regression relationship between {a,} and the corre- 
sponding SL {T,}. According to [ll], consider the follow- 
ing Arrhenius rate relationship: 

(4) 
1 

log (M,)  = a0 + a1 . -. 
Tz 

The Arrhenius relationship [9, 111, obtained through em- 
pirical observation6, is widely used to describe the effect 
that temperature has on acceleration. Of course, the con- 
stant activation-energy does not apply to all temperature- 
acceleration problems; it is adequate over only a limited 
temperature range depending on the application. Under 
the SAFT model, M3/M, = a,. Then by (4), it is reason- 
able that the relative acceleration factor and the SL have 
the linear relationship: 

1 
log(ai) = Po + P1 . F ,  (5) 

si 

for some real numbers PO and PI.  Regressing {&} on 
{1/z} using model (5), gives $0 = 7.9438 and $1 .= 

61n principle, it merely defines the  activation energy. 

I50 

0 2000 4000 6000 BOO0 IO000 
time (hour) 

(b) T65 
i 

0 2000 4000 6000 8000 10000 
time (hour) 

(c) T105 
1 

I 

0 2000 4000 6000 BOO0 10000 
time (hour) 

Figure 4: ADT Data of an LED Product 

a. 16 SLI curves for 25"C, 
b. 18 SLI curves for 65"C, 
c. 19 SLI curves for 105°C 

-3017.0264. P-values for $0 and are less than 0.05, 
and R2 =O .9975. 

These evidences support the potential adequacy of (5). 
Further, since the usual use condition (20°C) is not too 
far away from the temperature range tested, we then can 
estimate the relative acceleration factor at the usual use 
condition by 

" ] = 0.09559846. 
60 = exp PO + 273.16 + 20 [ -  

4. By an industrial standard, an LED product is de- 
clared failed when its SLI degrades to 1/2. Consequently, 
we can estimate the MTTF of the LED product in group 
3 by finding t: when b3(t;) = 1/2. Then the MTTF under 
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2000 4000 6000 8000 10000 
time (hour) 

(b) T65 

O ,  

0 Zoo0 4000 6000 8000 10000 
time (hour) 

(c) T105 

0 2000 4000 6000 EO00 loo00 
time (hour) 

Figure 5: Solid Curves Are Estimated Mean-Degradation 
Curves; Dashed Curves are Averaged-Data Curves for: 

a. 25"C, b. 65"C, c. 105°C 

the usual use condition can be estimated by: 

k 3  t; = tz = 52211.94 hours = 5.96 years . 
5. The stochastic component is estimated for each 

group. We show only the first 2 eigenvectors in figure 
6; under different SL they have some features in common. 

a0 

5. SIMULATION RESULTS 
A data analysis on real data cannot provide enough in- 

formation on how well the procedure does in recovering 
the truth. To investigate the performance of NPRALS, 
we conduct a simulation study using the estimated para- 
meters, from the LED data analysis in section 4, to gen- 
erate the (hypothetical) truth. This truth is generated as 
follows. 

0 2000 4000 6000 8000 10000 
time (hour) 

(b) Second Eigenvector 

01 I 
I '  

0 2000 4000 6000 8000 10000 
time (hour) 

Figure 6: The Eigenvectors of  the  Sample Covariance Matrix 
Associated with: a. the largest, and b. the second largest, 
eigenvalue for each group. 

Solid curves are 25"C, 
Dotted curves are 65"C, 
Dashed curves are 105°C 

1. Let, 

ai = exp 00 + ,& 

The 00 and 81 are from section 4. Rescale {a i}  such that 
a3 = 1 (divide each ai by a s ) .  Then these rescaled ai are 
regarded as the true relative acceleration factors. 

2. Let pi( t )  = f i 3  . (ai . t ) ,  i = 0 , 1 , 2 , 3 .  The f i 3 ( . )  is 
from section 4, and the,ai are from step 1. These pi( t )  are 
regarded as the true mean function. 

3. Compute V,, for i = 1,2,3:  

, for i = 0 ,1 ,2 ,3 .  [ -  4 

for 1 5 i 5 3 ,  1 5 j 5 n i ,  1 < s , r , k 5 5 9 .  

Notation 
u ; , ~  qth largest eigenvalue of ~ l ,  
pi,q eigenvector associated with u: ,~  

These 2 parameters are regarded as the true parameters. 
The simulated data are constructed from (2) as follows. 

Let, 
n1 = 16, n2 = 18, 723 = 19. Then for i = 1,2,3:  
. 1. generate ~ i , j , ~  from N(O,U?,), 1 5 j 5 ni, 

1 5 q 5 59; 
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(a) T25 
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(b) T65 

z " X  I 
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Figure 7: Simulated Data Generated from the Hypothetical 
True Model 

a. 16 SLI curves for 25"C, 
b. 18 SLI curves for 65"C, 
c. 19 SLI curves for 105°C 

Figure 7 shows the generated data; these simulated data 
have many features of the real data. 

Perform the procedure, described in section 3, on the 
simulated data { X i , j ; k } .  The estimates of ai are summa- 
rized in table 1. - Figure 8 shows f i i ( . )  and the hypothetical true mean 
curves. 

0 2000 4000 6000 8000 10000 
time (hour) 

(b) T65 

0 2000 4000 6000 8000 10000 
time (hour) 

(c) T105 

4000 6000 EO00 10000 0 2000 
lime (hour) 

Figure 8:  Mean Degradation Curves (MDC) for Simulated 
Data 

Dashed curves: estimated MDC 
Solid curves: (hypothetical) true MDC 
a. 25"C, b. 65"C, c. 105°C 

- Figure 9 shows c; ,~ ,  the'hypothetical true eigenvalues, 
and &;,q, the estimated eigenvalues. 

- Figures 10, 11 show the hypothetical true and the es- 
timated eigenvectors associated with the largest and the 
second-largest eigenvalues, respectively. 

Table 1: True & Estimated Values of the ai 

a0 a1 a2 a3 

True 0.09559894 0.1175793 0.3891789 1 
Est. 0.09052029 0.1063360 0.3987680 0.999993 



(a) True Eigenv3- 

0 10 20 30 40 50 6 
q 

(b) Estimated Eigenvalues 

" I  
& 0 1  I - -  1 

L .  I 
0 10 , 20 30 40 50 60 

q 

Figure 9: Eigenvalues 

a. Hypothetical true eigenvalues 
b. Estimated eigenvalues in the simulation. 

Solid curves: (T:,~, 

Dotted curves: (T; 9, 

Dashed curves: mi,, 

The results show that most of the estimated values are 
fairly close to the true values. NPRALS seems to perform 
quite well for this simulated example. This also indicates 
that NPRALS describes the LED data fairly well. 

6. DISCUSSION 
Meeker, Escobar, Lu [lo] presented some good meth- 

ods, based on- parametric models, for analyzing acceler- 
ated degradation data similar to the data analyzed in this 
paper. A nonparametric regression alternative, such as 
NPRALS can free analysts from the burden of specifying 
models in the usual parametric modeling. The tradeoff 
is the slight inefficiency, which means one probably needs 
more data to get the same accuracy of the estimates using 
a parametric model (assuming that the parametric model 
is correct). On the other hand, a nonparametric regression 
method performs much better than a wrongly specified 
parametric model. A popular data-analysis strategy is to 
explore the data via nonparametric regression techniques 
first; if the results suggest a suitable parametric model, 
then perform the usual parametric methods for: - better efficiency, - possibly easier interpretation. 

Nonparametric regression is a fast growing research area 
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(a) True Eigenvector 
'1 
0 

. .  
0 2000 4000 6000 8000 10000 

time (hour) 

(b) Estimated Eigenvector 

0 1  I 

2 

01 
61 I 

0 2000 4000 6OOO 8000' 10000 
time (hour) 

Figure 10: Eigenvector Associated with Largest Eigenvalue 
Of: 

a. Hypothetical true V,  
b. Estimated V,. 

Solid curves: 25"C, 
Dotted curves: 65"C, 
Dashed curves: 105°C 

in statistics. The data-analyses developed from this re- 
search are getting more mature and advanced. The poten- 
tial applications of these techniques are in any area that 
needs regression techniques, such as the application in this 
paper. 

In this paper, the goal of estimating MTTF for the LED 
product under usual use is achieved by finding the relation- 
ship between the relative acceleration factors and the SL. 
The important issues of obtaining an interval estimate of 
MTTF and estimating the lifetime distribution are topics 
for future research. 
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(a) True Eigenvector 

(0 1 
0 -  

T 
91 I 

0 2000 , 4000 6000 8000 10000 
time (hour) 

(b) Estimated Eigenvector 
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~ 

' 0  2000 4000 6000 8000 10000 
time (hour) 

h = the bandwidth ST the local smoothing. b(t) is explicJt1.y i' expressed by, 

For this study, we chose Epanechnikov kernel for IT(.): 
K( t )  = 9 . (1 - t 2 )  . I(ltl 5 1). 

Epanechnikov kernel is one of the most popular kernels in 
nonparametric regression; it is the optimal kernel in the 
sense that it minimizes asymptotic mean squared error of 
the function estimator over a group of kernels [2: theorem 
3.41. For more information on LLR smoothers, see, 
eg, [2, 4 ,  51. 

A.2 Method Extension 

Figure 11: Eigenvector Associated with Second-Largest 
Eigenvalue o f  

For group m, the LLR estimator of Pm(t) 

n- P 
a. Hypothetical true V, 
b. Estimated Vi. . 

Solid curves: 25"C, 
Dotted curves: 65"C, 
Dashed curves: 105°C 

APPENDIX 
Appendix A.l  briefly describes the LLR smoother 

method to smoothing one curve data. Appendix A.2' ex- 
tends the method to estimating efficiently the mean curve 
of a group of curve data. Appendix A.3 further extends 
the method to estimating efficiently the mean curve from 
the complied data of several groups of curve data. 

A. 1 Local Linear Regression Smoother 
This is a locally weighted least squares estimation. 

Given n observations { ( t k ,  y k ) } ; = l  , consider the model: 

Y k  = P ( t k )  + E k ,  k = 1,. . . , 72 ,  

for 1 = 1,2 ,  n = nm ' p .  
nm 

Xm,k E x X m , j , k ,  
j=1 

Since w,,j7k = wm,jt,k, for all j , j '  = 1 , .  . . ,nm, then by 
setting Wm,k = wm,j,k, 

P P 

wm,k ' Xm,k wm,k ' xm,k 
p( , )  is a smooth function 
{ f k }  are uncorrelated errors with zero mean and standard 

We obtain a b(t) by the minimizer 

min c ( y k  - bo - bl(tk - t)12 . Kh(tk - t )  , 

k=l - - k=l deviation D .  bm( t )  = P P 

nm ' Wm,k Wm,k of 
k=l k=l 

Thus, smoothing all the data 

{Xm,j,ki j = 1 , .  . . ,nm,  k = 1,. . . ,P} 
can be simplified to smoothing 

bo'b1 k=l 1 r 
1 
h 

Kh(.) z? - . K (;) . 
- 

K( . )  = a kernel function, {Xm,k,  = 1 1 . .  . ip}. 
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A.3 Further Method Extension 

mator of p m ( t )  is: 
For the compiled data 

m n; P 

m n; P 

i=l j=1 k=l 

I = 1,2, n= (nl+ ... +nm) ‘ p .  

Notation 
n; 

wi , k  w i , j , k  
Since Wi,j ,k = w i , j ( , k ,  for all j ,  j ’  = 1, . . . , n;, 

m p  m p  

i=l k=l 

m. Q 

i=l k=l 

Thus, smoothing all the data: 
i = 1,. . . ,m, j = 1 , .  . . , ni, IC = 1 , .  . . , p }  can 

be simplified to smoothing: 
{Xl,k2 i = 1 , .  . . , m, IC = 1 , .  . . , p }  with adjusted weights 
- 

On {xL,k}. 4 
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